REVISITING THE REPRESENTATION THEOREM OF FINITE DISTRIBUTIVE LATTICES
 WITH PRINCIPAL CONGRUENCES. A PROOF-BY-PICTURE APPROACH

G. Grätzer and H. Lakser
Department of Mathematics University of Manitoba Winnipeg, MB R3T 2N2, Canada
e-mail: gratzer@me.com
hlakser@gmail.com

Abstract

A classical result of R.P. Dilworth states that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L. A sharper form was published in G. Grätzer and E.T. Schmidt in 1962, adding the requirement that all congruences in L be principal. Another variant, published in 1998 by the authors and E.T. Schmidt, constructs a planar semimodular lattice L. In this paper, we merge these two results: we construct L as a planar semimodular lattice in which all congruences are principal. This paper relies on the techniques developed by the authors and E.T. Schmidt in the 1998 paper.

Keywords: principal congruence, finite distributive lattice.
2010 Mathematics Subject Classification: 06B10.

1. INTRODUCTION

Let us start with the classical result of Dilworth from 1942 (see the book [1] for background information).

Theorem 1. Every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L.

A sharper form was published in Grätzer and Schmidt [10] (see also Theorem 8.5 in [5]). The new idea was the use of standard ideals, see Grätzer [2] and Grätzer and Schmidt [9].

Theorem 2. Every finite distributive lattice D can be represented as the congruence lattice of a finite relatively complemented lattice L.

All congruences are principal in a finite relatively complemented lattice L. So we obtain the following variant of Theorem 2.

Theorem 3. Every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L in which all congruences are principal.

Grätzer, Lakser and Schmidt [8] proved another variant of Theorem 2.
Theorem 4. Let D be a finite distributive lattice. Then there exists a planar semimodular lattice L with Con L isomorphic to D.

In this note, we combine Theorem 3 and 4, using the techniques developed for Theorem 4.

Theorem 5. Every finite distributive lattice D can be represented as the congruence lattice of a planar semimodular lattice L in which all congruences are principal.

There are other aspects of these constructions discussed in the book [5], for instance, the size of L. The constructions in Theorems 1,2 , and 5 are "large" (exponential), in Theorem 4 they are small (cubic polynomial).

There are related results in Grätzer and Lakser [6] and [7].

Outline

For a formal proof of Theorem 5, we need the formal proof of Theorem 4, as presented in Grätzer, Lakser and Schmidt [8]. There are two obvious solutions: copy the formal proof from [8] (making the editor unhappy) or require that the reader be familiar with the paper [8] (making the reader unhappy). So we choose the middle ground, we present a Proof-by-Picture (as defined in [5]) of Theorem 4. We do this in Section 2 and complete the proof of Theorem 5 in Section 3.

Notation

We use the notation as in [5].
In particular, for the ordered sets P and Q, we can form the (ordinal) sum, $P+Q$ and the glued sum $P \dot{+} Q$, as illustrated in Figure 1. Observe that the glued sum $P \dot{+} Q$ requires that P has a unit and Q has a zero (which are identified).

Coloring of a finite lattice L attaches a join-irreducible congruence to an edge (covering interval) of L generating it, see Figures 2-4 for examples.

2. Proof-by-Picture of Theorem 4

We start constructing the planar semimodular lattice L of Theorem 5 for the distributive lattice D and the ordered set $P=J(D)$ of Figure 2, with the three lattices, the planar semimodular lattices N (for Nondistributive), S (for Square), and R (for Rectangle). We glue them together and add some covering M_{3}-s, to obtain L, as sketched in Figure 5.

In Steps 1-4, we assume that P has no isolated elements, that is, for every $x \in P$, there is a $y \in P$ with $x<y$ or $y<x$.

Step 1. Constructing N. Take the eight-element, planar, semimodular lattice S_{8} of Figure 3. We take three copies, $S_{8}(a, b), S_{8}(b, c), S_{8}(d, c)$, one for every covering pair in $P=J(D)$. Let $E=\mathrm{C}_{2} \times \mathrm{C}_{3}$. We glue these together (preserving the colors!) as in Figure 4. More precisely, we glue $S_{8}(b, c)$ to E, and glue $S_{8}(d, c)$ to the top left boundary of E. Then we glue D to this lattice twice and glue $S_{8}(a, b)$ to the top. We denote by N_{1} and N_{2} the lower right and the upper right boundaries of N, respectively.

Step 2. Constructing S. We form N_{2}^{2}. In every covering square of the main vertical diagonal, we add an element to make it an M_{3}, forming the lattice S, see Figure 4. We denote by S_{1} and S_{2} the lower left and lower right boundaries of S, respectively. This will make a copy of the colors b and c in S_{2}, making them available for the M_{3} insertions in Step 4b.

Step 3. Constructing R. Let the chain C_{1} be isomorphic to $N_{1}+S_{1}$. We choose a chain C of length four and color the edges with $\{a, b, c, d\}$ (in any order). Define $R=C \times C_{1}$. We denote by R_{1}, R_{2}, and R_{1}^{\prime} the lower right, lower left, and upper left boundaries of R, respectively.

Step 4. Constructing L.
Step 4a. Gluing N, S, and R. We glue N and S by identifying N_{2} with S_{2} (preserving colors!); we call this lattice L_{1}. Then we glue L_{1} and R by identifying R_{1}^{\prime} with the lower right boundary of L_{1} (preserving colors!); let L_{2} be the lattice we obtain.

Step 4b. Adding M_{3}-s to L_{2}. Every color x occurs in $N_{1}+S_{1}=R_{1}^{\prime}$ as the color of an edge. If x is not a maximal element in P, then x occurs in N_{1} as the color of an edge (maybe many times). If x is a maximal element in P, then x occurs in S_{1} as the color of an edge (maybe many times), so x occurs in S_{2} as the color of an edge, and therefore also in R_{1}^{\prime}.

So in the grid R, we take a "covering row" and a "covering column" hitting R_{1}^{\prime} and R_{2} in edges of color x, see Figure 5. They determine a covering square to which we add an element to obtain an M_{3}. We do this for all covering squares given
by a covering row and a covering column both colored by x, thereby identifying all the principal congruences determined by a prime interval colored by x.

We repeat this for every color x.
The $S_{8}(u, v)$ sublattices then determine the desired order on the join-irreducible congruences - see Figure 3.

Step 5. Adding the tail. If there are $k>0$ isolated elements, we form $\mathrm{C}_{k-1} \dot{+} L$; the tail is C_{k-1}.

This completes the Proof-by-Picture of Theorem 4.

3. Proving Theorem 5

We have to modify the construction of the planar semimodular lattice L of Section 2 to make all congruences principal. In Step 3, we choose a chain C of length four. Observe that the proof of Theorem 4 remains valid as long as every color is represented as the coloring of C.

Now we change the definition of C. For every $x \in D$, define

$$
r(x)=\{a \in J(D) \mid x \leq a\},
$$

and let C_{x} be a chain of $|r(x)|+1$ elements, colored by the elements of $r(x)$ (in any order). Let $0_{x}, 1_{x}$ denote the bounds of C_{x}. Let C be the glued sum of the chains C_{x} for $x \in D$ (in any order). This chain C obviously satisfies the condition that every color is represented as the color of an edge in C.

Therefore, the lattice L constructed in Section 2 satisfies the requirements of Theorem 4 . We only have to observe that all congruences are principal.

Let $\boldsymbol{\alpha}$ be a congruence of L. Let x be an element of D that corresponds to $\boldsymbol{\alpha}$ under an isomorphism between Con L and D. Since C_{x} is colored by the set $r(x)$, we conclude that in L, we have

$$
\operatorname{con}\left(0_{x}, 1_{x}\right)=\boldsymbol{\alpha},
$$

completing the proof.

P

Q

$P \dot{+} Q$

Figure 1. Glued sum of two ordered sets, P and Q.

Figure 2. The lattice D to represent and the ordered set $P=J(D)$.

Figure 3. Two diagrams of the building block $S_{8}(u, v), u \prec v$.

Figure 4. The lattices N and S.

Figure 5. A sketch of L without the "tail".

References

[1] The Dilworth Theorems, Selected papers of Robert P. Dilworth. Edited by Kenneth P. Bogart, Ralph Freese, and Joseph P.S. Kung, Contemporary Mathematicians (Birkhäuser Boston, Inc., Boston, MA, 1990). https://doi.org/10.1016/0001-8708(92)90026-h
[2] G. Grätzer, Standard ideals, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1959) 81-97 (Hungarian).
[3] G. Grätzer, Lattice Theory: Foundation (Birkhäuser Verlag, Basel, 2011).
[4] G. Grätzer, The order of principal congruences of a bounded lattice, Algebra Univ. 70 (2013) 95-105.
https://doi.org/10.1007/s00012-013-0242-3
[5] G. Grätzer, The Congruences of a Finite Lattice, A "Proof-by-Picture" Approach, Second edition (Birkhäuser Verlag, Basel, 2016).
https://doi.org/10.1007/0-817
[6] G. Grätzer and H. Lakser, Some preliminary results on the set of principal congruences of a finite lattice, Algebra Univ. 79 (2018), paper no. 21. https://doi.org/10.1007/s00012-018-0487-y
[7] G. Grätzer and H. Lakser, Minimal representations of a finite distributive lattice by principal congruences of a lattice, Acta Sci. Math. (Szeged) 85 (2019) 69-96. https://doi.org/10.14232/actasm-017-060-9
[8] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290-297. https://doi.org/10.4153/cmb-1998-041-7
[9] G. Grätzer and E.T. Schmidt, Standard ideals in lattices, Acta Math. Acad. Sci. Hungar. 12 (1961) 17-86.
[10] G. Grätzer and E.T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962) 179-185.

Received 14 June 2020
Revised 31 October 2020
Accepted 31 October 2020

