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Abstract

In this paper we investigate the following result. Let R be a prime ring, @
its symmetric Martindale quotient ring, C' its extended centroid, I a nonzero
ideal of R. If F' and G are the two generalized derivation of R such that
(F(xy) + G(yx))” — (xy Fyx)" = 0, for all 2,y € I, then either R is
commutative or F(z) =z, G(z) = Fx for allz € R and n = 1.
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1. INTRODUCTION

Throughout this paper R represents a prime ring with center Z(R), U stands for
Utumi quotient ring with extended centroid C' and @ appear for the symmetric
Martindale quotient ring. For detailed conceptual knowledge about U, @, C, one

refer to [5].

An additive mapping d : R — R will be called a derivation on R if d(zy) =
d(x)y + zd(y) for all x,y € R. Let ¢ € R be a fixed element. A mapd: R — R
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defined by d(z) = [q,x] = gz — xq, © € R, is a derivation on R, which is called
inner derivation defined by ¢. An additive map F' : R — R is said to be a
generalized derivation if there exists a derivation d of R such that, for all z,y € R,
F(zy) = F(x)y + zd(y). Basic examples of generalized derivations are the usual
derivations on R and left R-module mappings from R into itself. An important
example is a map of the form F'(x) = ax + xb, for some a,b € R; such generalized
derivations are called inner. In [12], Lee proved that every generalized derivation
can be uniquely extended to a generalized derivation of ) and thus all generalized
derivations of R implicitly assumed to be defined on the whole of Q. In particular,
Lee proved the following: Let R be a semiprime ring. Then every generalized
derivation F' on a dense right ideal of R can be uniquely extended to ) and
assumes the form F(x) = az + d(z) for some a € ) and a derivation d on Q.

In [6], Daif and Bell proved that if R is a semiprime ring with a nonzero
ideal I and d is a derivation of R such that d([z,y]) = [z,y] for all z,y € I,
then I C Z(R). In particular, if R is prime ring, then R must be commutative.
Authors [14] observe that: Let R be a prime ring, I a nonzero ideal of R and n
a fixed positive integer. If R admits a generalized derivation F' associated with
a derivation d such that (F'([z,y]))" = [z,y] for all z,y € I, then either R is
commutative or n =1, d = 0 and F is the identity map on R.

Recently in [9], Huang and Davvaz consider the situation (F([z,y]))" =
[x,y]™ for all z,y € R. More precisely, they proved the following. Let R be a
prime ring and m,n fixed positive integers. If R admits a generalized derivation
F' associated with a nonzero derivation d such that (F([z,y]))"™ = [z,y]™ for all
x,y € R, then R is commutative.

Very recently authors in [8] proved that: Let R be a non commutative prime
ring, I a nonzero ideal of R, F' a generalized derivation of R, n > 1 a fixed integer.
If 0 # p such that p(F(x)F(y) —zy)™ = 0 for all 2,y € I, then there exists A\ € C
such that F(z) = Az for all z € R with \?" = 1.

Carry on with the current the investigation we proved the following. Let R
be a prime ring, I be a nonzero ideal of R, C represents the extended centroid of
R and n > 1 is a fixed integer. If F' and G are the two generalized derivation of
R such that (F(xy) + G(yx))" — (xy Fyx)" =0, for all z,y € I, then either R
is commutative and F(x) =z, G(z) = Fx for all z € R and n = 1.

2.  MAIN RESULTS

We begin with the following lemmas as it’s plays key role in our theorem.

Lemma 2.1. Let R = My(F) be a ring and k > 2 and a,b,p,q € R. Suppose
that (axy + byx + [p, zy] + [q, yz])" — (zy £ yx)" = 0 for all z,y € R, where n > 1
s a fized integer. Then a,b,p,q € F' - I}.
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Proof. Let a = (aij)kxk, b = (bij)kxk, P = (Pij)kxks ¢ = (qij)kxr, where
aij, bij, Pij, i; in F. Denote e;; the usual matrix with unit 1 in (i,7)" entry and
zero elsewhere. We have (aej2 + bejger; + [p, e12] + [q, e12])™ — (€12 F e12e11)™ =
0 and (aej2 + b + peia — e12p + ge1z — e12q)™ — (e12 F e12)™ = 0. That is,
((a + p)erz — er2(p + q) + qelg)n — (e12)™ = 0. Multiply the above equation
from right side by e12, we get (e12(p + g)e12)" = 0.

Next case. We have ((a +p)zy + (b + q@)yx — xyp — qu)n — (xy Fyx)" = 0.
Choose = = e11 and y = e, we obtain ((a +plerrers + (b+ q)ejzer; — errerap —
612611q)n — (e11xe12 F epze11)™ = 0. Multiplying right side by ej2, we find that
(—e1oper2)™ = 0 or (—1)"(e1aper2)™ = 0 or (ejgpeiz)™ = 0, which implies that
a1 = 0. Similarly a2 = 0. Hence p = (p;;) is a diagonal matrix and a; = aj;,
where i # j. Hence p is a scalar matrix. Therefore, p € F - I.. So, our identity
reduces to (axy + (b+ qyx — qu)n — (zy F yx)" = 0. Choose x = e1; and
y = e12, we obtain (aeriers + (b+ q)erzers — erzernq)” — (er1e12 F erzern)™ = 0.
Multiplying right side by e12, we find that (—ej2gei2)™ = 0 or (—1)"(e12ge12)” =0
or (e12ge12)™ = 0, which implies that g1o = 0. Similarly g3 = 0. We can get
q is a diagonal matrix and hence ¢ is a scalar matrix. Therefore, ¢ € F - I.
Hence, our identity reduces to (axy + bym)n — (xy Fyz)” = 0. Choose x = ey
and y = e1a, we get (ae11e12 + b€12€11)n — (e11€12 F e12e11)"™ = 0. Which implies
that (CL€12 — (e12)™ = 0. Left multiplying by ej2, we arrive at (ej2aei2)™ = 0.
Which implies that e;o = 0 and eg; = 0. Use similar arguments, we find that
beF-I. [

Lemma 2.2. Let R be a prime ring, I be a nonzero ideal of R, C represents
the extended centroid of R and n > 1 is a fixed integer. Suppose that for some
a,b,p,q € R, and (axy+byzx + [p, zy|+ [q, yz])" — (xy Fyz)" =0, for all x,y € I,
then a,b,p,q € C.

Proof. Since [ satisfies the generalized polynomial identity
(21) flz,y) = (azy + byz + [p, xy| + [q,y=])" — (xy Fyz)" for all z,y € R.

Hence U also satisfied the above GPI and f(x,y) =0 for all =,y € U by [2].
We now consider that U does not satisfy any non-trivial GPI. By equation
(2.1), we can say

(2.2) ((a+p)xy+ (b+ qyx — xyp —yxq)" — (xy Fyz)" =0 for all z,y € R.

Since x and y is given by T' = U x¢ C{x,y}, the free product of U and C{z,y}.
If p ¢ C, then {1,p} is linearly independent over C. But if ¢ ¢ spanc{1,p}, then
{1,p, ¢} will be linearly independent over C. Therefore, we get a contradiction
by equation (2.2). If ¢ € spanc{1,p}, then ¢ can be written in the form for some
scalars a,v € C, ¢ = o+ ~yp. In this case, we will also arrive at contradiction by
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(2.2). This clearly implies that p € C. By using similar approach as above we can
get ¢,a + p,b+ g € C and hence a, b, p, ¢ must be in C. Further we assume that
(2.1) is a non trivial GPI for U. In such case, if C is infinite, we have f(z,y) =0
for all z,y € U Q¢ C, where C represents the algebraic closure of C. We can
replace R by U or U Q4 C as C is finite or infinite respectively following the
fact that both U and U @ C' are centrally closed prime algebras [10]. Also, we
may assume that C' = Z(R) and R is centrally closed C-algebra. By the theorem
of Martindale [15], R is a primitive ring with nonzero socle soc(R) and C as
the associated division ring. Therefore, R is isomorphic to a dense ring of linear
transformations of a vector space V over C from the theorem of Jacobson [7].

Let dim.V = k, then R = My(C) for k > 1. If k = 1, then R will be
commutative and a,b,p,q € C. If K > 2, then conclusion follows from Lemma 2.1.

If V is finite dimensional over C, then for any e? = e € sco(R), we have
eRe = M;(C), where | = dim.Ve. If a,b,p,q € C, there is nothing to do. So, we
consider all a,b,p,q ¢ C. In this case at least one of a,b, p,q does not centralize
the nonzero ideal soc(R). Hence there exists aq, g, a3, a4 € soc(R) such that
either [a,a1] = 0 or [b,as] = 0 or [p,as] = 0 or [¢g,as] = 0. An application
of Litoff’s theorem [1] enable us to take as idempotent e € soc(R) such that
aay, a1a, bag, asb, pas, asp, qoy, auq, a1, as, as, ay € eRe. Therefore we can have
eRe = My (C) with k = dim/Ve.

Replacing z by e and y by ex(1l —e) in (2.2) to get

(2.3) ((a+plex(l —e) —ex(l —e)p)” — (ex(l —e))" =0 for all z € R.
The multiplication of equation (2.3) with (1 — e) from left yields that
(2.4) (I—-e)((a+plex(l—e))* =0 for all z € R.

A simple manipulation of equation (2.4) gives that {(1 —e)(a +p)ex}"*! = 0 for
all x € R. By Levitzki’s [4], we can find (1 — e)(a + p)eR = 0. This implies that
(1—e)(a+p)e = 0. In the same way we can show that (1 —e)(b+ ¢)e = 0. Hence
we have that

(a+ple=ela+ple and (b+ q)e=-e(b+q)e.
Since R satisfies for all x,y € R
(2.5) e{((a+p)exeye+(b+q)eyere—exeyep—eyexeq)” — (exeyeFeyexe)" e = 0.
and eRe satisfies
(2.6) (e(a+ p)exy + e(b + q)eyxr — xyepe — yxeqe)” — (zy Fyxz)" =0

for all x,y € R.

We have all eae, ebe, epe, eqe are central elements of eRe by above finite
dimensional case. Which leads to a contradiction. This gives the assertion of
lemma. [ |
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Theorem 2.1. Let R be a prime ring, I be a nonzero ideal of R, C represents
the extended centroid of R and n > 1 is a fixved integer. If F' and G are the two
generalized derivation of R such that (F(xy) + G(yx))" — (xy Fyx)" = 0, for
all z,y € I, then either R is commutative or F(z) = x, G(x) = Fx for allz € R
andn =1.

Proof. By our hypothesis, it is given that
(2.7) (F(xy) + G(yx))" — (xy Fyx)" =0 for all z,y € U.

Following [12], we can find a,b € U such that F(x) = ax + §(x) and G(z) = bx +
n(z), where n,d are derivations on U. Since I, R, U satisfy the same generalized
polynomial identity and same differential identity by [2] and [11] respectively, we
obtain

(2.8) (axy + d(zy) + byz + n(yz))" — (zy Fyx)" =0 for all z,y € U.
This also implies that

(2.9) (azy + 6(x)y + x6(y) + byx + n(y)z + yn(z))" — (zy Fyz)" =0

for all x,y € U.
At this step the two case arises as below.

Case 1. Let us suppose that § and n are two inner derivations of U, define as
d(z) = [p,z] and n(z) = [g,z] for all x € U, for some p, g belongs to U. Hence U
satisfies

(2.10) (axy + [p, xy] + byx + [q,yx])" — (zy Fyx)" =0 for all z,y € U.
With the help of Lemma 2.2, as all a,b,p,q € C, then U satisfies
(2.11) (azy + byz)" — (zy Fyz)" =0 for all z,y € U.

Equation (2.11) is a polynomial identity for U. Then by [3], there will be a field
[ such that U C My (F ), where My (F) is the ring of k£ x k matrices of F.. Also
U and My(F) satisfy the same polynomial identity. If ¥ = 1, then U and R
will obviously be commutative. Now investigate the case for k > 2 and putting
x = e;; and y = ej; for i # j, then we get (ae;;)" —e;; = 0. For n > 2,¢e;; = 0,
a contradiction. this imply that n = 1 and (@ — 1)zy + (b F 1)yz = 0 for all
x,y in My(F ). If we put e; and e;; in place of x and y respectively, then we get
(a —1)e;; = 0, and hence a = 1. Again for 7 # j, put e; and e;; in place of y and
x respectively, then we get (b F 1)e;; = 0, and hence b = F1. With these values
of a =1 and b = F1, we have F(z) =z and G(z) = Fz for all x € U.



444 F. SHUJAT AND S. KHAN

Case 2. Let us assume that 6 and n are not both inner derivations of U
and also suppose that § and 7 are linearly C-dependent modulo Ujp:. So, have
o,7 € C such that 60 + 7 = ady,, and ady, = [q1, ] for some ¢; € U and for all
rzeU.

If o # 0, then §(z) = M(x) + [f, ] for all x € U, where A = —70~! and
f = 07 1q1. Therefore,  can not be inner derivation of U. By equation (2.8), we
find for all z,y € U
(2.12) (azy+An(x)y +nazn(y) +[f, zy]+byx +n(y)z+yn(x))" - (vy Fyz)" = 0.
From the theorem of Kharchenko [13], U satisfies the following

(2.13) (axy + Asy + Azt + [f, zy] + byx + tz + ys)" — (xy Fyx)" =0
for all x,y € U.

If R is commutative, then we have done. If R is non-commutative, then there
exists ¢ € U such that ¢ # U. Substituting [¢, z] for z and [g, y] for ¢ in (2.13) to
get
(2.14) (azy+ Mg, 2ly+Az(q, yl+[f, 2y]+byz +[q, ylo +ylg, 2])" — (xy Fyz)" = 0

for all x,y € U.
Since U satisfies (2.14) we have

(2.15) (axy + [Aq + f,xy] + byx + [q,yx])" — (zy Fyx)" =0 for all z,y € U.

This observed that g € C', which is a contradiction by Lemma 2.2.
Next consider o = 0, then we have 7 # 0 and f’ = ¢;7~! such that n(x) =
[f’,x] for all z in U. By equation (2.8), we can write

(2.16) (azy+d0(x)y+20(y)+byx+[f',yz])" — (zy Fyz)* =0 for all z,y € U.
Again using [13], U satisfies
(2.17)  (azy + sy + at + byz + [f',yx])" — (xy Fyz)" =0 for all z,y € U.

If we take y = 0 in above equation (2.17), then U satisfies (xt)” = 0, for all
x,t € U. Hence by using the same arguments as above, R will be commutative. m

Example 2.1. The following example justify that the theorem does not hold for
arbitrary ring.

LetR:{[g 8]|a,b€Z} bearingandI:{[g 8]|b6Z}beanonzero

ideal of R. Define mappings F,G,d,g:R—>RbyF<[g 3}) = [g 8},

sl ol) =10 o] oClan]) = 1o o] o([50]) 5

3]
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Then F, G are generalized derivations with respective associated derivations d, g.
We observe that (F(xy) + G(yx))" — (xy Fyx)" =0 for all z,y € I. But R is
not commutative and F(z) # xz and G(z) # Fz.

1]

2]
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