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Abstract

The order prime divisor graph Z2(G) of a finite group G is a simple
graph whose vertex set is G and two vertices a,b € G are adjacent if and
only if either ab = e or o(ab) is some prime number, where e is the identity
element of the group G and o(x) denotes the order of an element x € G. In
this paper, we establish the necessary and sufficient condition for the com-
pleteness of order prime divisor graph ZZ2(G) of a group G. Concentrating
on the graph Z2(D,,), we investigate several properties like degrees, girth,
regularity, Eulerianity, Hamiltonicity, planarity etc. We characterize some
graph theoretic properties of P (Z,,), P D (Sn), PD(Ay).

Keywords: group, dihedral group, complete graph, Eulerian graph, regular
graph, planar graph, order prime divisor graph.
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1. INTRODUCTION

Defining graphs over groups help us for studying the interplay between algebraic
properties and graph-theoretic properties and structures. For a finite group G,
one can associate a certain type of graph, order prime divisor graph ZZ2(G),
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https://doi.org/10.7151/dmgaa.1372

420 M.K. SEN, S.K. MAITY AND S. DAS

and investigate the interplay between the group-theoretic properties of G and
the graph-theoretic properties of order prime divisor graph Z%(G).

There are a number of constructions of graphs from groups or semigroups in
the literature. Here we begin by introducing some well-known graphs associated
with semigroups or groups. In 1964, Bosdk [1] studied certain graph over semi-
groups. Then Csdkany and Polldk [2] defined intersection graphs of nontrivial
proper subgroups of groups. In [9], Zelinka studied intersection graphs of non-
trivial subgroups of finite Abelian groups. Later on, the intersection graph of
ideals of rings was studied by Chakrabarty, Ghosh, Mukherjee and Sen [3].

In [6], Kelarev and Quinn introduced the notion of the (directed) power graph
P(G) of a group G and described the structure of the (directed) power graphs of
all finite abelian groups. According to them the (directed) power graph P(G) of
a group G is a directed graph with the set G of vertices, and with all edges (u,v)
such that u # v and v is the power of u. Later on, Chakrabarty, Ghosh and Sen
[4] defined the undirected power graph ¢(S) of a semigroup S as the undirected
graph with vertex set S and distinct vertices a and b are adjacent if a™ = b or
b = a for some positive integer m.

In 2009, the authors [7] defined order prime graph and studied its properties.
According to them the order prime graph OP(T") of a finite group I' is a graph
with vertex set I' and two vertices are adjacent in OP(T") if and only if their
orders are relatively prime in T.

In this paper, a new type of graph, called order prime divisor graph, is defined
and studied its properties. For a finite group G, the order prime divisor graph
of G, denoted by ZZ(G), is a simple graph with vertex set G and two vertices
a,b are adjacent in Z2(G) if and only if either o(ab) =1 or o(ab) = p for some
prime p, i.e., either a and b are inverse to each other or ab is an element of prime
order. Thus in ZZ2(G) two vertices a, b are adjacent if and only if o(ab) divides
p for some prime number p and that’s why we have named this graph as order
prime divisor graph. We note that if G is a group, then o(ab) = o(ba) for any two
elements a,b € G. Clearly, by definition, order prime divisor graph Z%(G) of a
finite group G contains no isolated vertices. Following examples show that cyclic
groups may have disconnected order prime divisor graphs where as non cyclic
(even non-commutative) groups have connected order prime divisor graphs.
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In this paper, Z, = {0,1,...,n — 1} is the additive group of integers mod-
ulo n, U(n) = {T € Z, : gcd(z,n) = 1} denotes the group of units of the ring
(Zp,+,-) of order p(n), D, is the dihedral group of order 2n, S, is the permu-
tation group on n symbols, A, is the alternating group on n symbols, GL,,(Fy)
denotes the general linear group over a finite field Fy, SL,(F,) denotes the special
linear group over a finite field Fj, 7" denotes a non-commutative group containing
12 elements and is defined by T = {{a,b) : o(a) = 6,b> = a3,ba = a~'b}, K,
denotes the complete graph with n vertices, K, s denotes the complete bipartite
graph or biclique where partite sets have sizes r and s, C,, denotes a cycle with
n vertices, deg(v) denotes the degree of a vertex v, a <> b denotes that vertices
a,b are adjacent. For usual algebraic terms, we refer to [5], and we refer to [8]
for graph-theoretic terms, definitions and notations.

2. SOME PROPERTIES OF Z%((Q)

In this section, we study some interesting properties of Z2(G). We also establish
here the necessary and sufficient condition for the order prime divisor graph
P P(Q) of a finite group to be complete.

Theorem 2.1. For a finite group G, PP (QG) is complete if and only if each non
identity element of G is of prime order.

Proof. Let G be a finite group with order of each non identity element is prime.
Let a,b be any two distinct elements of G. If ab = e, then o(ab) = 1 and thus a
and b are adjacent in Z%2(G). Suppose ab # e. Then by the given hypothesis
it follows that o(ab) is some prime and hence these two elements a and b are
adjacent in ZZ2(G). Therefore, between any two distinct vertices in #2(G),
there is an edge and hence & %(G) is complete.

Conversely, let G be finite group for which Z%(G) is complete. Let a (# e)
be any element of G. Since ZZ2(G) is complete, we must have an edge between
the vertices a and e. Therefore o(a) = o(ae) must be prime. Consequently, order
of any non identity element of GG is prime. [
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Corollary 2.2. Let G be a group of prime order. Then P2 (G) is complete.

Corollary 2.3. S3, Ay, A5 are non-commutative groups whose order prime divi-

sor graphs PP (S3), P D (As), PP (As) are complete.

Corollary 2.4. Let G be a finite commutative group. Then PP (G) is complete
if and only if G =72, ® Ly © - - ® Zy for some positive integer n.

n—fold
Proof. First suppose that G = Z, ® Z, ® - -- © Z, for some positive integer n.

n—fold
Then order of any non identity element of G is p and hence by Theorem 2.1, it

follows that Z2(G) is complete.

Conversely, let G be a finite commutative group such that Z2(G) is com-
plete. Then by Theorem 2.1, it follows that every non identity element of G is
of prime order. Now by the structure theorem of finite commutative group, we
have G = Zplnl EBZp2n2 H--- @Zpknk, where p,,p,,...,p, are primes (not neces-
sarily distinct) and n,,n,,...,n, are positive integers. First we show that n, =
n, = --- =n, = 1. On the contrary, suppose n, > 1, for some i € {1,2,...,k}.
Then G contains elements of composite order p,"i, a contradiction. Therefore,
=Ny = =mn, =1and thus G =7, ©Z,, & - & Zp . We now show
that p, = p, = --- = p,. Suppose p, # p,, for some 1 < 4,5 < k. Then G con-
tains elements of composite order p,p;, which is again a contradiction. Therefore,
p,=p,=--=p, =p (say) and thus G =Z, D Z, D --- B Zy. [ |

n

k—fold

Theorem 2.5. If a finite group G has a subgroup of order p (where p is prime),
then Z2(G) contains a clique with p vertices.

Proof. Let H be a subgroup of a finite group G such that |H| = p for some
prime number p. Then every non identity element in H is of order p. Therefore,
PP (H) is a complete graph containing p vertices. Since % (H) is a subgraph
of Z2(G), it follows that ZZ(G) has a clique ZZ(H) with p vertices. ]

Remark 2.6. (i) The vertices of every clique in #%2(G) may not form a sub-
group of G. For example, in the order prime divisor graph P X (Z4 & Z4),

{(0,1),(0,3),(2,1),2.3)}, {(1.0),(1,2),(3,0). 3.2}, {(T.1), (1.3), 3.1), (3,3)}

form three different clique but none of them forms a subgroup of Z4 & Z4.

(ii) If the vertices of a clique in Z%(G) form a subgroup H of G then order of
H may not be prime. For example, in the order prime divisor graph & 2(Z,®Z,),
{(0,0),(0,2),(2,0),(2,2)} form a subgroup of Zy & Zs, which is of order 4.

Theorem 2.7. Let G be a finite group and p (> 5) be a prime such that p divides
|G|. Then Z2(G) is a non planar graph.
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Proof. Let G be a group of order n and p (> 5) be a prime such that p divides n.
Then by Cauchy’s Theorem, G has an element of order p and hence a subgroup H
of order p. Now by Theorem 2.5, Z%(H) = K, is a subgraph of Z%(G). Since
p > 5, it follows that ZZ2(G) contains K35 as a subgraph. Hence by Kuratowski’s
Theorem, it follows that Z%(G) is a non planar graph. [ |

Remark 2.8. Converse of Theorem 2.7 is not true in general. From Corollary
2.3, we have Z9(S3) and #P(A,) are complete graphs and hence they are non
planar as well as non outerplanar, though there are no prime greater or equal to
5 dividing the order of the groups.

Corollary 2.9. If a finite group G has a centre of prime order p, then P P(G)
contains a clique with p vertices.

Corollary 2.10. If m is a positive integer such that 2™ — 1 is prime (called
Mersenne prime), then PP (GLy,(Fam)) has a clique with 2™ — 1 vertices.

Proof. Now Z(GLn(Fgm)) = {A = (@ij)nxn : @ij = 0,1 <i# j<mja; =a¢€
Fom \ {0}} (n > 1) implies | Z(GLy(Fym))| = 2™ — 1. Hence by Corollary 2.9, we
have Z9(GL,,(Fym)) has a clique with 2™ — 1 vertices. ]

Corollary 2.11. Let F, be a finite field with q elements and n be a positive
integers such that ged(n,q — 1) is prime. Then PP (SL,(F,)) has a clique with
gcd(n,q — 1) wvertices.

Proof. Let n be a positive integer such that ged(n,q — 1) is prime. For n (> 1),
we have Z(SLn(Fy)) = {A = (aij)nxn : aij = 0,1 # jiai = a € Fy\ {0};
a™ = 1} implies |Z(SLyn(Fy,))| = ged(n,q — 1). Hence by Corollary 2.9, we have
PP(SLy(F,)) has a clique with ged(n,q — 1) vertices. |

Recall that the girth of a graph with at least one cycle is the length of its
shortest cycle. A graph with no cycle has infinite girth. A graph with no cycle
is said to be an acyclic graph. A forest is an acyclic graph whereas a tree is a
connected acyclic graph.

Theorem 2.12. Let G be a finite group and p is an odd prime such that p divides
|G|. Then P2(G) is neither bipartite nor a tree and girth(¥ 2(G)) = 3.

Proof. Let G be a group of order n and p be an odd prime such that p divides
n. Then G contains an element x of order p. Since p is an odd prime, we have
x # 2~ and o(x~!) = p. This implies z <+ ¢ <+ 7! <> z forms a cycle in Z2(G)
of length 3. Since Z2(G) is a simple graph, we must have girth(#Z2(G)) = 3.
Also Z2(G) contains an odd cycle implies % (G) is neither bipartite nor a
tree. ]
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Theorem 2.13. If Gy, Gy are two finite groups such that G1 = Gq, then 29 (G1)
= P9P(Gy).

Proof. Let G; and G2 be two finite groups and 9 : G; — G5 be an isomor-
phism. Let a,b € G be adjacent in ZZ(G1). Then either o(ab) = 1 or o(ab) = p
for some prime p. Since 1) is an isomorphism, we have o(1(a)¥ (b)) = o(¢(ab)) =
o(ab). If o(ab) = 1, then o(v)(a)1(b)) = 1 and hence ¢ (a) and (b) are adjacent
in Z%(G2). On the other hand, if o(ab) = p, then o(¢(a)1(b)) = p and hence
Y (a) is adjacent to ¥(b) in PP (G3). Conversely, if (a) and (b) are adjacent
in #%(G2), one can easily check that a and b are adjacent in Z%2(G1). Hence
PDP(G) = PD(Ga). |

Remark 2.14. The converse of Theorem 2.13 is not true in general. For example
we consider two non-isomorphic groups Zo7y @ Zs and Zg & Zg. Then both the
graphs P9 (Zar & Zs3) and P D(ZLg & Zg) have five components. Out of these
five components one component is a 8-regular graph with 9 vertices and each
of remaining four components is a 9-regular graph with 18 vertices. Therefore,

@.@(Z27 D Zg) = @@(Zg (& Zg) though Zoy @ Zs 2 Zg ® Zg.
Corollary 2.15. For a finite group G, Aut(G) C Aut(Z22(Q)).
Proof. Follows from Theorem 2.13. [ |

Theorem 2.16. Let G be a finite commutative group. Then P 2(QG) has at least
two pendant vertices if and only if G = Zor, for some positive integer r.

Proof. Let G = Zor, for some positive integer r. Since 2"~ € Zor is the
unique element of order 2, we have deg(0) = 1 = deg(2"~1) in 2P (Zyr). Hence
PP (Zor) has at least two pendant vertices.

Conversely, let G be a finite commutative group of order n such that Z2(G)
contains at least two pendant vertices. First we prove that n has no odd prime
divisor. For this, let p be any odd prime divisor of n. Then G contains at least two
elements = and y of order p. Now let a € G be any element. Then a <> o'z and
a <+ a lyin 22(G) and thus deg(a) > 2 in Z2(G). Hence #Z(G) contains
no pendant vertices, a contradiction. Therefore, 2 is the only one divisor of n
and hence G = Zgn, @ Zgny @ - - - ® Zgn,, for some positive integers n,,n,,...,n,.
We now show that £ = 1. On the contrary, let k£ > 1. Then G contains at least
three elements of order 2 and hence degree of every vertex in ZZ2(G) is at least
3. Thus Z%2(G) contains no pendant vertices, which is again a contradiction.
Therefore, £k = 1 and consequently G = Zor, for some positive integer r. [

Corollary 2.17. For a finite commutative group G, Z2(G) is a forest if and
only if either G = Zo or G = Zy.
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Proof. First we assume that G is isomorphic to either Zo or Z4. Then clearly
PP (G) is a forest.

Conversely, let G be a finite commutative group such that Z2(G) is a forest.
We know that every tree with at least two vertices has at least two pendant
vertices and every component of a forest is a tree. Hence by Theorem 2.16, G is
of the form Zor, for some positive integer . We now show that r must be equal to
1 or 2. On the contrary, let 7 > 3. Then 1<+ 271 — 1+ 21 4+ 142" — 11
forms a cycle in % (Zyr). Hence PP (Zyr) is not a forest, a contradiction. This
contradiction ensures that » < 2. Consequently, GG is isomorphic to either Zo
or Zy. [ ]

We need a result that follows from [5, Chapter 9, Section 9.5, Corollary 20].
k

T

T

Theorem 2.18. Let n > 2 be an integer with factorization n = p *ip,F2 - . p
in Z, where p,,p,,...,p, are distinct primes. Then

() Um) = U(pl) x U(p?) x - x U(pt).
(il) U(2%) ¥ Zg X Zga—2, for all o > 2,

(iil) U(p®) = Zpa-1(,—1) for any odd prime p.

Theorem 2.19. For any integer n > 3, the order prime divisor graph 22 (U (2™))
has no pendant vertices.

Proof. For any n > 3, U(2") = Zy® Zgn—2 and hence by Theorem 2.16, it follows
that Z2(U(2")) has no pendant vertices. |

Corollary 2.20. For any odd prime p and for any positive integer n, the order
prime divisor graph P 2(U (p™)) has no pendant vertices.

Proof. For any odd prime p, U(p") = Zyn-1(,—1). Therefore, by Theorem 2.16,
it follows that for any odd prime p and for positive integer n, the order prime
divisor graph ZZ(U (p™)) has no pendant vertices. ]

3. ORDER PRIME DIVISOR GRAPH OF THE GROUP Z,,

A graph G is said to be a k-regular graph (k is a non negative integer) if the
degree of each vertex of G is k. In this section we study k-regular order prime
divisor graph of the group (Z,,+). From Corollary 2.2, it follows that order
prime divisor graph of any group of prime order p is (p — 1)-regular. In this
section we study order prime divisor graph of any cyclic group of order 2p, where
p is prime.

Theorem 3.1. For any cyclic group G of order 2p, where p is an odd prime,
PP (G) is a p-regular graph.
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Proof. Let G be a cyclic group of order 2p. Then G contains exactly one element
of order 1, (p—1) elements of order p, one element of order 2 and (p— 1) elements
of order 2p. Hence G has exactly (p — 1) + 1 = p elements of prime order. If z is
any element of G, then o(z) =1 or 2 or p or 2p. We consider the following cases.

Case 1. Suppose o(z) = 1, then z = e. Now deg(e) in ZZ(G) is exactly
equal to the number of prime order elements in G. Therefore, deg(e) = p in

29(G).

Case 2. Assume that o(z) = 2. Since G is cyclic so G has only one element
of order 2. Clearly x is adjacent to e. Also for any other element y € G with
o(y) = p, we see that z is adjacent to x~1y. Thus the number of such y is (p—1).
Therefore the total number of adjacent vertices of z in Z%(G) is 1+ (p—1) = p.

Case 3. Suppose o(z) = p. There are (p— 1) elements of order p. In this case
e and z~! are both adjacent to z. Moreover, for any other prime order element
2(# z,2%) € G, we see that x is adjacent to 27 'z. The number of such z is
(p —2) [(p — 3) elements of order p and one element of order 2]. Therefore the
total number of adjacent vertices of x in %(G)is1+1+(p—2)=p

Case 4. Suppose that o(z) = 2p. Then obviously o(z?) = p. Clearly, z~! is

adjacent to . Moreover, for any other prime order element u(# 22?) € G, we see
that z is adjacent to 2~ 'u. The number of such u is (p — 1) [(p — 2) elements of
order p and one element of order 2]. Hence the total number of adjacent vertices
of xin ZP(G)is 1+ (p—1) =p.

Therefore, considering all the cases we have deg(z) = p in ZZ(G). Since
x € G is arbitrary, we must have Z2(G) is a p-regular graph. [

Corollary 3.2. For any odd prime p, 3”9(221,) s a p-regular graph.

Remark 3.3. Figure 1 shows that #?%(Z4) is 1-regular and thus Theorem 3.1
is not true when p is even prime.

Lemma 3.4. #?Y(Zan) is disconnected for n > 2 and non regular for n > 3.

Proof. For n > 2, the set {G,F} forms a connected component of &P (Zon)
and thus P Z2(Zan) is a disconnected graph.

Now, we consider the graph P %(Zgn) for n > 3. In this graph deg(1) = 2
because 1 is adjacent to 2" — 1 and 2"~1 — 1, whereas deg(2"~1) = 1, since
0(27=1) = 2 in the group Zgn. Hence PP (Zyn) is non regular. |

Lemma 3.5. For any odd prime p and any integer n > 2, PP (Lyn) is a non
regular graph.

Proof. Since Zyn is a cyclic group, the number of elements of order p is ¢(p) =
p — 1. This implies deg(0) = p — 1 in PP (Zyn). Again, 1 is adjacent to
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prt—1,2pn 1 —1,3pn 1 —1,...,(p—1p» 1 =1 and p"—1 in PP (Zy).
Therefore, deg(1) = p in PP(Zyn). Hence PP (Zyn) is not a regular graph. m
Lemma 3.6. If n # p,2p for some prime p and if n = p"ipl?---p'™ where
D,sPy,---,D,, are distinct primes and r,,r,,...,7, are positive integers, then
PP (Ly,) is not a regular graph.

m

Proof. Similar to the proof of Lemma 3.5, we can prove that deg(0) = ¢(p,) +

p(p,) + - + ¢(p,,) and deg(I) = ¢(p,) + ¢(p,) + -+ + @(p,,) + 1 in PD(Zn).
Hence Z%(Z,,) is not a regular graph. [

We are now in a position to characterize all finite cyclic groups Z,, for which
PP (Ly,) is regular.

Theorem 3.7. Y (Z,) is a regular graph if and only if n = p or 2p for some
prime p.

Proof. First we assume that n = p for some prime p. Then by Theorem 2.1, it
follows that % (Z,) is a complete graph with p vertices and hence X% (Z,) is
a (p — 1)-regular graph. On the other hand if n = 2p for some odd prime p, then
by Corollary 3.2, we have & %(Zo,) is a p-regular graph. Moreover, from Figure
1, we see that ZZ(Z,) is 1-regular.

Converse part follows from Lemma 3.6. [ |

Corollary 3.8. For any positive integer n(# 4), if D (Zy,) is reqular then it is
connected.

Proof. From Theorem 3.7, we have Z%(Z,,) is regular if and only if n = p or
2p for some prime p. Now for any prime p, #%(Z,) is complete and hence it is
connected. If p is an odd prime, then by Theorem 3.7, we have P % (Zyp) is a
p-regular graph with 2p vertices and hence it is connected. [ |

Remark 3.9. The converse of Corollary 3.8 is not true in general. The following
graph shows that % (Z;5) is connected but not regular.

Definition 3.10 [8]. The line graph of a graph G, written L(G), is the graph
whose vertices are the edges of G, with ef € E(L(G)) when e = wv and f = vw
in G.

Theorem 3.11. For any odd prime p,
(i) the line graph L(P P (ZLy)) of PP (Zy) is (2p — 4)-regular,
(ii) the line graph L(P D (ZLap)) of P D (ZLap) is (2p — 2)-regular.
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Figure 5. @.@(215)

Proof. (i) Let p be an odd prime. Then #%(Z,) is (p—1)-regular. Let e be any
edge of Z%(Z,). Then e represents a vertex e, in L(Z%(Z,)). Let a. and b, be
the end vertices of the edge e in #%(Z,). Again deg(a.) = deg(b.) = (p — 1) in
PP (Lyp). Since PP (Z,) is simple, the edge e has the vertex a. in common with
(p—2) edges and the vertex b, in common with (p —2) edges in % (Z,). Hence
degley) =(p—2)+(p—2)=(2p—4) in L(XP(Zy)). Therefore L(XP(Z,)) is
(2p — 4)-regular graph.

(ii) Since PP (Zap), where p is any odd prime, is p-regular, so by the sim-
ilar argument as in (i) of this theorem, we have the line graph L(Z%(Zyp)) of
PP (Layp) is (2p — 2)-regular. ]

Theorem 3.12 (Dirac [8]). Let G be a simple graph with n(> 2) vertices. If
deg(v) > 5 for every vertex v of G, then G is Hamiltonian.

Theorem 3.13. If n = p or 2p, where p an odd prime, then PP (L) is a
Hamiltonian graph.

Proof. Let p be an odd prime. From Theorem 2.1, it follows that Z%(Z,) is
complete and hence it is Hamiltonian. On the other hand from Theorem 3.7,
we have PP (Zyp) is a p-regular graph and by Theorem 3.12, it follows that
PP (Lap) is a Hamiltonian graph. |

Theorem 3.14. For a finite commutative group G, PP (G) is a bipartite graph
if and only if G = Zor, for some positive integer r.
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Proof. Let G = Zyr, for some positive integer r. If G is isomorphic to either Zs
or Zy2 then clearly Z%(G) is a bipartite graph. We now consider r > 3. Then
in the order prime divisor graph Z2(Zyr), deg(0) = deg(27—1) = deg(272) =
deg(3-27—2) =1 and also {0,271}, {22,322} form two components. Let
T € Zyr such that T ¢ {0,27-1,27-2,3.2"-2}. Then {Z,2" ' — 2,21 4z,
m} forms a component which is isomorphic to Cy. Hence every component
of PP (Zsr) is isomorphic to either Ky or Cy. Hence % (Zyr) has no odd cycle
and consequently, % (@) is a bipartite graph.

Conversely, let G be a finite commutative group of order n such that Z2(G)
is a bipartite graph. We now show that n is not divisible by any odd prime p. If
any odd prime p divides n, then G contains an element x of order p. Since p is
an odd prime, we have z # 27! and o(x~!) = p. This implies 2 <3 e <3 27! <
forms a cycle in Z2%(G) of length 3. Therefore #%(G) contains an odd cycle,
which contradicts that 2 2(G) is a bipartite graph. Hence n is of the form 2", for
some positive integer r. Therefore G = Zgn, @ Zgny @ - - - @ Zgyny, for some positive
integers n,,n,,...,n,. We now show that k = 1. On the contrary, let £ > 1.
Then {(2m71,0,...,0),(0,2"2~1,...,0),(2m 1, 27~1 ... 0)} forms a triangle.
Thus Z2(G) is not bipartite graph, which is again a contradiction. Therefore,
k =1 and thus G = Zor, for some positive integer r. [ |

Theorem 3.15. Let p be an odd prime and n > 2 is an integer. Then P D (Lyn)

pnfl_

5 L components each of them is p-

have one (p — 1)-regular component and
regular.

Proof. In 9(Lyn), {0,p" 1, 2p" 1, ..., (p—1)p"~'} forms a component with
p vertices and this component is of (p — 1)-regular.

Let A; = {i, p»='—d, 2p" 1 —d, ..., p" — i, p" L +14, 2p" 1 +4, ...,
(p—p»'+i} = U;UV;, where U; = {p»!1—i,2p" 1 —4,...,p" —i} and
- n—1_

Vi={i,p" T +i,2p" T +i,...,(p— L)p* L +i}, for %111 i=12,... 0571
We now show that every A;, foralli=1,2,..., pT_l, contains 2p elements.

Let ug,uz € U; be any two elements of U;. Let uy = rp*~1 —i,u3 = sp?~ 1 —i
for some r,s € {1,2,...,p}. If possible let Ty = Wz, i.e., rp" ' —i + t1p" =
sp" Tt — i 4+ top”, ie., (r — s) = (to — t1)p which is possible only when r = s
and hence U; contains p elements. Similarly, we can show that V; contains p
elements. Now we need to show that U; N'V; = (). If possible let uw € U; N V.
Then v = cp™ ! — i + t3p™ = dp™ ' + i + t4p", where ¢ € {1,2,...,p} and
de{0,1,...,(p—1)}, ie., (c—d)p" ! + (t3 — t4)p™ = 2i, i.e., 2i is divisible by
p" 1, a contradiction since 2i < p"~! —1 < p?»~ L. Therefore, U; N V; = 0 and
hence A; contains 2p elements.

Let rpn—1 —i € U; for some r € {1,2,...,p}, and sp"~1 +i € V; for some
s€{0,1,...,(p—1)}, be any two elements. In Zyn, o(rp"~!t —i4+spn~1 4+1i) =p
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and thus every element of U; is adjacent to each element of V;. But for any two
elements rpn—1 — i tpn—1 —i € U; (r,t € {1,2,...,p}), we have o(ri1p"~! —i +
rop"~1 — i) # p and thus no two elements of U; are adjacent. Similarly we can
show that no two elements in V; are adjacent. Hence degree of every vertex in
A, foralli=1,2,..., %, is pin PP (Lpn).

We now show that every A;, for all : = 1,2,..., M%H, forms a component
of PP (Zyn). Let x € A;. Then z is adjacent to either i or p*~1 — i in PP (Zyn).
Therefore every element of A; is connected to each other by a path of length at
most 2. It is easy to verify that there is no edge between a vertex in A; and a

nfl_l

vertex in A; for i # j and 7,7 € {1,2, P } Therefore, every A;, for all

n—1
i =1,2,...,°¢ 2_1, forms a p-regular component with 2p vertices. Hence the

theorem. -

4. ORDER PRIME DIVISOR GRAPH OF THE GROUP D,

For each positive integer n > 3, the dihedral group of degree n, denoted by
D,,, is a non-commutative group containing 2n elements and is defined by D,, =
{{a,b) : o(a) = n,o(b) = 2,ba = a~'b}. The study of dihedral group D,, helps
us to characterize non commutative groups. In this section, we establish some
graph-theoretic properties of Z2(D,,).

Before going to our results, we first consider the order prime divisor graph

PP (Ds).
Example 4.1.

a’b ab
) 27,
7 =7 . ! - 2
a ‘%’»’3“». oy
— ,"l‘ |
6}, éj;;“ﬂ‘" l‘“i&:'lfég 2,
a i-~\v.y"' b\ _tH a
\ ) D
N/ STl NS
N SR 92\ | \\ il
a6 ";“".’;‘ ’4 “,r. ‘ a

4
\“‘;‘ ‘
NV
7

Figure 6. Z2(Ds)
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From Figure 6, we have deg(a) = deg(a®) = deg(a®) = deg(a”) = 10 and
deg(e) = deg(a?) = deg(a*) = deg(a®) = deg(b) = deg(ab) = deg(a’b) =
deg(a®b) = deg(a*b) = deg(a®h) = deg(a®b) = deg(a’) = 9 in order prime
divisor graph #%2(Dg). Here 8 = 23 and note that degree of any vertex in
PP (Dg) is either ¢(2) + 8 or p(2) + 8 + 1.

Theorem 4.2. Let n(> 3) be a number and n = Dyipa? - -p'm be the factorization
of n as product of distinct primes and their positive powers. Then the degree of
a vertezx of P9 (Dy) is either (p,) +¢(p,) + -+ +¢(p,,) +n or ¢(p,) + @(p,) +
et ep,) +n+ 1

Proof. Now D,, = {{a,b) : o(a) = n,o(b) = 2,ba = a~'b}. Let H = (a)
and K = Hb. Then D, = H U K and all the n elements of K are of order
2. Also the subgroup H contains ¢(p,) elements of order p,, ¢(p,) elements of
order p,, and so on, ¢(p,,) elements of order p,,. Now deg(e) in P (D,,) is
exactly equal to the number of prime order elements in D,,. Therefore, deg(e) =
o(p,) +op,)+--+op,)+nin PY(D,). Let x(+# e) € D,, be any element.

If o(x) = 2, then e is adjacent to x. Also for any other element y(# z) € G
with prime order, we see that z is adjacent to 2~ 'y. Thus the total number of
adjacent vertices of z in 22(D,,) is p(p,) + ¢(p,) + -+ ¢(p,,) + n.

Suppose o(x) = p, where p is an odd prime. Then 22 is again an element of
order p. In this case e and 2! are adjacent to 2. Moreover, for any other element
z(# x,2%) € G with prime order, we see that z is adjacent to 2~ !z. Thus the total
number of adjacent vertices of z in Z(D,,) is ¢(p,) + ¢(p,) + -+ + ¢(p,,) + n.

Finally, suppose that o(z) is composite. Then in this case ™! is adjacent to
x. If 22 is an element of prime order, then for any other element u(# 22?) € G
with prime order, we see that z is adjacent to z~'u. Thus, the total number of
adjacent vertices of x in XY (D,,) is ¢(p,) + ¢(p,) + -+ + ¢(p,.) + n. On the
other hand, if o(2?) is composite, then for any other element v € G with prime
order, we see that = is adjacent to z~'u. Hence the total number of adjacent
vertices of x in Z2(D,,) is ¢(p,) + ¢(p,) + -+ + ¢(p,,) +n+ 1. Thus the proof
is completed. [ |

Theorem 4.3. Z%(D,,)(n > 3) is a reqular graph if and only if n = p or 2p
for some prime p.

Proof. Let p (> 3) be a prime. Now D, is a non-commutative group of order 2p
such that every non identity element is of prime order. Hence by Theorem 2.1,
it follows that % (D)) is complete and thus it is (2p — 1)-regular.
For p = 2, we have from Figure 3 that 2 2(Ds,) = P Z(Dy) is 5-regular.
We now establish the regularity of the graph & %2(Dy,), where p is any odd
prime. Note that Dy, = {e,a,az,...,a2p_1,b, ab, a’b, . .. ,a2p_1b} = HUK,
where H = (a) is the cyclic subgroup of Dy, generated by a and K = Hb is a right
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coset of H, different from H. Here every element of K is of order 2. Moreover,
H contains exactly (p — 1) elements of order p and a unique element of order
2. Let a” € H and a®b € K. Then a"a®h = a’t5(mod20)p for r s = 1,2,...,2p.
Thus a"a®b € K and hence o(a"a®h) = 2. Therefore, every element of H is
adjacent to every element of K in #%(D,,). Let a",a® € H, then a"a® € H, for
r,s =1,2,...,2p. Finally, for any two elements a"b, a®*b € K, we have a"ba®b € H,
for r,s =1,2,...,2p. We now show that every vertex of 2% (Dy,) is of degree
3p. For this let = be any vertex of Z%(Dyp).

Suppose x € H. Then x is adjacent to every element of K. Moreover, similar
to the proof of Theorem 3.1, we can conclude that z is adjacent to exactly p
elements of H. Hence, if z € H, then deg(z) = 3p. On the other hand, if
x € K, then all the 2p elements of H are adjacent to x. Since x € K, we must
have 22 = e and K = Hx. Also, Kx = (Hz)x = Hx?> = H. Now H contains
total p elements of prime order (exactly p — 1 elements of order p and 1 element
of order 2). Therefore, = is adjacent to exactly p elements of K. Hence total
number of adjacent vertices is 3p and thus deg(xz) = 3p. Therefore, in either
cases deg(z) = 3p in P (Ds)p). Consequently, &P (Ds)) is a 3p-regular graph.

Conversely, we assume that ZZ2(D,,) is regular. We show that n = p or
2p for some prime p. On the contrary we let n # p,2p for any prime p. Let
n= pflp? ---p'm, where p,,p,,...,p,, are distinct primes and r,,7,,...,7, are
positive integers. Then by Theorem 4.2, it follows that deg(e) = p(p,) + ¢(p,) +
-+ +¢(p,,) +n whereas deg(a) = ¢(p,) +¢(p,) +- -+ ¢(p,,) +n+1in XD (Dy).
This leads to Z%2(D,,) is not regular, which is a contradiction. Consequently,
n = p or 2p for some prime p. ]

From Corollary 3.2, Theorem 4.3, Figure 1 and Figure 2, we have the follow-
ing result.

Theorem 4.4. If G is a group of order p or 2p, where p is prime, then Z2(Q)
s reqular.

Theorem 4.5. Let p be an odd prime, then
(i) the line graph L(P 2 (Dp)) of P Z(D,) is (4p — 4)-reqular.
(ii) the line graph L(P P (Dap)) of PP (Dyp) is (6p — 2)-regular.

Proof. (i) For any prime p > 3, Z%(D,) is (2p — 1)-regular graph. Thus by the
similar argument of the proof of Theorem 3.11(i), it follows that the line graph
L(P%(D,)) of %(D,) is (4p — 4)-regular.

(ii) For any odd prime p, the graph &2 Z(D>,) is 3p-regular. So by the similar
argument of the proof of Theorem 3.11(i), we have the line graph L(Z2(Da,))
of 9 (Dsp) is (6p — 2)-regular. ]

Corollary 4.6. The line graph L(Z 2 (Dy)) of P Z(Dy) is 8-regular graph.
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Proof. Since % (Dy) is b-regular graph, so by the similar argument of the
proof of Theorem 3.11(i), it follows that the line graph L(2Z(Dy)) of 222 (Dy)
is 8-regular. m

Theorem 4.7. For any integer n(> 3), PP (D,,) is connected as well as Hamil-
tonian.

Proof. Let n(> 3) and n = Piips? .- p'm be the factorization of n as product
of distinct primes and their positive powers. Then £Z(D,,) is a graph with
2n vertices and by Theorem 4.2, we have degree of each vertex is either ¢(p,) +
e(p)+---+¢(p,,)+noro(p,)+e(p,)+- - +¢(p,,)+n+1. Thus deg(v) > n for
every vertex in #%(D,,). Therefore, by Theorem 3.12, it follows that 2% (D,,)
is Hamiltonian and hence connected. [ |

Theorem 4.8. The graph PP (D,,) is not Eulerian for any positive integer
n(> 3).

Proof. Let n(> 3) and n = Dyl pa? ---p'm be the factorization of n as product
of distinct primes and their positive powers. Then Z%(D,,) is a graph with 2n
vertices and by Theorem 4.2, we have degree of each vertex is either ¢(p, )+¢(p,)+
o+ e(p,,) +noro(p)+elp,) + - +o(p,) +n+1 Now o(p,) +o(p,) +- -+
©(p,,)+nor p(p,)+e(p,)+- - -+¢(p,,)+n+1 are two consecutive positive integers.
So one of them must be even and another must be odd. Therefore, Z%2(D,,)
contains odd degree vertices. Consequently, % (D,,) is not Eulerian. [ |

Remark 4.9. For any odd prime p, the graph #%(D,) is complete and hence
diam(P 2 (Dp)) = 1.

Theorem 4.10. For any composite number n (> 3), diam(22(D,,)) = 2.

Proof. Now D,, = {{a,b) : o(a) = n,0(b) = 2,ba = a~'b}. Let H = (a), the
cyclic subgroup generated by a and K = Hb be the right coset of H different from
H. Then D, = HU K. Here, every element of K is of order 2. Let a" € H and
a’b € K. Then a"a’b = q"Tsmodn)p for s =1,2.... . n. Hence a"a’h € K and
thus o(a"a®b) = 2. Therefore, every element of H is adjacent to every element of

K in Z%(D,,). Let x,y be any two vertices of % (D,,).

Case 1. If H contains exactly one of x or y and K contains the other, then
x <>y is a path in %(D,,) of length 1.

Case 2. We now consider the other possibility. Without loss of generality,
we assume that z,y € H. Then two sub-cases arise.

Subcase (a). Suppose zy = e or o(xy) = p for some prime p. Then z <> y is
a path in Z2(D,,) of length 1.
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Subcase (b). If x and y are not adjacent in ZZ(D,,). Then for any z € K,
we get a path x «» z <> y in Y(D,,) of length 2.

Therefore, there is a path between any two vertices of #%(D,,). Hence
PP (D) is connected and diam (P Z(D,,)) = 2. ]

Theorem 4.11. For any n(> 3), the graph P2 (D,,) is neither bipartite nor a
tree. Moreover, girth(#%(Dy,)) = 3.

Proof. For any n >3, D,, = {(a,b) : o(a) = n,o(b) = 2,ba = a~'b}. Let p be a
prime factor of n. Then n = pq for some positive integer q. Now a? € D,, such
that o(a?) = p. Then a? <+ b <> e <> a4 forms a cycle of length 3. Since Z%(D,,)
is a simple graph, it follows that girth(#2(D,,)) = 3. Since ZP(D,,) contains
an odd cycle, it follows that #Z(D,,) is neither bipartite nor a tree. ]

Theorem 4.12. For any integer (n > 3), Z2(Dy,) is non planar.

Proof. We prove that Z%(D,,) is non planar for any integer n(> 3). On the
contrary, suppose X% (Dy) is planar for some integer k(> 3). First we claim
that 2 is only one prime factor of k. If not, let p be an odd prime factor of k
and thus k = p™q for some positive integers m, q with ged(p,q) = 1. Now Dy =
{{a,b) : o(a) = k,0(b) = 2,ba = a~'b}. Let € Dy such that o(z) = p. Then
the induced subgraph of Z%(Dy) induced by the set of vertices {e, z,x7 b, xb}
forms the complete subgraph K5. Hence by Kuratowski’s Theorem, we conclude
that Z9P(Dy,) is non planar, which contradicts our assumption that £ Z2(Dy,) is
planar. This contradiction ensures that 2 is the only one prime factor of k£ and
hence k = 2" for some positive integer r > 2.

Now we show that 2% (Dyr) is non planar. First we see from Fig. 3 that
P9 (Dy) contains complete bipartite graph K33 with bipartition {e,a,a3} and
{b,ab,a®b} as a subgraph. Hence by Kuratowski’s Theorem, we have 2 %2(D,)
is non planar. Moreover, for r > 3, we have Dy has a subgroup isomorphic to
D,. Thus Z2(Dayr) has a subgraph isomorphic to ZZ(Dy). Since P Z(Dy) is
non planar, it follows that ZZ(Dyr) = PP (Dy,) is also non planar. Hence the
theorem. [ |

Theorem 4.13 (Brook’s Theorem [8]). If G is a connected graph other than a
complete graph or an odd cycle, then x(G) < A(G), where x(G) and A(G) are
the chromatic number and the maximum vertex degree of G respectively.

Remark 4.14. If n is an odd prime, then Z%(D,,) is a complete graph with 2n
vertices and hence x(Z2(D,,)) = 2n.

Theorem 4.15. Let n(> 3) be a composite number and n = pyipa? - -plm be the
factorization of n, where p,,p,,...,p,, are distinct primes and r,,r,,...,r,  are

i m

positive integers. Then x(P2(Dy)) < ¢(p,) + ¢p,) + -+ ¢(p,.) +n+1.
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Proof. If n(> 3) and n = Dyl py? ---p'm be the factorization of n, where p ,p,,

..,D,, are distinct primes and r ,7,,...,r  are positive integers. Then by The-
orem 4.2, it follows that degree of every vertex in Z%(D,,) is either ¢(p,) +
e(p,) + -+ ¢p,) +nor o(p,) + ¢(p,) + -+ + ¢(p,) + n+ 1. Therefore,
A(PD(Dy)) = olp,) + ep,) + -+ ¢(p,,) + n+ 1. Moreover, %(D,,) is
connected graph which is neither complete nor an odd cycle. Hence by Theorem
4.13, it follows that x(Z2(D,)) < ¢(p,) + ¢(p,) + -+ ¢(p,,) +n+ 1. |

5. ORDER PRIME DIVISOR GRAPHS OF SMALL FINITE GROUPS

Here we discuss all possible order prime divisor graphs Z%(G), where G is a
group of order at most 15. For this purpose, we first exhibit the order prime
divisor graph P9 (Z12).

7T VU 1

|
(&} Ne]]
»—~| DNO|
o (o]

3
Figure 7. Z92(Z12)

Order of Group G Group G Order Prime Divisor Graph Z%(G)
2 Zo Ky
3 Zs K3
4 Zy KoUKy (Figure 1)
Zo ® Zs K, (Figure 2)
5 Zs Ks
6 Zg 3-regular connected graph
S3 K
7 L K7
Zs Ko UKyUCy
Ly @ 2y K, UKy
8 Lo ® Ziy @ Zio K
Dy Figure 3
Qs KoUKy UKy UK,
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9 Zg Figure 4
Z3 D Zs Ky
10 YA 5-regular connected graph
D5 Ko
11 Zn K1y
YAD) Figure 7
Lo @ Zo P Zs 5-regular connected graph
12 A4 K 12
Dsg 9-regular connected graph
T Union of two 3-regular component
13 Z13 K3
14 214 7-regular connected graph
D7 Ky
15 Z1s Figure 5
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