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Abstract

In this paper we investigate the following result. Let R be a prime ring, Q
its symmetric Martindale quotient ring, C its extended centroid, I a nonzero
ideal of R. If F and G are the two generalized derivation of R such that
(F(xy) + G(yx))n − (xy ∓ yx)n = 0, for all x, y ∈ I, then either R is
commutative or F (x) = x, G(x) = ∓x for all x ∈ R and n = 1.
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1. Introduction

Throughout this paper R represents a prime ring with center Z(R), U stands for
Utumi quotient ring with extended centroid C and Q appear for the symmetric
Martindale quotient ring. For detailed conceptual knowledge about U,Q,C, one
refer to [5].

An additive mapping d : R → R will be called a derivation on R if d(xy) =
d(x)y + xd(y) for all x, y ∈ R. Let q ∈ R be a fixed element. A map d : R → R
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defined by d(x) = [q, x] = qx − xq, x ∈ R, is a derivation on R, which is called
inner derivation defined by q. An additive map F : R → R is said to be a
generalized derivation if there exists a derivation d of R such that, for all x, y ∈ R,
F (xy) = F (x)y + xd(y). Basic examples of generalized derivations are the usual
derivations on R and left R-module mappings from R into itself. An important
example is a map of the form F (x) = ax+xb, for some a, b ∈ R; such generalized
derivations are called inner. In [12], Lee proved that every generalized derivation
can be uniquely extended to a generalized derivation of Q and thus all generalized
derivations of R implicitly assumed to be defined on the whole of Q. In particular,
Lee proved the following: Let R be a semiprime ring. Then every generalized
derivation F on a dense right ideal of R can be uniquely extended to Q and
assumes the form F (x) = ax+ d(x) for some a ∈ Q and a derivation d on Q.

In [6], Daif and Bell proved that if R is a semiprime ring with a nonzero
ideal I and d is a derivation of R such that d([x, y]) = [x, y] for all x, y ∈ I,
then I ⊆ Z(R). In particular, if R is prime ring, then R must be commutative.
Authors [14] observe that: Let R be a prime ring, I a nonzero ideal of R and n
a fixed positive integer. If R admits a generalized derivation F associated with
a derivation d such that (F ([x, y]))n = [x, y] for all x, y ∈ I, then either R is
commutative or n = 1, d = 0 and F is the identity map on R.

Recently in [9], Huang and Davvaz consider the situation (F ([x, y]))m =
[x, y]n for all x, y ∈ R. More precisely, they proved the following. Let R be a
prime ring and m,n fixed positive integers. If R admits a generalized derivation
F associated with a nonzero derivation d such that (F ([x, y]))m = [x, y]n for all
x, y ∈ R, then R is commutative.

Very recently authors in [8] proved that: Let R be a non commutative prime
ring, I a nonzero ideal of R, F a generalized derivation of R, n ≥ 1 a fixed integer.
If 0 6= p such that p(F (x)F (y)−xy)n = 0 for all x, y ∈ I, then there exists λ ∈ C
such that F (x) = λx for all x ∈ R with λ2n = 1.

Carry on with the current the investigation we proved the following. Let R
be a prime ring, I be a nonzero ideal of R, C represents the extended centroid of
R and n ≥ 1 is a fixed integer. If F and G are the two generalized derivation of
R such that (F(xy) +G(yx))n − (xy ∓ yx)n = 0, for all x, y ∈ I, then either R
is commutative and F (x) = x, G(x) = ∓x for all x ∈ R and n = 1.

2. Main results

We begin with the following lemmas as it’s plays key role in our theorem.

Lemma 2.1. Let R = Mk(F ) be a ring and k ≥ 2 and a, b, p, q ∈ R. Suppose

that (axy+ byx+[p, xy]+ [q, yx])n− (xy± yx)n = 0 for all x, y ∈ R, where n ≥ 1
is a fixed integer. Then a, b, p, q ∈ F · Ik.
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Proof. Let a = (aij)k×k, b = (bij)k×k, p = (pij)k×k, q = (qij)k×k, where
aij , bij , pij , qij in F . Denote eij the usual matrix with unit 1 in (i, j)th entry and
zero elsewhere. We have (ae12 + be12e11 + [p, e12] + [q, e12])

n − (e12 ∓ e12e11)
n =

0 and (ae12 + b + pe12 − e12p + qe12 − e12q)
n − (e12 ∓ e12)

n = 0. That is,
(

(a + p)e12 − e12(p + q) + qe12
)n

− (e12)
n = 0. Multiply the above equation

from right side by e12, we get
(

e12(p+ q)e12
)n

= 0.

Next case. We have
(

(a + p)xy + (b + q)yx − xyp − yxq
)n

− (xy ∓ yx)n = 0.
Choose x = e11 and y = e12, we obtain

(

(a+ p)e11e12 + (b+ q)e12e11 − e11e12p−
e12e11q

)n
− (e11xe12 ∓ e12e11)

n = 0. Multiplying right side by e12, we find that
(−e12pe12)

n = 0 or (−1)n(e12pe12)
n = 0 or (e12pe12)

n = 0, which implies that
a21 = 0. Similarly a12 = 0. Hence p = (pij) is a diagonal matrix and aii = ajj,
where i 6= j. Hence p is a scalar matrix. Therefore, p ∈ F · Ik. So, our identity
reduces to

(

axy + (b + q)yx − yxq
)n

− (xy ∓ yx)n = 0. Choose x = e11 and
y = e12, we obtain

(

ae11e12 + (b+ q)e12e11 − e12e11q
)n

− (e11e12 ∓ e12e11)
n = 0.

Multiplying right side by e12, we find that (−e12qe12)
n = 0 or (−1)n(e12qe12)

n = 0
or (e12qe12)

n = 0, which implies that q12 = 0. Similarly q21 = 0. We can get
q is a diagonal matrix and hence q is a scalar matrix. Therefore, q ∈ F · Ik.
Hence, our identity reduces to

(

axy + byx
)n

− (xy ∓ yx)n = 0. Choose x = e11
and y = e12, we get

(

ae11e12 + be12e11
)n

− (e11e12 ∓ e12e11)
n = 0. Which implies

that
(

ae12 − (e12)
n = 0. Left multiplying by e12, we arrive at (e12ae12)

n = 0.
Which implies that e12 = 0 and e21 = 0. Use similar arguments, we find that
b ∈ F · Ik.

Lemma 2.2. Let R be a prime ring, I be a nonzero ideal of R, C represents

the extended centroid of R and n ≥ 1 is a fixed integer. Suppose that for some

a, b, p, q ∈ R, and (axy+ byx+[p, xy]+ [q, yx])n− (xy∓yx)n = 0, for all x, y ∈ I,
then a, b, p, q ∈ C.

Proof. Since I satisfies the generalized polynomial identity

(2.1) f(x, y) = (axy + byx+ [p, xy] + [q, yx])n − (xy ∓ yx)n for all x, y ∈ R.

Hence U also satisfied the above GPI and f(x, y) = 0 for all x, y ∈ U by [2].
We now consider that U does not satisfy any non-trivial GPI. By equation

(2.1), we can say

(2.2) ((a+ p)xy + (b+ q)yx− xyp− yxq)n − (xy ∓ yx)n = 0 for all x, y ∈ R.

Since x and y is given by T = U ∗C C{x, y}, the free product of U and C{x, y}.
If p /∈ C, then {1, p} is linearly independent over C. But if q /∈ spanC{1, p}, then
{1, p, q} will be linearly independent over C. Therefore, we get a contradiction
by equation (2.2). If q ∈ spanC{1, p}, then q can be written in the form for some
scalars α, γ ∈ C, q = α+ γp. In this case, we will also arrive at contradiction by
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(2.2). This clearly implies that p ∈ C. By using similar approach as above we can
get q, a+ p, b+ q ∈ C and hence a, b, p, q must be in C. Further we assume that
(2.1) is a non trivial GPI for U . In such case, if C is infinite, we have f(x, y) = 0
for all x, y ∈ U

⊗

C C̄, where C̄ represents the algebraic closure of C. We can
replace R by U or U

⊗

C C̄ as C is finite or infinite respectively following the
fact that both U and U

⊗

C C̄ are centrally closed prime algebras [10]. Also, we
may assume that C = Z(R) and R is centrally closed C-algebra. By the theorem
of Martindale [15], R is a primitive ring with nonzero socle soc(R) and C as
the associated division ring. Therefore, R is isomorphic to a dense ring of linear
transformations of a vector space V over C from the theorem of Jacobson [7].

Let dimcV = k, then R ∼= Mk(C) for k ≥ 1. If k = 1, then R will be
commutative and a, b, p, q ∈ C. If k ≥ 2, then conclusion follows from Lemma 2.1.

If V is finite dimensional over C, then for any e2 = e ∈ sco(R), we have
eRe ∼= Ml(C), where l = dimcV e. If a, b, p, q ∈ C, there is nothing to do. So, we
consider all a, b, p, q /∈ C. In this case at least one of a, b, p, q does not centralize
the nonzero ideal soc(R). Hence there exists α1, α2, α3, α4 ∈ soc(R) such that
either [a, α1] = 0 or [b, α2] = 0 or [p, α3] = 0 or [q, α4] = 0. An application
of Litoff’s theorem [1] enable us to take as idempotent e ∈ soc(R) such that
aα1, α1a, bα2, α2b, pα3, α3p, qα4, α4q, α1, α2, α3, α4 ∈ eRe. Therefore we can have
eRe ∼= Mk(C) with k = dimcV e.

Replacing x by e and y by ex(1 − e) in (2.2) to get

(2.3) ((a+ p)ex(1 − e)− ex(1− e)p)n − (ex(1− e))n = 0 for all x ∈ R.

The multiplication of equation (2.3) with (1− e) from left yields that

(2.4) (1− e)((a + p)ex(1− e))n = 0 for all x ∈ R.

A simple manipulation of equation (2.4) gives that {(1− e)(a+ p)ex}n+1 = 0 for
all x ∈ R. By Levitzki’s [4], we can find (1− e)(a + p)eR = 0. This implies that
(1− e)(a+ p)e = 0. In the same way we can show that (1− e)(b+ q)e = 0. Hence
we have that

(a+ p)e = e(a+ p)e and (b+ q)e = e(b+ q)e.

Since R satisfies for all x, y ∈ R

(2.5) e{((a+p)exeye+(b+q)eyexe−exeyep−eyexeq)n−(exeye∓eyexe)n}e = 0.

and eRe satisfies

(2.6) (e(a+ p)exy + e(b+ q)eyx− xyepe− yxeqe)n − (xy ∓ yx)n = 0

for all x, y ∈ R.
We have all eae, ebe, epe, eqe are central elements of eRe by above finite

dimensional case. Which leads to a contradiction. This gives the assertion of
lemma.
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Theorem 2.1. Let R be a prime ring, I be a nonzero ideal of R, C represents

the extended centroid of R and n ≥ 1 is a fixed integer. If F and G are the two

generalized derivation of R such that (F(xy) +G(yx))n − (xy ∓ yx)n = 0, for
all x, y ∈ I, then either R is commutative or F (x) = x, G(x) = ∓x for all x ∈ R
and n = 1.

Proof. By our hypothesis, it is given that

(2.7) (F(xy) +G(yx))n − (xy ∓ yx)n = 0 for all x, y ∈ U.

Following [12], we can find a, b ∈ U such that F (x) = ax+ δ(x) and G(x) = bx+
η(x), where η, δ are derivations on U . Since I,R,U satisfy the same generalized
polynomial identity and same differential identity by [2] and [11] respectively, we
obtain

(2.8) (axy + δ(xy) + byx+ η(yx))n − (xy ∓ yx)n = 0 for all x, y ∈ U.

This also implies that

(2.9) (axy + δ(x)y + xδ(y) + byx+ η(y)x+ yη(x))n − (xy ∓ yx)n = 0

for all x, y ∈ U.

At this step the two case arises as below.

Case 1. Let us suppose that δ and η are two inner derivations of U, define as
δ(x) = [p, x] and η(x) = [q, x] for all x ∈ U , for some p, q belongs to U . Hence U
satisfies

(2.10) (axy + [p, xy] + byx+ [q, yx])n − (xy ∓ yx)n = 0 for all x, y ∈ U.

With the help of Lemma 2.2, as all a, b, p, q ∈ C, then U satisfies

(2.11) (axy + byx)n − (xy ∓ yx)n = 0 for all x, y ∈ U.

Equation (2.11) is a polynomial identity for U . Then by [3], there will be a field
̥ such that U ⊆ Mk(̥), where Mk(̥) is the ring of k × k matrices of F . Also
U and Mk(̥) satisfy the same polynomial identity. If k = 1, then U and R
will obviously be commutative. Now investigate the case for k ≥ 2 and putting
x = eij and y = ejj for i 6= j, then we get (aeij)

n − eij = 0. For n ≥ 2, eij = 0,
a contradiction. this imply that n = 1 and (a − 1)xy + (b ∓ 1)yx = 0 for all
x, y in Mk(̥). If we put eii and eij in place of x and y respectively, then we get
(a− 1)eij = 0, and hence a = 1. Again for i 6= j, put eii and eij in place of y and
x respectively, then we get (b ∓ 1)eij = 0, and hence b = ∓1. With these values
of a = 1 and b = ∓1, we have F (x) = x and G(x) = ∓x for all x ∈ U .
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Case 2. Let us assume that δ and η are not both inner derivations of U
and also suppose that δ and η are linearly C-dependent modulo Uint. So, have
σ, τ ∈ C such that σδ + τη = aδq1 , and aδq1 = [q1, x] for some q1 ∈ U and for all
x ∈ U .

If σ 6= 0, then δ(x) = λη(x) + [f, x] for all x ∈ U , where λ = −τσ−1 and
f = σ−1q1. Therefore, η can not be inner derivation of U . By equation (2.8), we
find for all x, y ∈ U

(2.12) (axy+λη(x)y+ηxη(y)+[f, xy]+byx+η(y)x+yη(x))n− (xy∓yx)n = 0.

From the theorem of Kharchenko [13], U satisfies the following

(2.13) (axy + λsy + λxt+ [f, xy] + byx+ tx+ ys)n − (xy ∓ yx)n = 0

for all x, y ∈ U.
If R is commutative, then we have done. If R is non-commutative, then there

exists q ∈ U such that q 6= U . Substituting [q, x] for x and [q, y] for t in (2.13) to
get

(2.14) (axy+λ[q, x]y+λx[q, y]+[f, xy]+byx+[q, y]x+y[q, x])n−(xy∓yx)n = 0

for all x, y ∈ U.
Since U satisfies (2.14) we have

(2.15) (axy + [λq + f, xy] + byx+ [q, yx])n − (xy ∓ yx)n = 0 for all x, y ∈ U.

This observed that q ∈ C, which is a contradiction by Lemma 2.2.
Next consider σ = 0, then we have τ 6= 0 and f ′ = q1τ

−1 such that η(x) =
[f ′, x] for all x in U . By equation (2.8), we can write

(2.16) (axy+ δ(x)y+xδ(y)+ byx+[f ′, yx])n− (xy∓yx)n = 0 for all x, y ∈ U.

Again using [13], U satisfies

(2.17) (axy + sy + xt+ byx+ [f ′, yx])n − (xy ∓ yx)n = 0 for all x, y ∈ U.

If we take y = 0 in above equation (2.17), then U satisfies (xt)n = 0, for all
x, t ∈ U . Hence by using the same arguments as above, R will be commutative.

Example 2.1. The following example justify that the theorem does not hold for
arbitrary ring.

Let R =

{[

a b
0 0

]

|a, b ∈ Z

}

be a ring and I =

{[

0 b
0 0

]

|b ∈ Z

}

be a non zero

ideal of R. Define mappings F,G, d, g : R → R by F

([

a b
0 0

])

=

[

a 0
0 0

]

,

G

([

a b
0 0

])

=

[

a −b
0 0

]

, d

([

a b
0 0

])

=

[

0 −b
0 0

]

, g

([

a b
0 0

])

=
[

0 −2b
0 0

]

.
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Then F,G are generalized derivations with respective associated derivations d, g.
We observe that (F(xy) +G(yx))n − (xy ∓ yx)n = 0 for all x, y ∈ I. But R is
not commutative and F (x) 6= x and G(x) 6= ∓x.
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