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Abstract

The main purpose of this paper is to generalize the concept of linear
terms. A linear term is a term in which every variable occurs at most once.
K. Denecke defined partial operations on linear terms and partial clones.
Moreover, their properties are also studied. In the present paper, a general-
ized notion of the partial clone of linear terms, which is called k-terms clone,
is presented and we also study its properties. We provide a characterization
of the k-terms clone being free with respect to itself. Moreover, we attempt
to define mappings analogue to the concept of hypersubstitutions.
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1. Introduction and preliminaries

To describe or to study algebraic properties of algebras, we need an appropriate
language as a tool for our desire. In universal algebra, the concept of identities is
used to classify algebras of the same type into classes which are called varieties.
Identities are made up of terms of the same type. Therefore, in the study of
identities we need to know the concept of terms.

Let n ∈ N, where N is the set of all positive integers. The n-element set of
variables is denoted by Xn := {x1, . . . , xn}. We denote the set X to be the set⋃

n∈NXn. Thus, the set X is a countable set of variables. Let {fi : i ∈ I} be an
indexed set of operation symbols of type τ = (ni)i∈I , where fi is of arity ni ∈ N.
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In our setting, the set of variables and the set of operation symbols have to be
disjoint. For the rest of the paper, we fix the type τ = (ni)i∈I , unless otherwise
stated.

An n-ary term of type τ is defined inductively as follows.

1. Any variable in Xn is an n-ary term of type τ .

2. If t1, . . . , tni
are n-ary terms of type τ , then fi(t1, . . . , tni

) is an n-ary term
of type τ .

By Tτ (Xn) we denote the set of all n-ary terms of type τ and let

Tτ (X) :=
⋃

n≥1

Tτ (Xn)

be the set of all terms of type τ .
To make up new terms, one of the fundamental ways is to compose terms

by using superposition operations. Let m,n ∈ N. Superposition operations are
mapping

Sn
m : Tτ (Xn)× (Tτ (Xm))n → Tτ (Xm)

defined by the following inductive steps.

1. If t = xi ∈ Xn, then Sn
m(xi, t1, . . . , tn) := ti.

2. If t = fi(s1, . . . , sni
), then, under the assumption that Sn

m(sj , t1, . . . , tn) is
already defined for all 1 ≤ j ≤ ni,

Sn
m(fi(s1, . . . , sni

), t1, . . . , tn) := fi(S
n
m(s1, t1, . . . , tn), . . . , S

n
m(sni

, t1, . . . , tn)).

Then we get a many-sorted algebra

clone(τ) := 〈(Tτ (Xn))n∈N; (S
n
m)m,n∈N, (xi)i≤n,n∈N〉.

Moreover, clone(τ) satisfies the following identities.

(C1) S̃
p
m(Z̃, S̃n

m(Ỹ1, X̃1, . . . , X̃n), . . . , S̃
n
m(Ỹp, X̃1, . . . , X̃n))

≈ S̃n
m(S̃p

n(Z̃, Ỹ1, . . . , Ỹp), X̃1, . . . , X̃n), m,n, p ∈ N.

(C2) S̃n
m(λi, X̃1, . . . , X̃n) ≈ X̃i for all 1 ≤ i ≤ n, m,n ∈ N.

(C3) S̃n
n(Ỹ , λ1, . . . , λn) ≈ Ỹ , n ∈ N.

Here Z̃, Ỹi, X̃j are variables for terms for each 1 ≤ i ≤ p, 1 ≤ j ≤ n, S̃n
m is an

operation symbol, and λi is a variable for all 1 ≤ i ≤ n (see [9]).
In General Algebra, many scientists study a subject which is called clone

theory, or function algebras. This subject plays a vital part of other branches of
science, for example, electrical engineering and computer engineering. Especially
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in computer science, in particular, in switching theory and theory of automata
(see [10]).

For any n ∈ N, let A be a nonempty set. The usual notation for a tuple
in An is (a1, . . . , an) where ai ∈ A for all 1 ≤ i ≤ n. We will use bold letters
to denote tuples and corresponding italic letters with subscript to denote their

components, that is, a := (a1, . . . , an). For any n ∈ N. Let O
(n)
A and OA be the

set of all n-ary operations on a nonempty set A and the set of all operations on
the set A, respectively. For any m,n ∈ N, a mapping

Sn,A
m : O

(n)
A × (O

(m)
A )n → O

(m)
A

defined by (f, g1, . . . , gn) 7→ h, where h(a) := f(g1(a), . . . , gn(a)) for all a ∈ Am,
is called a superposition operation. A nonempty subset X of OA is said to be a
clone on A if X contains all projections on A and is closed under superposition
operations, where the i-th n-ary projection projn,Ai on A is a mapping from An

to A defined by (a1, . . . , an) 7→ ai for all 1 ≤ i ≤ n.
We can consider a clone on A as a many-sorted algebra

cloneA :=
〈(

O
(n)
A

)
n∈N

;
(
Sn,A
m

)
n,m∈N

,
(
projn,Ai

)
i≤n,n∈N

〉
.

The many-sorted algebra cloneA satisfies the identities (C1)–(C3).
Any many-sorted algebra satisfying (C1)–(C3) is called an abstract clone. On

the other hand, any clone of operations on a nonempty set A is called a concrete

clone. One can easily see that every concrete clone is an abstract clone. The
following theorem shows how an abstract clone relates to a concrete clone.

Theorem 1 ([16]). Any abstract clone isomorphics to a concrete one.

Let n ∈ N and A be an algebra of type τ . Any given t ∈ Tτ (Xn) induces an
n-ary operation tA on A defined by the following steps.

1. If t = xi, then tA := projn,Ai .

2. If t = fi(s1, . . . , sni
), then, under the assumption that sAj is an n-ary opera-

tion on A for all 1 ≤ j ≤ ni, we define tA := fA

i

(
sA1 , . . . , s

A
ni

)
.

The n-ary operation tA on A is called an n-ary term operation on A induced by
t. We denote the set of all n-ary operation on A by TA

τ (Xn). It turns out that
for any algebra A of type τ we obtain the many-sorted algebra

clone(A) :=
〈(

TA

τ (Xn)
)
n∈N

;
(
Sn,A
m

)
n,m∈N

,
(
xAi
)
i≤n,n∈N

〉
.

Clearly, clone(A) is a concrete clone. By the definition of operations induced by
terms, we can see that a mapping defined by t 7→ tA is a homomorphism from
clone(τ) onto clone(A). Therefore, the following result holds.
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Corollary 2. Let A be an algebra of type τ . Then clone(τ) is a homomorphic

image of clone(A).

Any algebra of type (n + 1, 0, . . . , 0︸ ︷︷ ︸
n-times

) is called a unitary Menger algebra of

rank n if it satisfies the following identities.

(C’1) ◦(z, ◦(y1, x1, . . . , xn), . . . , ◦(yn, x1, . . . , xn))
≈ ◦(◦(z, y1, . . . , yn), x1, . . . , xn).

(C’2) ◦(ei, x1, . . . , xn) ≈ xi for all 1 ≤ i ≤ n.

(C’3) ◦(x, e1, . . . , en) ≈ x.

Here ◦ is an (n+ 1)-ary operation symbol, e1, . . . , en are nullary operation sym-
bols and z, x1, . . . , xn, y1, . . . , yn are variables. The readers can be found more
information and results about unitary Menger algebras of rank n in [15].

For any n ∈ N and a nonempty set A, let us now mention

n-clone(τ) := 〈Tτ (Xn);S
n
n , x1, . . . , xn〉

and

n-cloneA := 〈O
(n)
A ;Sn,A

n ,projn,A1 , . . . ,projn,An 〉

the unitary Menger algebras of rank n. It is not difficult to see that n-clone(τ)
and n-cloneA is a particular case of clone(τ) and cloneA, respectively. In 1963,
Dicker showed the following result.

Theorem 3 ([7]). Let n ∈ N and A be a nonempty set. Then n-clone(τ) is

isomorphic to a subalgebra of n-cloneA.

It is clear that if n = 1, then n-cloneA is the monoid of all 1-ary functions
defined on A. Thus, the above result generalizes the following result: every
semigroup is isomorphic to a transformation semigroup.

Let us recall a particular class of terms which is called linear terms. For any
term t of type τ , the set var(t) is the set of all variables occurring in t. A linear
term is a term in which any variable in the term occurs only once. Formally, an
n-ary linear term of type τ is defined inductively as follows.

1. Any variable in Xn is an n-ary linear term of type τ .

2. If t1, . . . , tni
are n-ary linear terms of type τ with var(tj)∩ var(tl) = ∅ for all

1 ≤ j < l ≤ ni, then fi(t1, . . . , tni
) is an n-ary linear term of type τ .
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We denote the set of all n-ary linear terms of type τ by Tlin
τ (Xn) and let

Tlin
τ (X) :=

⋃

n≥1

Tlin
τ (Xn)

be the set of all linear terms of type τ (see [2]).
In vector spaces, any vector can be represented as a linear combination be-

tween scalars and vectors. Recently, many authors studied various directions
concerning linear terms. In 2015, N. Lekkoksung and P. Jampachon studied
a class of mappings called non-deterministic linear hypersubstitutions. A non-
deterministic linear hypersubstitution is a mapping assigning to each operation
symbol a subset of linear terms preserving arity. They showed that the set of
all such non-deterministic linear hypersubstitutions together with a particular
binary operation forms a monoid (see [12]). In 2016, K. Denecke studied the
properties of linear clone, a subalgebra of clone(τ). The author obtained that
the linear clone satisfies (C1)–(C3) as weak identities (see [3]). In 2017, L. Lo-
hapan and P. Jampachon determined the semigroups properties of linear terms,
where the binary operation of this semigroup is induced by a generalized super-

position (see [11]). They characterized special elements in this semigroup, for
example, idempotent elements and regular elements. Moreover, they determined
its Green’s relations (see [13]). In 2019, D. Phusanga and J. Koppitz defined
a binary operation on the set of all linear terms adjoined a special symbol. It
turned out that they obtained a new semigroup. Some special elements of this
semigroup are characterized. Furthermore, its Green’s relations are studied (see
[14]). The above-mentioned list of authors shows the interest of a particular kind
of terms in some directions.

We now focus on the study of linear clone (see [3]). It is not difficult to see
that the set Tlin

τ (Xn) is not closed under the superpositions. For example, let
τ = (2) with a binary operation symbol f , and t = f(x2, x1), t1, t2 = f(x1, x2)
be 2-ary linear terms of type (2). Then S2

2(t, t1, t2) = f(f(x1, x2), f(x1, x2)) is a
term but not linear. K. Denecke introduced a partial superposition operation

S
n,m

: Tlin
τ (Xn)× (Tlin

τ (Xm))n ⊸→ Tlin
τ (Xm)

as follows (see [3]). For any m,n ∈ N,

S
n,m

(t, s1, . . . , sn) :=





Sn
m(t, s1, . . . , sn) if var(sj) ∩ var(sl) = ∅

for all 1 ≤ j < l ≤ n,

not defined otherwise.

Then he obtained the many-sorted partial algebra

clonelin(τ) :=
〈(

Tlin
τ (Xn)

)
n∈N

;
(
S
m,n)

m,n∈N
, (xi)i≤n,n∈N

〉
.
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We see that the operation S
n,m

is defined under the condition

(L) var(sj) ∩ var(sl) = ∅ for all 1 ≤ j < l ≤ n.

Now, let us consider the following example.

Example 4. Let τ = (2) with a binary operation symbol f , t = f(x1, x3) ∈
Tlin
τ (X3), t1 = f(x1, x2), t2 = f(x1, x3), t3 = f(x3, x4) ∈ Tlin

τ (X4). We can see
immediately that var(t1) ∩ var(t2) 6= ∅ and var(t2) ∩ var(t3) 6= ∅, but

S3
4(t, t1, t2, t3) = f(f(x1, x2), f(x3, x4)) ∈ Tlin

τ (X4).

By the above example, it seems to mean that the condition (L) is too strong.
Our problem is whether we can reduce the condition (L) to a weaker one.

2. The k-terms and superposition on the set of k-terms

We define a generalized concept of linear terms and also a superposition operation
for this concept. To do that, we need a function that counts the occurrences of a
specific variable in the term.

Definition ([6]). Let n ∈ N and t ∈ Tτ (Xn). For any variable xj ∈ Xn, we
define the xj-variable count vbj(t) of t as follows.

1. vbj(xj) := 1 and vbj(xi) := 0 for all i 6= j.

2. If t = fi(t1, . . . , tni
), then vbj(t) :=

∑ni

l=1 vbj(tl).

Example 5. Let τ = (2) with a binary operation symbol f . We consider a
ternary term t = f(x2, f(f(x2, x1), x3)) of type τ . Then vb1(t) = 1, vb2(t) = 2
and vb3(t) = 1.

Now, we are ready to define our concept. Let n, k ∈ N. An n-ary k-term of
type τ is defined in the following steps.

1. Any variable in Xn is an n-ary k-term of type τ .

2. If t1, . . . , tni
are n-ary k-terms of type τ with

∑ni

j=1 vbl(tj) ≤ k for all 1 ≤
l ≤ n, then fi(t1, . . . , tni

) is an n-ary k-term of type τ .

By T
(k)
τ (Xn) we denote the set of all n-ary k-terms of type τ and let

T(k)
τ (X) :=

⋃

n≥1

T(k)
τ (Xn)

be the set of all k-terms of type τ .

Example 6.

1. Let τ = (3) with a ternary operation symbol f . Then T
(1)
τ (X2) = {x1, x2}.

2. Let τ = (3) with a ternary operation symbol f . Then
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x1 x2 f(x1, x1, x2) f(x1, x2, x1)
f(x2, x1, x1) f(x2, x2, x1) f(x2, x1, x2) f(x1, x2, x2)

are all elements of T
(2)
τ (X2).

Remark 7.

1. For any k ∈ N, T
(k)
τ (X) ⊆ T

(l)
τ (X) for all l ≥ k.

2. If k = 1, then the condition
∑ni

j=1 vbl(tj) ≤ k for all 1 ≤ l ≤ n of n-ary
k-terms of type τ is equivalent to the condition var(tj) ∩ var(tl) = ∅ for all
1 ≤ j < l ≤ ni of n-ary linear terms of type τ .

By the above remark, we see that if k = 1, then the concept of k-terms and
linear terms are coincided. Indeed,

T(1)
τ (X) = Tlin

τ (X).

Now, let us consider the following example. Let τ = (2) with a binary oper-

ation symbol f , t = f(x1, x1) ∈ T
(3)
τ (X2) and t1 = f(x1, x1), t2 = f(x2, x3) ∈

T
(3)
τ (X3). Then A := S2

3(t, t1, t2) = f(f(x1, x1), f(x1, x1)) 6∈ T
(3)
τ (X3) since

vb1(A) = 4 > 3. This example shows that the set T
(k)
τ (Xn) is not closed un-

der the superposition operations. We noticed already that the set of linear terms
is also not closed under such operation.

It is of interest which conditions making T
(k)
τ (Xn) closed under the superpo-

sition operations. To see this, let t ∈ T
(k)
τ (Xn), t1, . . . , tn ∈ T

(k)
τ (Xm), and the

superposition
Sn
m(t, t1, . . . , tn) := A.

It is not difficult to see that for any 1 ≤ j ≤ m,

vbj(A) =

n∑

l=1

vbl(t)vbj(tl).

Or in another expression we use the multiplication of matrices, where in the
resulting matrix any row represents the vbj(A), as follows:




vb1(t1) · · · vb1(tn)
...

. . .
...

vbm(t1) · · · vbm(tn)






vb1(t)

...
vbn(t)


 .

To see this, let us suppose that t = xi for some 1 ≤ i ≤ n. Then vbj(A) =
vbj(ti) =

∑n
l=1 vbl(t)vbj(tl). Now, we suppose that t = fi(s1, . . . , sj) and

we assume more that for any 1 ≤ p ≤ ni, we have vbj(S
n
m(sp, t1, . . . , tn)) =∑n

l=1 vbl(sp)vbj(tl). Since

A = Sn
m(t, t1, . . . , tn) = fi(S

n
m(s1, t1, . . . , tn), . . . , S

n
m(sni

, t1, . . . , tn)),
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by the definition of vbj , we have

vbj(A) =

ni∑

p=1

vbj(S
n
m(sp, t1, . . . , tn)) =

n∑

l=1

ni∑

p=1

vbl(sp)vbj(tl) =

n∑

l=1

vbl(t)vbj(tl).

By the above discussion, we obtain the following result.

Proposition 8. If t = fi(s1, . . . , sni
) ∈ T

(k)
τ (Xn), t1, . . . , tn ∈ T

(k)
τ (Xm), and

(Kj) vbj(S
n
m(t, t1, . . . , tn)) =

n∑

l=1

vbl(t)vbj(tl) ≤ k

for any 1 ≤ j ≤ m, then Sn
m(t, t1, . . . , tn) ∈ T

(k)
τ (Xm).

Remark 9. We note here that if k = 1, then the condition (L) implies the
condition (Kj) for any 1 ≤ j ≤ m, but not the converse. For instance, for
τ = (2) with a binary operation symbol f and t = x1, t1 = f(x1, x2), t2 =

f(x2, x1) ∈ T
(1)
τ (X2). We see that for i = 1, 2, vb1(t)vbi(t1) + vb2(t)vbi(t2) ≤ 1,

but var(t1) ∩ var(t2) 6= ∅.

Now, we are ready to define the many-sorted partial operation

S(k)
n,m : T(k)

τ (Xn)× (T(k)
τ (Xm))n ⊸→ T(k)

τ (Xm)

by

S(k)
n,m(t, t1, . . . , tn) :=

{
Sn
m(t, t1, . . . , tn) if (Kj) holds for all 1 ≤ j ≤ m,

not defined otherwise,

for m,n, k ∈ N.

As a consequence, we obtain a many-sorted partial algebra

clone(k)(τ) :=
〈(

T(k)
τ (Xn)

)
n∈N

;
(
S(k)
n,m

)
m,n∈N

, (xi)i≤n,n∈N

〉
,

the k-terms clone of type τ .

Remark 10. For any k,m, n ∈ N, by Example 4 and Remark 9, we see that

dom(S
n,m

) ( dom(S
(k)
n,m).

One of the fundamental ways to define the concept of homomorphism on
partial algebras is considered in the following sense. Let A := 〈A; (fA

i )i∈I〉 and
B := 〈B; (fB

i )i∈I〉 be partial algebras of the same type τ . A mapping h : A → B
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is called a weak homomorphism if for any i ∈ I, (a1, . . . , ani
) ∈ dom(fA

i ) implies
(h(a1), . . . , h(ani

)) ∈ dom(fB
i ) and

h
(
fA
i (a1, . . . , ani

)
)
= fB

i

(
h(a1), . . . , h(ani

)
)
,

where dom(fA
i ) and dom(fB

i ) are the domains of fA
i and fB

i , respectively (see
[1, 3]). In particular, a weak homomorphism from A to itself is called a weak

endomorphism on A.

Each (partial) algebra which has a generating system and any substitution
(a mapping from the generating system into the universe of the (partial) algebra)
can be extended to an (weak) endomorphism is called free with respect to itself.
The following result was proved.

Theorem 11 ([8]). Let n ∈ N. The algebra

n-clone(τn) := 〈Tτn(Xn);S
n
n , x1, . . . , xn〉

is free with respect to VMn
the variety of unitary Menger algebras of rank n, and

freely generated by {fi(x1, . . . , xn) : i ∈ I}, where τn = (ni)i∈I such that ni = n

for all i ∈ I.

We will provide a characterization of clone(k)(τ) being free with respect to
itself. To go to that point let us provide some ingredients.

Let m,n ∈ N, where n > m. Define the set Kn,m to be empty set if
⌈
n
m

⌉
> m

and to be the set

{α : {1, . . . , n} → {1, . . . , n} : range(α) = {1, . . . ,m0},
⌈ n
m

⌉
≤ m0 ≤ m}

if
⌈
n
m

⌉
≤ m. Moreover, we define

K∗
n,m := {α : {1, . . . , n} → {1, . . . , n} : range(α) = {1, . . . ,m0},m0 > m}.

Let n, k ∈ N. We denote the sets

Xn ∪ {fi(x1, . . . , xni
) ∈ T(k)

τ (Xn) : i ∈ Iτn}

and

Xn ∪
{
fi(x1, . . . , xni

) ∈ T(k)
τ (Xn) : i ∈ Iτn

}

∪
{
fi(xαi(1), . . . , xαi(ni)) ∈ T(k)

τ (Xn) : αi ∈ Kni,n, i ∈ Iτ,∗n

}

∪
{
fi(tαi(1), . . . , tαi(ni)) ∈ T(k)

τ (Xn) : αi ∈ K∗
ni,n

, i ∈ Iτ,∗n

such that |{tj : 1 ≤ j ≤ ni}| > n
}
,
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by A
(k)
τ,n and B

(k)
τ,n, respectively. Here Iτn := {l ∈ I : nl ≤ n} and I

τ,∗
n := {l ∈ I :

nl > n}.

Next, for any n ∈ N we define the set

F (k)
τ,n :=

{
A

(k)
τ,n if n ≥ ni for all i ∈ I

B
(k)
τ,n if n < ni for some i ∈ I.

Example 12. Let τ = (3) with a ternary operation symbol f . Let us con-

sider f(f(x1, x2, x1), x2, x2), f(f(x1, x2, x1), x1, x2) ∈ T
(3)
τ (X2). We see that the

set {fi(xαi(1), . . . , xαi(ni)) ∈ T
(k)
τ (Xn) : αi ∈ Kni,n, i ∈ I

τ,∗
n } is exactly the set

{f(xα(1), xα(2), xα(3)) ∈ T
(3)
τ (X2) : α ∈ K3,2}, and the set {fi(tαi(1), . . . , tαi(ni)) ∈

T
(k)
τ (Xn) : αi ∈ K∗

ni,n
, i ∈ I

τ,∗
n such that |{tj : 1 ≤ j ≤ ni}| > n} is exactly the

set {f(tα(1), tα(2), tα(3)) ∈ T
(3)
τ (X2) : α ∈ K∗

3,2 such that |{tj : j = 1, 2, 3}| > 2}.
Then f(x1, x2, x2) belongs to the set

{
f
(
xα(1), xα(2), xα(3)

)
∈ T(3)

τ (X2) : α ∈ K3,2

}

such that

S
(3)
2,3(f(x1, x2, x2), f(x1, x2, x1), x2) = S2

3(f(x1, x2, x2), f(x1, x2, x1), x2)

= f(f(x1, x2, x1), x2, x2),

and f(f(x1, x2, x1), x1, x2) belongs to the set

{
f
(
tα(1), tα(2), tα(3)

)
∈ T(3)

τ (X2) : α ∈ K∗
3,2 such that |{tj : j = 1, 2, 3}| > 2

}

such that

S
(3)
2,3(f(f(x1, x2, x1), x1, x2), x1, x2) = S2

3(f(f(x1, x2, x1), x1, x2), x1, x2)

= f(f(x1, x2, x1), x1, x2).

We can see that F
(k)
τ,n ⊆ T

(k)
τ (Xn) for any k, n ∈ N. By this setting, we obtain

the following result.

Lemma 13. The sequence (F
(k)
τ,n )n∈N is a generating system of clone(k)(τ) for

any k ∈ N.

Proof. Let k,m, n ∈ N. It is clear that any xj ∈ Xn is in the type of clone(k)(τ),

thus, it is generated. Let t = fi(t1, . . . , tni
) ∈ T

(k)
τ (Xm) and assume that
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t1, . . . , tni
∈ T

(k)
τ (Xm) are generated. This implies that

∑ni

j=1 vbl(tj) ≤ k for
all 1 ≤ l ≤ m. If ni ≤ m for all i ∈ I, then

S(k)
ni,m

(fi(x1, . . . , xni
), t1, . . . , tni

) = Sni
m (fi(x1, . . . , xni

), t1, . . . , tni
)

= fi(t1, . . . , tni
).

If ni > m for some i ∈ I, then we separate our consideration into two cases. For
the first case, if the cardinality of {t1, . . . , tni

} is m0 ≤ m. Then fi(t1, . . . , tni
) =

fi(tαi(1), . . . , tαi(ni)) for some αi ∈ Kni,n and i ∈ I
τ,∗
m . Suppose that |α−1(j)| = lj

for all 1 ≤ j ≤ m0. We observe that the term fi(xαi(1), . . . , xαi(ni)) is an m-ary
k-term of type τ and for any 1 ≤ j ≤ m,

vbj(S
m0

m (fi(xαi(1), . . . , xαi(ni)), t1, . . . , tm0
))

=

m0∑

p=1

vbp(fi(xαi(1), . . . , xαi(ni)))vbj(tp)

=

m0∑

p=1

lpvbj(tp) =

ni∑

l=1

vbj(tl) ≤ k.

Then
S
(k)
m0,m

(
fi
(
xαi(1), . . . , xαi(ni)

)
, t1, . . . , tm0

)

= Sm0

m

(
fi
(
xαi(1), . . . , xαi(ni)

)
, t1, . . . , tm0

)

= fi
(
tαi(1), . . . , tαi(ni)

)
= fi (t1, . . . , tni

) .

For the last case, if the cardinality of {t1, . . . , tni
} is greater than m. Then we

have fi(t1, . . . , tni
) = fi

(
tαi(1), . . . , tαi(ni)

)
for some αi ∈ K∗

ni,n
and i ∈ I

τ,∗
m , so it

is obvious that

S(k)
m,m

(
fi
(
tαi(1), . . . , tαi(ni)

)
, x1, . . . , xm

)
= fi(t1, . . . , tni

).

Therefore, we have that fi(t1, . . . , tni
) is generated.

Proposition 14. Let k ∈ N and τ = (ni)i∈I with ni = 1 for all i ∈ I. Then

clone(k)(τ) is free with respect to itself, and freely generated by
(
F

(k)
τ,n

)
n∈N

.

Proof. Let n ∈ N. Theorem 11 says that any mapping ϕ′ : F
(k)
τ,n → Tτ (Xn) can

be extended to an endomorphism on Tτ (Xn). Let ϕ : F
(k)
τ,n → T

(k)
τ (Xn) be any

mapping. By the above argument, ϕ can be also extended to an endomorphism

on T
(k)
τ (Xn). By Theorem 11 and Lemma 13, we obtain our proposition.

Now, we ask the following question. What is going on in the case that
the operation symbols are not all unary? The following theorem addresses this
question.
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Theorem 15. Let τ = (ni)i∈I be such that nj > 1 for some j ∈ I. Then

clone(k)(τ) is free with respect to itself, and freely generated by
(
F

(k)
τ,n

)
n∈N

if and

only if k = 1.

Proof. (⇐) This direction follows the proof given in [3, Lemma 3.2].

(⇒) Assume that k ∈ Nr {1}. Suppose that clone(k)(τ) is free with respect

to itself. For any n > nj, we define a mapping ϕn : F
(k)
τ,n → T

(k)
τ (Xn) by

ϕn(t) :=





fj(x1, . . . , x1) if k ≥ nj,

fj(x1, . . . , x1︸ ︷︷ ︸
k-times

, x2, . . . , xnj−k+1) if k < nj

for all t ∈ F
(k)
τ,n .

If k ≥ nj, then we put t = fj(t
′, x1, . . . , x1) ∈ T

(k)
τ (Xn), where vb1(t

′) =
max{pnj − (p− 1) : np

j ≤ k and p ∈ N}. Since ϕn is a weak endomorphism,

ϕn (fj(x1, . . . , x1)) = ϕn

(
S(k)
n,n

(
fj(x1, . . . , xnj

)
, x1, . . . , x1)

)

= S(k)
n,n

(
ϕn

(
fj(x1, . . . , xnj

)
)
, ϕn(x1), . . . , ϕn(x1)

)

= S(k)
n,n

(
fj(x1, . . . , x1), x1, . . . , x1

)

= Sn
n

(
fj(x1, . . . , x1), x1, . . . , x1

)

= fj(x1, . . . , x1).

This implies that vb1(ϕn(t
′)) = n

p
j . We now observe that

(
fj
(
x1, . . . , xnj

)
, t, x2, . . . , xn

)
∈ dom(S(k)

n,n),

but

(
ϕn

(
fj(x1, . . . , xnj

)
)
, ϕn(t), ϕn(x2), . . . , ϕn(xn)

)

=
(
fj(x1, . . . , x1), ϕn(t), x2, . . . , xn

)
6∈ dom(S(k)

n,n)

since ϕn(t) is not defined, indeed, vb1(S
n
n(fj(x1, . . . , x1), ϕn(t), x2, . . . , xn)) =

n
p+1
j > k. This is a contradiction.

Now, if k < nj < n, then we put t = fj(x1, . . . , xnj
) ∈ T

(k)
τ (Xn) and t′ =

fj(x1, . . . , x1︸ ︷︷ ︸
k-times

, x2, . . . , xnj−k+1) ∈ T
(k)
τ (Xn). Since ϕn is a weak endomorphism,

we see that ϕn(t) = t′. This implies that

(
fj(x1, . . . , xnj

), t, x2, . . . , xn
)
∈ dom(S(k)

n,n),
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but

(
ϕn

(
fj(x1, . . . , xnj

)
)
, ϕn(t), ϕn(x2), . . . , ϕn(xn)

)

=
(
fj(x1, . . . , x1︸ ︷︷ ︸

k-times

, x2, . . . , xnj−k+1), t
′, x2, . . . , xn

)
6∈ dom(S(k)

n,n)

since vb1(S
n
n(fj(x1, . . . , x1︸ ︷︷ ︸

k-times

, x2, . . . , xnj−k+1), t
′, x2, . . . , xn)) = k2 > k. This is a

contradiction. Altogether, we have that clone(k)(τ) is not free with respect to
itself. Therefore, we obtain our theorem.

3. Properties of clone(k)(τ)

In the study of clonelin(τ), K. Denecke showed that this many-sorted partial
algebra satisfies (C1)–(C3) (see [3]). In this section we show that our many-sorted
partial algebra clone(k)(τ) also satisfies these properties as weak identities.

We first recall the concept of weak identities. An equation s ≈ t of terms
over the many-sorted partial algebra A is said to be a weak identity in A if after
evaluation there holds: if the right hand side is defined, then the left hand side
is defined or conversely, and both sides are equal (see [1, 3]).

Theorem 16. For any k ∈ N, the many-sorted partial algebra clone(k)(τ) satis-
fies (C1)–(C3) as weak identities.

Proof. Let k ∈ N.

(C1): We replace the variables by arbitrary t1, . . . , tp ∈ T
(k)
τ (Xn), s1, . . . , sn ∈

T
(k)
τ (Xm), t ∈ T

(k)
τ (Xp), where m,n, p ∈ N, and the operation symbol by the

partial fundamental operation of clone(k)(τ). Then we have

S(k)
p,m

(
t, S(k)

n,m(t1, s1, . . . , sn), . . . , S
(k)
n,m(tp, s1, . . . , sn)

)

≈ S(k)
n,m

(
S(k)
p,n(t, t1, . . . , tp), s1, . . . , sn

)
.(1)

Assume that the right-hand-side of Equation (1) is defined. This means that

S(k)
n,m

(
S(k)
p,n(t, t1, . . . , tp), s1, . . . , sn

)
= Sn

m

(
Sp
n(t, t1, . . . , tp), s1, . . . , sn

)
,

and for any 1 ≤ i ≤ m,

vbi
(
Sn
m

(
Sp
n(t, t1, . . . , tp), s1, . . . , sn

))
≤ k,
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or,
n∑

j=1

vbj
(
Sp
n(t, t1, . . . , tp)

)
vbi(sj) ≤ k.

This yields

n∑

j=1

(
p∑

l=1

vbl(t)vbj(tl)

)
vbi(sj) ≤ k.

Since for any 1 ≤ i ≤ m

n∑

j=1

(
p∑

l=1

vbl(t)vbj(tl)

)
vbi(sj) =

p∑

j=1

vbj(t)

(
n∑

l=1

vbl(tj)vbi(sl)

)
,

any variable xi occurring in

Sp
m

(
t, Sn

m(t1, s1, . . . , sn), . . . , S
n
m(tp, s1, . . . , sn)

)

is not exceed k. Therefore, the left-hand-side of Equation (1) is defined, indeed,

S
(k)
p,m

(
t, S

(k)
n,m(t1, s1, . . . , sn), . . . , S

(k)
n,m(tp, s1, . . . , sn)

)

= S
p
m

(
t, Sn

m(t1, s1, . . . , sn), . . . , S
n
m(tp, s1, . . . , sn)

)
.

By (C1), we obtain our (1).

(C2): We replace the variable λi by xi ∈ Xn, S̃
n
m by S

(k)
n,m and X̃1, . . . , X̃n by

t1, . . . , tn ∈ T
(k)
τ (Xm). Then we have

S(k)
n,m(xi, t1, . . . , tn) ≈ ti.

Since t1, . . . , tn ∈ T
(k)
τ (Xm), for any 1 ≤ j ≤ m, vbj(S

n
m(xi, t1, . . . , tn)) ≤ k.

Thus, S
(k)
n,m(xi, t1, . . . , tn) ≈ Sn

m(xi, t1, . . . , tn) ≈ ti.
(C3): This can be proved similarly to (C2) since vbj(S

n
m(t, x1, . . . , xn)) ≤ k

for any 1 ≤ j ≤ m.
Altogether, we have that clone(k)(τ) satisfies (C1)–(C3) as weak identities.

4. A mapping whose range is the set of k-terms

A mapping whose domain is the set of all operation symbols and whose range
is the set of all terms preserving arities, is called a hypersubstitution. The set of
all hypersubstitutions forms a monoid under a particular binary operation. This
concept was first precisely given by Denecke, Lau, Pöschel and Schweigert (see
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[4]). There are many papers contributing to this subject. For more information
about hypersubstitutions and their applications can be found in [5] and [9].

Let us define the concept of hypersubstitutions in a formal way. A hy-

persubstitution of type τ is a mapping σ : {fi : i ∈ I} → Tτ (X) such that
σ(fi) ⊆ Tτ (Xni

) for any i ∈ I. The set of all hypersubstitutions of type τ is
denoted by Hyp(τ).

For any hypersubstitution σ can be extended to a mapping σ : Tτ (X) →
Tτ (X) defined as follows.

1. σ[x] := x for all x ∈ X.

2. If fi(s1, . . . , sni
) ∈ Tτ (Xn) and assume that σ[sj] is already defined for all

1 ≤ j ≤ ni, then σ[fi(s1, . . . , sni
)] := Sni

n (σ(fi), σ[s1], . . . , σ[sni
]), where n is

the maximum arity of the terms σ[s1], . . . , σ[sni
].

It was proved that the structure Hyp(τ) := 〈Hyp(τ); ◦h, σid〉 is a monoid, where
◦h is a binary operation on Hyp(τ) defined by σ1 ◦h σ2 := σ̂1 ◦ σ2, and σid(fi) :=
fi(x1, . . . , xni

) is a neutral element (see [9]).
In this section, we will consider the set of such mappings whose range is a

restriction to the set of k-terms.

Definition. Let k ∈ N. A hypersubstitution of type τ is a k-hypersubstitution
of type τ if its range is the set of k-terms of the same type. Denoted by Hyp(k)(τ)
the set of all k-hypersubstitution of type τ .

Any k-hypersubstitution of type τ is usually denoted by σ(k). When it is
clear from the context, we always drop the superscript k.

It is not difficult to observe that Hyp(k)(τ) ⊆ Hyp(τ) for any k ∈ N, but
Hyp(k)(τ) is not closed under the binary operation ◦h. In other word, the set
Hyp(k)(τ) together with ◦h does not form a monoid as the following example
shows.

Example 17. Let τ = (2) with a binary operation f , k = 3, σ1(f) = f(x1, x1)
and σ2(f) = f(f(x1, x1), x2). We see that σ1, σ2 ∈ Hyp(3)(τ). But

(σ1 ◦h σ2)(f) = σ̂1[f(f(x1, x1), x2)] = f(f(x1, x1), f(x1, x1)) 6∈ T(3)
τ (X2).

That is, σ1 ◦h σ2 6∈ Hyp(3)(τ).

Any k-hypersubstitution σ of type τ can be extended to a partial mapping

σ̂ : T
(k)
τ (X) ⊸→ T

(k)
τ (X) defined as follows. For any n ∈ N, let t ∈ T

(k)
τ (Xn),

1. σ̂[x] := x for all x ∈ X.

2. σ̂[fi(s1, . . . , sni
)] :=





σ[fi(s1, . . . , sni
)] if (Kj) holds

for all 1 ≤ j ≤ m,

not defined otherwise,

for all fi(s1, . . . , sni
) ∈ T

(k)
τ (Xm).
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We observe here that for any σ ∈ Hyp(k)(τ) and t = fi(s1, . . . , sni
) ∈

T
(k)
τ (Xn), σ̂[t] is defined if and only if

ni∑

l=1

vbl(σ(fi))vbj(σ[sl]) ≤ k

for all 1 ≤ j ≤ n.

Remark 18. For any k ∈ N, let σ ∈ Hyp(k)(τ). We remark that the extension
of σ is not a weak endomorphism. Let us consider the following example. We fix
k = 2. Let τ = (2) with a binary operation symbol f . We can see easily by these
settings:

1. σ(f) = f(x2, x2),

2. t = x1,

3. t1 = x1,

4. t2 = f(x1, f(x2, x2)),

that σ̂[S
(2)
2,2(t, t1, t2)] is defined and it is equal to x1, but S

(2)
2,2(σ̂[t], σ̂[t1], σ̂[t2]) is

not define since t2 6∈ dom(σ̂).

By the above discussion, we obtain the following proposition.

Proposition 19. Let k,m, n ∈ N and σ ∈ Hyp(k)(τ). If S
(k)
n,m(σ̂[t], σ̂[t1], . . . , σ̂[tn])

is defined, then σ̂[S
(k)
n,m(t, t1, . . . , tn)] is also defined. Moreover,

(2) S(k)
n,m

(
σ̂[t], σ̂[t1], . . . , σ̂[tn]

)
= σ̂

[
S(k)
n,m(t, t1, . . . , tn)

]
.

Proof. Assume that S
(k)
n,m(σ̂[t], σ̂[t1], . . . , σ̂[tn]) is evaluable. That is, σ̂[t] ∈

T
(k)
τ (Xn) and σ̂[t1], . . . , σ̂[tn] ∈ T

(k)
τ (Xm), and

n∑

l=1

vbl(σ̂[t])vbj(σ̂[tl]) ≤ k,

for all 1 ≤ j ≤ m. We show by induction on the complexity of the n-ary k-term

t of type τ . If t = xi ∈ Xn, then S
(k)
n,m(σ̂[xi], σ̂[t1], . . . , σ̂[tn]) = Sn

m(σ̂[xi], σ̂[t1],

. . . , σ̂[tn]) = Sn
m(xi, σ̂[t1], . . . , σ̂[tn]) = σ̂[ti] = σ̂[Sn

m(xi, t1, . . . , tn)] = σ̂[S
(k)
n,m(xi, t1,

. . . , tn)]. This shows that σ̂[S
(k)
n,m(xi, t1, . . . , tn)] is defined and that (2) is valid.

Now, let t = fi(s1, . . . , sni
). Assume that, for all 1 ≤ j ≤ ni, if S

(k)
n,m(σ̂[sj ], σ̂[t1],

. . . , σ̂[tn]) is defined, then σ̂[S
(k)
n,m(sj , t1, . . . , tn)] is defined and both are equal.

Since
S(k)
n,m

(
σ̂[fi(s1, . . . , sni

)], σ̂[t1], . . . , σ̂[tn]
)
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is defined,

S(k)
n,m

(
σ̂[fi(s1, . . . , sni

)], σ̂[t1], . . . , σ̂[tn]
)

= S(k)
n,m

(
Sni
n (σ(fi), σ[s1], . . . , σ[sni

]), σ̂[t1], . . . , σ̂[tn]
)

= S(k)
n,m

(
S(k)
ni,n

(σ(fi), σ̂[s1], . . . , σ̂[sni
]), σ̂[t1], . . . , σ̂[tn]

)

= S(k)
ni,m

(σ(fi), S
(k)
n,m(σ̂[s1], σ̂[t1], . . . , σ̂[tn]), . . . , S

(k)
n,m(σ̂[sni

], σ̂[t1], . . . , σ̂[tn]))

(by Theorem 16)

= S(k)
ni,m

(
σ(fi), σ̂

[
S(k)
n,m(s1, t1, . . . , tn)

]
, . . . , σ̂

[
S(k)
n,m(sni

, t1, . . . , tn)
])

(by our presumption)

= Sni
m

(
σ(fi), σ

[
S(k)
n,m(s1, t1, . . . , tn)

]
, . . . , σ

[
S(k)
n,m(sni

, t1, . . . , tn)
])

= σ
[
fi(S

(k)
n,m(s1, t1, . . . , tn), . . . , S

(k)
n,m(sni

, t1, . . . , tn))
]

= σ̂
[
fi(S

n
m(s1, t1, . . . , tn), . . . , S

n
m(sni

, t1, . . . , tn))
]

= σ̂
[
Sn
m(fi(s1, . . . , sni

), t1, . . . , tn)
]

= σ̂
[
S(k)
n,m(fi(s1, . . . , sni

), t1, . . . , tn)
]
.

This implies that σ̂[S
(k)
n,m(fi(s1, . . . , sni

), t1, . . . , tn)] is defined and the equality
holds.

As a particular case of the above result, we obtain the following corollary.

Corollary 20. Let σ ∈ Hyp(1)(τ). Then we have that σ̂ is a weak endomorphism

on clone(1)(τ).

Proof. Let m,n ∈ N. Following from Proposition 19, we need to show only that

S
(1)
n,m(σ̂[t], σ̂[t1], . . . , σ̂[tn]) is defined if σ̂[S

(1)
n,m(t, t1, . . . , tn)] is defined. We assume

that σ̂[S
(1)
n,m(t, t1, . . . , tn)] is evaluated. Since σ(fi) ∈ T

(1)
τ (Xni

) for all i ∈ I, it is

clear that σ[t] ∈ T
(1)
τ (Xn) and σ[tj ] ∈ T

(1)
τ (Xm) for all 1 ≤ j ≤ n. This means

that σ[t] = σ̂[t] and σ[tj ] = σ̂[tj ] for all 1 ≤ j ≤ n. Let us now consider

σ̂
[
S(1)
n,m(t, t1, . . . , tn)

]
= σ

[
S(1)
n,m(t, t1, . . . , tn)

]
= σ

[
Sn
m(t, t1, . . . , tn)

]

= Sn
m

(
σ[t], σ[t1], . . . , σ[tn]

)
= Sn

m

(
σ̂[t], σ̂[t1], . . . , σ̂[tn]

)
.

Since

vbj
(
vbj

(
Sn
m(σ̂[t], σ̂[t1], . . . , σ̂[tn])

))
= vbj

(
σ̂
[
S(1)
n,m(t, t1, . . . , tn)

])
≤ 1

for all 1 ≤ j ≤ m, we have that σ̂
[
S
(1)
n,m(t, t1, . . . , tn)

]
= Sn

m(σ̂[t], σ̂[t1], . . . , σ̂[tn]) =

S
(1)
n,m(σ̂[t], σ̂[t1], . . . , σ̂[tn]). This shows that S

(1)
n,m(σ̂[t], σ̂[t1], . . . , σ̂[tn]) is defined.

Furthermore, S
(1)
n,m(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[S

(1)
n,m(t, t1, . . . , tn)].
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By Theorem 15, the following result is obtained.

Corollary 21. Let k ∈ N and σ ∈ Hyp(k)(τ). Then σ̂ is a weak endomorphism

on clone(k)(τ) if and only if k = 1.
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