A RESULT ON PRIME RINGS WITH GENERALIZED DERIVATIONS

Faiza Shujat
Department of Mathematics, College of Science Taibah University, Madinah, Saudi Arabia
e-mail: fullahkhan@taibahu.edu.sa
AND
Shahoor Khan ${ }^{1}$
Government Degree College, Department of Mathematics
Surankote, 185121, Jammu and Kashmir, India
e-mail: shahoor.khan@rediffmail.com

Abstract

In this paper we investigate the following result. Let R be a prime ring, Q its symmetric Martindale quotient ring, C its extended centroid, I a nonzero ideal of R. If F and G are the two generalized derivation of R such that $(\mathbf{F}(\mathbf{x y})+\mathbf{G}(\mathbf{y x}))^{n}-(\mathbf{x y} \mp \mathbf{y x})^{n}=0$, for all $x, y \in I$, then either R is commutative or $F(x)=x, G(x)=\mp x$ for all $x \in R$ and $n=1$.

Keywords: prime ring, generalized derivations, quotient ring, extended centroid.
2010 Mathematics Subject Classification: 16W20, 16W25, 16U80, 16N80.

1. Introduction

Throughout this paper R represents a prime ring with center $Z(R), U$ stands for Utumi quotient ring with extended centroid C and Q appear for the symmetric Martindale quotient ring. For detailed conceptual knowledge about U, Q, C, one refer to [5].

An additive mapping $d: R \rightarrow R$ will be called a derivation on R if $d(x y)=$ $d(x) y+x d(y)$ for all $x, y \in R$. Let $q \in R$ be a fixed element. A map $d: R \rightarrow R$

[^0]defined by $d(x)=[q, x]=q x-x q, x \in R$, is a derivation on R, which is called inner derivation defined by q. An additive map $F: R \rightarrow R$ is said to be a generalized derivation if there exists a derivation d of R such that, for all $x, y \in R$, $F(x y)=F(x) y+x d(y)$. Basic examples of generalized derivations are the usual derivations on R and left R-module mappings from R into itself. An important example is a map of the form $F(x)=a x+x b$, for some $a, b \in R$; such generalized derivations are called inner. In [12], Lee proved that every generalized derivation can be uniquely extended to a generalized derivation of Q and thus all generalized derivations of R implicitly assumed to be defined on the whole of Q. In particular, Lee proved the following: Let R be a semiprime ring. Then every generalized derivation F on a dense right ideal of R can be uniquely extended to Q and assumes the form $F(x)=a x+d(x)$ for some $a \in Q$ and a derivation d on Q.

In [6], Daif and Bell proved that if R is a semiprime ring with a nonzero ideal I and d is a derivation of R such that $d([x, y])=[x, y]$ for all $x, y \in I$, then $I \subseteq Z(R)$. In particular, if R is prime ring, then R must be commutative. Authors [14] observe that: Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a derivation d such that $(F([x, y]))^{n}=[x, y]$ for all $x, y \in I$, then either R is commutative or $n=1, d=0$ and F is the identity map on R.

Recently in [9], Huang and Davvaz consider the situation $(F([x, y]))^{m}=$ $[x, y]^{n}$ for all $x, y \in R$. More precisely, they proved the following. Let R be a prime ring and m, n fixed positive integers. If R admits a generalized derivation F associated with a nonzero derivation d such that $(F([x, y]))^{m}=[x, y]^{n}$ for all $x, y \in R$, then R is commutative.

Very recently authors in [8] proved that: Let R be a non commutative prime ring, I a nonzero ideal of R, F a generalized derivation of $R, n \geq 1$ a fixed integer. If $0 \neq p$ such that $p(F(x) F(y)-x y)^{n}=0$ for all $x, y \in I$, then there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x \in R$ with $\lambda^{2 n}=1$.

Carry on with the current the investigation we proved the following. Let R be a prime ring, I be a nonzero ideal of R, C represents the extended centroid of R and $n \geq 1$ is a fixed integer. If F and G are the two generalized derivation of R such that $(\mathbf{F}(\mathbf{x y})+\mathbf{G}(\mathbf{y x}))^{n}-(\mathbf{x y} \mp \mathbf{y x})^{n}=0$, for all $x, y \in I$, then either R is commutative and $F(x)=x, G(x)=\mp x$ for all $x \in R$ and $n=1$.

2. Main results

We begin with the following lemmas as it's plays key role in our theorem.
Lemma 2.1. Let $R=M_{k}(F)$ be a ring and $k \geq 2$ and $a, b, p, q \in R$. Suppose that $(a x y+b y x+[p, x y]+[q, y x])^{n}-(x y \pm y x)^{n}=0$ for all $x, y \in R$, where $n \geq 1$ is a fixed integer. Then $a, b, p, q \in F \cdot I_{k}$.

Proof. Let $a=\left(a_{i j}\right)_{k \times k}, b=\left(b_{i j}\right)_{k \times k}, p=\left(p_{i j}\right)_{k \times k}, q=\left(q_{i j}\right)_{k \times k}$, where $a_{i j}, b_{i j}, p_{i j}, q_{i j}$ in F. Denote $e_{i j}$ the usual matrix with unit 1 in $(i, j)^{t h}$ entry and zero elsewhere. We have $\left(a e_{12}+b e_{12} e_{11}+\left[p, e_{12}\right]+\left[q, e_{12}\right]\right)^{n}-\left(e_{12} \mp e_{12} e_{11}\right)^{n}=$ 0 and $\left(a e_{12}+b+p e_{12}-e_{12} p+q e_{12}-e_{12} q\right)^{n}-\left(e_{12} \mp e_{12}\right)^{n}=0$. That is, $\left((a+p) e_{12}-e_{12}(p+q)+q e_{12}\right)^{n}-\left(e_{12}\right)^{n}=0$. Multiply the above equation from right side by e_{12}, we get $\left(e_{12}(p+q) e_{12}\right)^{n}=0$.
Next case. We have $((a+p) x y+(b+q) y x-x y p-y x q)^{n}-(x y \mp y x)^{n}=0$. Choose $x=e_{11}$ and $y=e_{12}$, we obtain $\left((a+p) e_{11} e_{12}+(b+q) e_{12} e_{11}-e_{11} e_{12} p-\right.$ $\left.e_{12} e_{11} q\right)^{n}-\left(e_{11} x e_{12} \mp e_{12} e_{11}\right)^{n}=0$. Multiplying right side by e_{12}, we find that $\left(-e_{12} p e_{12}\right)^{n}=0$ or $(-1)^{n}\left(e_{12} p e_{12}\right)^{n}=0$ or $\left(e_{12} p e_{12}\right)^{n}=0$, which implies that $a_{21}=0$. Similarly $a_{12}=0$. Hence $p=\left(p_{i j}\right)$ is a diagonal matrix and $a_{i i}=a_{j j}$, where $i \neq j$. Hence p is a scalar matrix. Therefore, $p \in F \cdot I_{k}$. So, our identity reduces to $(a x y+(b+q) y x-y x q)^{n}-(x y \mp y x)^{n}=0$. Choose $x=e_{11}$ and $y=e_{12}$, we obtain $\left(a e_{11} e_{12}+(b+q) e_{12} e_{11}-e_{12} e_{11} q\right)^{n}-\left(e_{11} e_{12} \mp e_{12} e_{11}\right)^{n}=0$. Multiplying right side by e_{12}, we find that $\left(-e_{12} q e_{12}\right)^{n}=0$ or $(-1)^{n}\left(e_{12} q e_{12}\right)^{n}=0$ or $\left(e_{12} q e_{12}\right)^{n}=0$, which implies that $q_{12}=0$. Similarly $q_{21}=0$. We can get q is a diagonal matrix and hence q is a scalar matrix. Therefore, $q \in F \cdot I_{k}$. Hence, our identity reduces to $(a x y+b y x)^{n}-(x y \mp y x)^{n}=0$. Choose $x=e_{11}$ and $y=e_{12}$, we get $\left(a e_{11} e_{12}+b e_{12} e_{11}\right)^{n}-\left(e_{11} e_{12} \mp e_{12} e_{11}\right)^{n}=0$. Which implies that $\left(a e_{12}-\left(e_{12}\right)^{n}=0\right.$. Left multiplying by e_{12}, we arrive at $\left(e_{12} a e_{12}\right)^{n}=0$. Which implies that $e_{12}=0$ and $e_{21}=0$. Use similar arguments, we find that $b \in F \cdot I_{k}$.

Lemma 2.2. Let R be a prime ring, I be a nonzero ideal of R, C represents the extended centroid of R and $n \geq 1$ is a fixed integer. Suppose that for some $a, b, p, q \in R$, and $(a x y+b y x+[p, x y]+[q, y x])^{n}-(x y \mp y x)^{n}=0$, for all $x, y \in I$, then $a, b, p, q \in C$.

Proof. Since I satisfies the generalized polynomial identity

$$
\begin{equation*}
f(x, y)=(a x y+b y x+[p, x y]+[q, y x])^{n}-(x y \mp y x)^{n} \text { for all } x, y \in R . \tag{2.1}
\end{equation*}
$$

Hence U also satisfied the above GPI and $f(x, y)=0$ for all $x, y \in U$ by [2].
We now consider that U does not satisfy any non-trivial GPI. By equation (2.1), we can say

$$
\begin{equation*}
((a+p) x y+(b+q) y x-x y p-y x q)^{n}-(x y \mp y x)^{n}=0 \text { for all } x, y \in R . \tag{2.2}
\end{equation*}
$$

Since x and y is given by $T=U *_{C} C\{x, y\}$, the free product of U and $C\{x, y\}$. If $p \notin C$, then $\{1, p\}$ is linearly independent over C. But if $q \notin \operatorname{span}_{C}\{1, p\}$, then $\{1, p, q\}$ will be linearly independent over C. Therefore, we get a contradiction by equation (2.2). If $q \in \operatorname{span}_{C}\{1, p\}$, then q can be written in the form for some scalars $\alpha, \gamma \in C, q=\alpha+\gamma p$. In this case, we will also arrive at contradiction by
(2.2). This clearly implies that $p \in C$. By using similar approach as above we can get $q, a+p, b+q \in C$ and hence a, b, p, q must be in C. Further we assume that (2.1) is a non trivial GPI for U. In such case, if C is infinite, we have $f(x, y)=0$ for all $x, y \in U \bigotimes_{C} \bar{C}$, where \bar{C} represents the algebraic closure of C. We can replace R by U or $U \bigotimes_{C} \bar{C}$ as C is finite or infinite respectively following the fact that both U and $U \bigotimes_{C} \bar{C}$ are centrally closed prime algebras [10]. Also, we may assume that $C=Z(R)$ and R is centrally closed C-algebra. By the theorem of Martindale [15], R is a primitive ring with nonzero socle $\operatorname{soc}(R)$ and C as the associated division ring. Therefore, R is isomorphic to a dense ring of linear transformations of a vector space V over C from the theorem of Jacobson [7].

Let $\operatorname{dim}_{c} V=k$, then $R \cong M_{k}(C)$ for $k \geq 1$. If $k=1$, then R will be commutative and $a, b, p, q \in C$. If $k \geq 2$, then conclusion follows from Lemma 2.1.

If V is finite dimensional over C, then for any $e^{2}=e \in \operatorname{sco}(R)$, we have $e R e \cong M_{l}(C)$, where $l=\operatorname{dim}_{c} V e$. If $a, b, p, q \in C$, there is nothing to do. So, we consider all $a, b, p, q \notin C$. In this case at least one of a, b, p, q does not centralize the nonzero ideal $\operatorname{soc}(R)$. Hence there exists $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \operatorname{soc}(R)$ such that either $\left[a, \alpha_{1}\right]=0$ or $\left[b, \alpha_{2}\right]=0$ or $\left[p, \alpha_{3}\right]=0$ or $\left[q, \alpha_{4}\right]=0$. An application of Litoff's theorem [1] enable us to take as idempotent $e \in \operatorname{soc}(R)$ such that $a \alpha_{1}, \alpha_{1} a, b \alpha_{2}, \alpha_{2} b, p \alpha_{3}, \alpha_{3} p, q \alpha_{4}, \alpha_{4} q, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in e R e$. Therefore we can have $e R e \cong M_{k}(C)$ with $k=\operatorname{dim}_{c} V e$.

Replacing x by e and y by ex $(1-e)$ in (2.2) to get

$$
\begin{equation*}
((a+p) e x(1-e)-e x(1-e) p)^{n}-(e x(1-e))^{n}=0 \text { for all } x \in R \tag{2.3}
\end{equation*}
$$

The multiplication of equation (2.3) with $(1-e)$ from left yields that

$$
\begin{equation*}
(1-e)((a+p) e x(1-e))^{n}=0 \text { for all } x \in R \tag{2.4}
\end{equation*}
$$

A simple manipulation of equation (2.4) gives that $\{(1-e)(a+p) e x\}^{n+1}=0$ for all $x \in R$. By Levitzki's [4], we can find $(1-e)(a+p) e R=0$. This implies that $(1-e)(a+p) e=0$. In the same way we can show that $(1-e)(b+q) e=0$. Hence we have that

$$
(a+p) e=e(a+p) e \quad \text { and } \quad(b+q) e=e(b+q) e
$$

Since R satisfies for all $x, y \in R$
(2.5) $e\left\{((a+p) \text { exeye }+(b+q) \text { eyexe-exeyep-eyexeq })^{n}-(\text { exeye } \mp \text { eyexe })^{n}\right\} e=0$.
and $e R e$ satisfies

$$
\begin{equation*}
(e(a+p) e x y+e(b+q) e y x-x y e p e-y x e q e)^{n}-(x y \mp y x)^{n}=0 \tag{2.6}
\end{equation*}
$$

for all $x, y \in R$.
We have all eae, ebe, epe, eqe are central elements of $e R e$ by above finite dimensional case. Which leads to a contradiction. This gives the assertion of lemma.

Theorem 2.1. Let R be a prime ring, I be a nonzero ideal of R, C represents the extended centroid of R and $n \geq 1$ is a fixed integer. If F and G are the two generalized derivation of R such that $(\mathbf{F}(\mathbf{x y})+\mathbf{G}(\mathbf{y x}))^{n}-(\mathbf{x y} \mp \mathbf{y x})^{n}=0$, for all $x, y \in I$, then either R is commutative or $F(x)=x, G(x)=\mp x$ for all $x \in R$ and $n=1$.

Proof. By our hypothesis, it is given that

$$
\begin{equation*}
(\mathbf{F}(\mathbf{x y})+\mathbf{G}(\mathbf{y} \mathbf{x}))^{n}-(\mathbf{x y} \mp \mathbf{y} \mathbf{x})^{n}=0 \text { for all } x, y \in U \tag{2.7}
\end{equation*}
$$

Following [12], we can find $a, b \in U$ such that $F(x)=a x+\delta(x)$ and $G(x)=b x+$ $\eta(x)$, where η, δ are derivations on U. Since I, R, U satisfy the same generalized polynomial identity and same differential identity by [2] and [11] respectively, we obtain

$$
\begin{equation*}
(a x y+\delta(x y)+b y x+\eta(y x))^{n}-(x y \mp y x)^{n}=0 \text { for all } x, y \in U \tag{2.8}
\end{equation*}
$$

This also implies that

$$
\begin{equation*}
(a x y+\delta(x) y+x \delta(y)+b y x+\eta(y) x+y \eta(x))^{n}-(x y \mp y x)^{n}=0 \tag{2.9}
\end{equation*}
$$

for all $x, y \in U$.
At this step the two case arises as below.
Case 1. Let us suppose that δ and η are two inner derivations of U, define as $\delta(x)=[p, x]$ and $\eta(x)=[q, x]$ for all $x \in U$, for some p, q belongs to U. Hence U satisfies

$$
\begin{equation*}
(a x y+[p, x y]+b y x+[q, y x])^{n}-(x y \mp y x)^{n}=0 \text { for all } x, y \in U \tag{2.10}
\end{equation*}
$$

With the help of Lemma 2.2, as all $a, b, p, q \in C$, then U satisfies

$$
\begin{equation*}
(a x y+b y x)^{n}-(x y \mp y x)^{n}=0 \text { for all } x, y \in U \tag{2.11}
\end{equation*}
$$

Equation (2.11) is a polynomial identity for U. Then by [3], there will be a field \digamma such that $U \subseteq M_{k}(\digamma)$, where $M_{k}(\digamma)$ is the ring of $k \times k$ matrices of F. Also U and $M_{k}(\digamma)$ satisfy the same polynomial identity. If $k=1$, then U and R will obviously be commutative. Now investigate the case for $k \geq 2$ and putting $x=e_{i j}$ and $y=e_{j j}$ for $i \neq j$, then we get $\left(a e_{i j}\right)^{n}-e_{i j}=0$. For $n \geq 2, e_{i j}=0$, a contradiction. this imply that $n=1$ and $(a-1) x y+(b \mp 1) y x=0$ for all x, y in $M_{k}(\digamma)$. If we put $e_{i i}$ and $e_{i j}$ in place of x and y respectively, then we get $(a-1) e_{i j}=0$, and hence $a=1$. Again for $i \neq j$, put $e_{i i}$ and $e_{i j}$ in place of y and x respectively, then we get $(b \mp 1) e_{i j}=0$, and hence $b=\mp 1$. With these values of $a=1$ and $b=\mp 1$, we have $F(x)=x$ and $G(x)=\mp x$ for all $x \in U$.

Case 2. Let us assume that δ and η are not both inner derivations of U and also suppose that δ and η are linearly C-dependent modulo $U_{\text {int }}$. So, have $\sigma, \tau \in C$ such that $\sigma \delta+\tau \eta=a \delta_{q_{1}}$, and $a \delta_{q_{1}}=\left[q_{1}, x\right]$ for some $q_{1} \in U$ and for all $x \in U$.

If $\sigma \neq 0$, then $\delta(x)=\lambda \eta(x)+[f, x]$ for all $x \in U$, where $\lambda=-\tau \sigma^{-1}$ and $f=\sigma^{-1} q_{1}$. Therefore, η can not be inner derivation of U. By equation (2.8), we find for all $x, y \in U$
(2.12) $(a x y+\lambda \eta(x) y+\eta x \eta(y)+[f, x y]+b y x+\eta(y) x+y \eta(x))^{n}-(x y \mp y x)^{n}=0$.

From the theorem of Kharchenko [13], U satisfies the following

$$
\begin{equation*}
(a x y+\lambda s y+\lambda x t+[f, x y]+b y x+t x+y s)^{n}-(x y \mp y x)^{n}=0 \tag{2.13}
\end{equation*}
$$

for all $x, y \in U$.
If R is commutative, then we have done. If R is non-commutative, then there exists $q \in U$ such that $q \neq U$. Substituting $[q, x]$ for x and $[q, y]$ for t in (2.13) to get
(2.14) $(a x y+\lambda[q, x] y+\lambda x[q, y]+[f, x y]+b y x+[q, y] x+y[q, x])^{n}-(x y \mp y x)^{n}=0$ for all $x, y \in U$.

Since U satisfies (2.14) we have
(2.15) $(a x y+[\lambda q+f, x y]+b y x+[q, y x])^{n}-(x y \mp y x)^{n}=0$ for all $x, y \in U$.

This observed that $q \in C$, which is a contradiction by Lemma 2.2.
Next consider $\sigma=0$, then we have $\tau \neq 0$ and $f^{\prime}=q_{1} \tau^{-1}$ such that $\eta(x)=$ [$\left.f^{\prime}, x\right]$ for all x in U. By equation (2.8), we can write
(2.16) $\left(a x y+\delta(x) y+x \delta(y)+b y x+\left[f^{\prime}, y x\right]\right)^{n}-(x y \mp y x)^{n}=0$ for all $x, y \in U$.

Again using [13], U satisfies

$$
\begin{equation*}
\left(a x y+s y+x t+b y x+\left[f^{\prime}, y x\right]\right)^{n}-(x y \mp y x)^{n}=0 \text { for all } x, y \in U . \tag{2.17}
\end{equation*}
$$

If we take $y=0$ in above equation (2.17), then U satisfies $(x t)^{n}=0$, for all $x, t \in U$. Hence by using the same arguments as above, R will be commutative.

Example 2.1. The following example justify that the theorem does not hold for arbitrary ring.
Let $R=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}$ be a ring and $I=\left\{\left.\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right] \right\rvert\, b \in \mathbb{Z}\right\}$ be a non zero ideal of R. Define mappings $F, G, d, g: R \rightarrow R$ by $F\left(\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right]$, $G\left(\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{cc}a & -b \\ 0 & 0\end{array}\right], \quad d\left(\left[\begin{array}{cc}a & b \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{cc}0 & -b \\ 0 & 0\end{array}\right], \quad g\left(\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]\right)=$ $\left[\begin{array}{cc}0 & -2 b \\ 0 & 0\end{array}\right]$.

Then F, G are generalized derivations with respective associated derivations d, g. We observe that $(\mathbf{F}(\mathbf{x y})+\mathbf{G}(\mathbf{y x}))^{n}-(\mathbf{x y} \mp \mathbf{y x})^{n}=0$ for all $x, y \in I$. But R is not commutative and $F(x) \neq x$ and $G(x) \neq \mp x$.

References

[1] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar. 14 (1963) 369-371.
https://doi.org/10.1007/BF01895723
[2] C.L. Chuang, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723-728. https://doi.org/10.1090/S0002-9939-1988-0947646-4
[3] C. Lanski, An engle condition with derivation, Proc. Amer. Mathp. Soc. 183 (1993) 731-734. https://doi.org/10.1090/S0002-9939-1993-1132851-9
[4] I.N. Herstein, Topics in Ring Theory (Univ. of Chicago Press, Chicago, 1969).
[5] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Math. 196 (New York, Marcel Dekker, Inc. 1996).
[6] M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992) 205-206. https://doi.org/10.1155/S0161171292000255
[7] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub. 37 (Amer. Math. Soc., Providence, RI, 1964).
[8] S. Khan, F. Shujat and G. Alhendi, A Result on annihilator condition and generalized derivations of prime rings, J.P. Journal of Alg. Num. Th. Appl. 43 (2019) 101-110. https://doi.org/10.17654/NT043020101
[9] S. Huang and B. Davvaz, Generalized derivations of rings and Banach algebras, Comm. Algebra 41 (2013) 1188-1194. https://doi.org/10.1080/00927872.2011.642043
[10] T.S. Erickson, W.S. Martindale III and J.M. Osborn, Prime non-associative algebras, Pacific J. Math. 60 (1975) 49-63. https://doi.org/10.2140/pjm.1975.60.49
[11] T.K. Lee, Semiprime rings with differential identites, Bull. Inst. Math. Acad. Sinica 20 (1992) 27-38.
[12] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1999) 4057-4073.
https://doi.org/10.1080/00927879908826682
[13] V.K. Kharchenko, Differential identity of prime rings, Algebra and Logic 17 (1978) 155-168.
https://doi.org/10.1007/BF01670115
[14] V. De Filippis and S. Huang, Generalized derivations on semi prime rings, Bull. Korean Math. Soc. 48 (6) (2011) 1253-1259. https://doi.org/10.4134/BKMS.2011.48.6.1253
[15] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1972) 576-584. https://doi.org/10.1016/0021-8693(69)90029-5

Received 1 September 2020
Revised 14 November 2020
Accepted 14 November 2020

[^0]: ${ }^{1}$ Corresponding author.

