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Abstract

The order prime divisor graph PD(G) of a finite group G is a simple
graph whose vertex set is G and two vertices a, b ∈ G are adjacent if and
only if either ab = e or o(ab) is some prime number, where e is the identity
element of the group G and o(x) denotes the order of an element x ∈ G. In
this paper, we establish the necessary and sufficient condition for the com-
pleteness of order prime divisor graph PD(G) of a group G. Concentrating
on the graph PD(Dn), we investigate several properties like degrees, girth,
regularity, Eulerianity, Hamiltonicity, planarity etc. We characterize some
graph theoretic properties of PD(Zn), PD(Sn), PD(An).

Keywords: group, dihedral group, complete graph, Eulerian graph, regular
graph, planar graph, order prime divisor graph.
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1. Introduction

Defining graphs over groups help us for studying the interplay between algebraic
properties and graph-theoretic properties and structures. For a finite group G,
one can associate a certain type of graph, order prime divisor graph PD(G),
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and investigate the interplay between the group-theoretic properties of G and
the graph-theoretic properties of order prime divisor graph PD(G).

There are a number of constructions of graphs from groups or semigroups in
the literature. Here we begin by introducing some well-known graphs associated
with semigroups or groups. In 1964, Bosák [1] studied certain graph over semi-
groups. Then Csákány and Pollák [2] defined intersection graphs of nontrivial
proper subgroups of groups. In [9], Zelinka studied intersection graphs of non-
trivial subgroups of finite Abelian groups. Later on, the intersection graph of
ideals of rings was studied by Chakrabarty, Ghosh, Mukherjee and Sen [3].

In [6], Kelarev and Quinn introduced the notion of the (directed) power graph
P (G) of a group G and described the structure of the (directed) power graphs of
all finite abelian groups. According to them the (directed) power graph P (G) of
a group G is a directed graph with the set G of vertices, and with all edges (u, v)
such that u 6= v and v is the power of u. Later on, Chakrabarty, Ghosh and Sen
[4] defined the undirected power graph G (S) of a semigroup S as the undirected
graph with vertex set S and distinct vertices a and b are adjacent if am = b or
bm = a for some positive integer m.

In 2009, the authors [7] defined order prime graph and studied its properties.
According to them the order prime graph OP (Γ) of a finite group Γ is a graph
with vertex set Γ and two vertices are adjacent in OP (Γ) if and only if their
orders are relatively prime in Γ.

In this paper, a new type of graph, called order prime divisor graph, is defined
and studied its properties. For a finite group G, the order prime divisor graph
of G, denoted by PD(G), is a simple graph with vertex set G and two vertices
a, b are adjacent in PD(G) if and only if either o(ab) = 1 or o(ab) = p for some
prime p, i.e., either a and b are inverse to each other or ab is an element of prime
order. Thus in PD(G) two vertices a, b are adjacent if and only if o(ab) divides
p for some prime number p and that’s why we have named this graph as order
prime divisor graph. We note that if G is a group, then o(ab) = o(ba) for any two
elements a, b ∈ G. Clearly, by definition, order prime divisor graph PD(G) of a
finite group G contains no isolated vertices. Following examples show that cyclic
groups may have disconnected order prime divisor graphs where as non cyclic
(even non-commutative) groups have connected order prime divisor graphs.
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Figure 1. PD(Z4)
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Figure 2. PD(Z2 ⊕ Z2)



On order prime divisor graphs of finite groups 421

e

a3b

a2

ab a3

a

a2b

b

Figure 3. PD(D4)
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Figure 4. PD(Z9)

In this paper, Zn =
{
0, 1, . . . , n − 1

}
is the additive group of integers mod-

ulo n, U(n) = {x ∈ Zn : gcd(x, n) = 1} denotes the group of units of the ring
(Zn,+, ·) of order ϕ(n), Dn is the dihedral group of order 2n, Sn is the permu-
tation group on n symbols, An is the alternating group on n symbols, GLn(Fq)
denotes the general linear group over a finite field Fq, SLn(Fq) denotes the special
linear group over a finite field Fq, T denotes a non-commutative group containing
12 elements and is defined by T = {〈a, b〉 : o(a) = 6, b2 = a3, ba = a−1b}, Kn

denotes the complete graph with n vertices, Kr,s denotes the complete bipartite
graph or biclique where partite sets have sizes r and s, Cn denotes a cycle with
n vertices, deg(v) denotes the degree of a vertex v, a ↔ b denotes that vertices
a, b are adjacent. For usual algebraic terms, we refer to [5], and we refer to [8]
for graph-theoretic terms, definitions and notations.

2. Some properties of PD(G)

In this section, we study some interesting properties of PD(G). We also establish
here the necessary and sufficient condition for the order prime divisor graph
PD(G) of a finite group to be complete.

Theorem 2.1. For a finite group G, PD(G) is complete if and only if each non
identity element of G is of prime order.

Proof. Let G be a finite group with order of each non identity element is prime.
Let a, b be any two distinct elements of G. If ab = e, then o(ab) = 1 and thus a
and b are adjacent in PD(G). Suppose ab 6= e. Then by the given hypothesis
it follows that o(ab) is some prime and hence these two elements a and b are
adjacent in PD(G). Therefore, between any two distinct vertices in PD(G),
there is an edge and hence PD(G) is complete.

Conversely, let G be finite group for which PD(G) is complete. Let a (6= e)
be any element of G. Since PD(G) is complete, we must have an edge between
the vertices a and e. Therefore o(a) = o(ae) must be prime. Consequently, order
of any non identity element of G is prime.
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Corollary 2.2. Let G be a group of prime order. Then PD(G) is complete.

Corollary 2.3. S3, A4, A5 are non-commutative groups whose order prime divi-
sor graphs PD(S3), PD(A4), PD(A5) are complete.

Corollary 2.4. Let G be a finite commutative group. Then PD(G) is complete
if and only if G ∼= Zp ⊕ Zp ⊕ · · · ⊕ Zp

︸ ︷︷ ︸

n−fold

for some positive integer n.

Proof. First suppose that G ∼= Zp ⊕ Zp ⊕ · · · ⊕ Zp
︸ ︷︷ ︸

n−fold

for some positive integer n.

Then order of any non identity element of G is p and hence by Theorem 2.1, it
follows that PD(G) is complete.

Conversely, let G be a finite commutative group such that PD(G) is com-
plete. Then by Theorem 2.1, it follows that every non identity element of G is
of prime order. Now by the structure theorem of finite commutative group, we
have G ∼= Zp

1

n
1 ⊕Zp

2

n
2 ⊕ · · · ⊕Zp

k

n
k , where p1

, p
2
, . . . , p

k
are primes (not neces-

sarily distinct) and n
1
, n

2
, . . . , n

k
are positive integers. First we show that n

1
=

n
2
= · · · = n

k
= 1. On the contrary, suppose n

i
> 1, for some i ∈ {1, 2, . . . , k}.

Then G contains elements of composite order p
i

n
i , a contradiction. Therefore,

n
1
= n

2
= · · · = n

k
= 1 and thus G ∼= Zp

1
⊕ Zp

2
⊕ · · · ⊕ Zp

k
. We now show

that p
1
= p

2
= · · · = p

k
. Suppose p

i
6= p

j
, for some 1 ≤ i, j ≤ k. Then G con-

tains elements of composite order p
i
p
j
, which is again a contradiction. Therefore,

p
1
= p

2
= · · · = p

k
= p (say) and thus G ∼= Zp ⊕ Zp ⊕ · · · ⊕ Zp

︸ ︷︷ ︸

k−fold

.

Theorem 2.5. If a finite group G has a subgroup of order p (where p is prime),
then PD(G) contains a clique with p vertices.

Proof. Let H be a subgroup of a finite group G such that |H| = p for some
prime number p. Then every non identity element in H is of order p. Therefore,
PD(H) is a complete graph containing p vertices. Since PD(H) is a subgraph
of PD(G), it follows that PD(G) has a clique PD(H) with p vertices.

Remark 2.6. (i) The vertices of every clique in PD(G) may not form a sub-
group of G. For example, in the order prime divisor graph PD(Z4 ⊕ Z4),{
(0, 1), (0, 3), (2, 1), (2, 3)

}
,
{
(1, 0), (1, 2), (3, 0), (3, 2)

}
, {(1, 1), (1, 3), (3, 1), (3, 3)}

form three different clique but none of them forms a subgroup of Z4 ⊕ Z4.

(ii) If the vertices of a clique in PD(G) form a subgroupH of G then order of
H may not be prime. For example, in the order prime divisor graph PD(Z4⊕Z4),{
(0, 0), (0, 2), (2, 0), (2, 2)

}
form a subgroup of Z4 ⊕ Z4, which is of order 4.

Theorem 2.7. Let G be a finite group and p (≥ 5) be a prime such that p divides
|G|. Then PD(G) is a non planar graph.
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Proof. Let G be a group of order n and p (≥ 5) be a prime such that p divides n.
Then by Cauchy’s Theorem, G has an element of order p and hence a subgroupH
of order p. Now by Theorem 2.5, PD(H) = Kp is a subgraph of PD(G). Since
p ≥ 5, it follows that PD(G) contains K5 as a subgraph. Hence by Kuratowski’s
Theorem, it follows that PD(G) is a non planar graph.

Remark 2.8. Converse of Theorem 2.7 is not true in general. From Corollary
2.3, we have PD(S3) and PD(A4) are complete graphs and hence they are non
planar as well as non outerplanar, though there are no prime greater or equal to
5 dividing the order of the groups.

Corollary 2.9. If a finite group G has a centre of prime order p, then PD(G)
contains a clique with p vertices.

Corollary 2.10. If m is a positive integer such that 2m − 1 is prime (called
Mersenne prime), then PD(GLn(F2m)) has a clique with 2m − 1 vertices.

Proof. Now Z
(
GLn(F2m)

)
=

{
A = (aij)n×n : aij = 0, 1 ≤ i 6= j ≤ n; aii = a ∈

F2m \ {0}
}
(n > 1) implies |Z(GLn(F2m))| = 2m − 1. Hence by Corollary 2.9, we

have PD(GLn(F2m)) has a clique with 2m − 1 vertices.

Corollary 2.11. Let Fq be a finite field with q elements and n be a positive
integers such that gcd(n, q − 1) is prime. Then PD(SLn(Fq)) has a clique with
gcd(n, q − 1) vertices.

Proof. Let n be a positive integer such that gcd(n, q − 1) is prime. For n (> 1),
we have Z(SLn(Fq)) =

{
A = (aij)n×n : aij = 0, i 6= j; aii = a ∈ Fq \ {0};

an = 1
}
implies |Z(SLn(Fq))| = gcd(n, q − 1). Hence by Corollary 2.9, we have

PD(SLn(Fq)) has a clique with gcd(n, q − 1) vertices.

Recall that the girth of a graph with at least one cycle is the length of its
shortest cycle. A graph with no cycle has infinite girth. A graph with no cycle
is said to be an acyclic graph. A forest is an acyclic graph whereas a tree is a
connected acyclic graph.

Theorem 2.12. Let G be a finite group and p is an odd prime such that p divides
|G|. Then PD(G) is neither bipartite nor a tree and girth(PD (G)) = 3.

Proof. Let G be a group of order n and p be an odd prime such that p divides
n. Then G contains an element x of order p. Since p is an odd prime, we have
x 6= x−1 and o(x−1) = p. This implies x↔ e↔ x−1 ↔ x forms a cycle in PD(G)
of length 3. Since PD(G) is a simple graph, we must have girth(PD(G)) = 3.
Also PD(G) contains an odd cycle implies PD(G) is neither bipartite nor a
tree.
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Theorem 2.13. If G1, G2 are two finite groups such that G1
∼= G2, then PD(G1)

∼= PD(G2).

Proof. Let G1 and G2 be two finite groups and ψ : G1 −→ G2 be an isomor-
phism. Let a, b ∈ G1 be adjacent in PD(G1). Then either o(ab) = 1 or o(ab) = p
for some prime p. Since ψ is an isomorphism, we have o(ψ(a)ψ(b)) = o(ψ(ab)) =
o(ab). If o(ab) = 1, then o(ψ(a)ψ(b)) = 1 and hence ψ(a) and ψ(b) are adjacent
in PD(G2). On the other hand, if o(ab) = p, then o(ψ(a)ψ(b)) = p and hence
ψ(a) is adjacent to ψ(b) in PD(G2). Conversely, if ψ(a) and ψ(b) are adjacent
in PD(G2), one can easily check that a and b are adjacent in PD(G1). Hence
PD(G1) ∼= PD(G2).

Remark 2.14. The converse of Theorem 2.13 is not true in general. For example
we consider two non-isomorphic groups Z27 ⊕ Z3 and Z9 ⊕ Z9. Then both the
graphs PD(Z27 ⊕ Z3) and PD(Z9 ⊕ Z9) have five components. Out of these
five components one component is a 8-regular graph with 9 vertices and each
of remaining four components is a 9-regular graph with 18 vertices. Therefore,
PD(Z27 ⊕ Z3) ∼= PD(Z9 ⊕ Z9) though Z27 ⊕ Z3 ≇ Z9 ⊕ Z9.

Corollary 2.15. For a finite group G, Aut(G) ⊆ Aut(PD(G)).

Proof. Follows from Theorem 2.13.

Theorem 2.16. Let G be a finite commutative group. Then PD(G) has at least
two pendant vertices if and only if G ∼= Z2r , for some positive integer r.

Proof. Let G ∼= Z2r , for some positive integer r. Since 2r−1 ∈ Z2r is the
unique element of order 2, we have deg(0) = 1 = deg(2r−1) in PD(Z2r). Hence
PD(Z2r) has at least two pendant vertices.

Conversely, let G be a finite commutative group of order n such that PD(G)
contains at least two pendant vertices. First we prove that n has no odd prime
divisor. For this, let p be any odd prime divisor of n. Then G contains at least two
elements x and y of order p. Now let a ∈ G be any element. Then a↔ a−1x and
a ↔ a−1y in PD(G) and thus deg(a) ≥ 2 in PD(G). Hence PD(G) contains
no pendant vertices, a contradiction. Therefore, 2 is the only one divisor of n
and hence G ∼= Z2n1 ⊕Z2n2 ⊕ · · · ⊕Z2nk for some positive integers n

1
, n

2
, . . . , n

k
.

We now show that k = 1. On the contrary, let k > 1. Then G contains at least
three elements of order 2 and hence degree of every vertex in PD(G) is at least
3. Thus PD(G) contains no pendant vertices, which is again a contradiction.
Therefore, k = 1 and consequently G ∼= Z2r , for some positive integer r.

Corollary 2.17. For a finite commutative group G, PD(G) is a forest if and
only if either G ∼= Z2 or G ∼= Z4.
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Proof. First we assume that G is isomorphic to either Z2 or Z4. Then clearly
PD(G) is a forest.

Conversely, let G be a finite commutative group such that PD(G) is a forest.
We know that every tree with at least two vertices has at least two pendant
vertices and every component of a forest is a tree. Hence by Theorem 2.16, G is
of the form Z2r , for some positive integer r. We now show that r must be equal to
1 or 2. On the contrary, let r ≥ 3. Then 1 ↔ 2r−1 − 1 ↔ 2r−1 + 1 ↔ 2r − 1 ↔ 1
forms a cycle in PD(Z2r). Hence PD(Z2r) is not a forest, a contradiction. This
contradiction ensures that r ≤ 2. Consequently, G is isomorphic to either Z2

or Z4.

We need a result that follows from [5, Chapter 9, Section 9.5, Corollary 20].

Theorem 2.18. Let n ≥ 2 be an integer with factorization n = p
1

k
1p

2

k
2 · · · pr

kr

in Z, where p
1
, p

2
, . . . , pr are distinct primes. Then

(i) U(n) ∼= U
(

p
k
1

1

)

× U
(

p
k
2

2

)

× · · · × U
(

pkr
r

)

,

(ii) U(2α) ∼= Z2 × Z2α−2 , for all α ≥ 2,

(iii) U(pα) ∼= Zpα−1(p−1) for any odd prime p.

Theorem 2.19. For any integer n ≥ 3, the order prime divisor graph PD(U(2n))
has no pendant vertices.

Proof. For any n ≥ 3, U(2n) ∼= Z2⊕Z2n−2 and hence by Theorem 2.16, it follows
that PD(U(2n)) has no pendant vertices.

Corollary 2.20. For any odd prime p and for any positive integer n, the order
prime divisor graph PD(U(pn)) has no pendant vertices.

Proof. For any odd prime p, U(pn) ∼= Zpn−1(p−1). Therefore, by Theorem 2.16,
it follows that for any odd prime p and for positive integer n, the order prime
divisor graph PD(U(pn)) has no pendant vertices.

3. Order prime divisor graph of the group Zn

A graph G is said to be a k-regular graph (k is a non negative integer) if the
degree of each vertex of G is k. In this section we study k-regular order prime
divisor graph of the group (Zn,+). From Corollary 2.2, it follows that order
prime divisor graph of any group of prime order p is (p − 1)-regular. In this
section we study order prime divisor graph of any cyclic group of order 2p, where
p is prime.

Theorem 3.1. For any cyclic group G of order 2p, where p is an odd prime,
PD(G) is a p-regular graph.



426 M.K. Sen, S.K. Maity and S. Das

Proof. Let G be a cyclic group of order 2p. Then G contains exactly one element
of order 1, (p−1) elements of order p, one element of order 2 and (p−1) elements
of order 2p. Hence G has exactly (p− 1) + 1 = p elements of prime order. If x is
any element of G, then o(x) = 1 or 2 or p or 2p. We consider the following cases.

Case 1. Suppose o(x) = 1, then x = e. Now deg(e) in PD(G) is exactly
equal to the number of prime order elements in G. Therefore, deg(e) = p in
PD(G).

Case 2. Assume that o(x) = 2. Since G is cyclic so G has only one element
of order 2. Clearly x is adjacent to e. Also for any other element y ∈ G with
o(y) = p, we see that x is adjacent to x−1y. Thus the number of such y is (p−1).
Therefore the total number of adjacent vertices of x in PD(G) is 1+(p−1) = p.

Case 3. Suppose o(x) = p. There are (p−1) elements of order p. In this case
e and x−1 are both adjacent to x. Moreover, for any other prime order element
z(6= x, x2) ∈ G, we see that x is adjacent to x−1z. The number of such z is
(p − 2) [(p − 3) elements of order p and one element of order 2]. Therefore the
total number of adjacent vertices of x in PD(G) is 1 + 1 + (p− 2) = p.

Case 4. Suppose that o(x) = 2p. Then obviously o(x2) = p. Clearly, x−1 is
adjacent to x. Moreover, for any other prime order element u(6= x2) ∈ G, we see
that x is adjacent to x−1u. The number of such u is (p− 1) [(p − 2) elements of
order p and one element of order 2]. Hence the total number of adjacent vertices
of x in PD(G) is 1 + (p− 1) = p.

Therefore, considering all the cases we have deg(x) = p in PD(G). Since
x ∈ G is arbitrary, we must have PD(G) is a p-regular graph.

Corollary 3.2. For any odd prime p, PD
(
Z2p

)
is a p-regular graph.

Remark 3.3. Figure 1 shows that PD(Z4) is 1-regular and thus Theorem 3.1
is not true when p is even prime.

Lemma 3.4. PD(Z2n) is disconnected for n ≥ 2 and non regular for n ≥ 3.

Proof. For n ≥ 2, the set
{
0, 2n−1

}
forms a connected component of PD(Z2n)

and thus PD(Z2n) is a disconnected graph.
Now, we consider the graph PD(Z2n) for n ≥ 3. In this graph deg(1) = 2

because 1 is adjacent to 2n − 1 and 2n−1 − 1, whereas deg(2n−1) = 1, since
o(2n−1) = 2 in the group Z2n . Hence PD(Z2n) is non regular.

Lemma 3.5. For any odd prime p and any integer n ≥ 2, PD(Zpn) is a non
regular graph.

Proof. Since Zpn is a cyclic group, the number of elements of order p is ϕ(p) =
p − 1. This implies deg(0) = p − 1 in PD(Zpn). Again, 1 is adjacent to
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pn−1 − 1, 2pn−1 − 1, 3pn−1 − 1, . . . , (p − 1)pn−1 − 1 and pn − 1 in PD(Zpn).
Therefore, deg(1) = p in PD(Zpn). Hence PD(Zpn) is not a regular graph.

Lemma 3.6. If n 6= p, 2p for some prime p and if n = pr1
1
pr2
2
· · · prm

m
, where

p
1
, p

2
, . . . , pm are distinct primes and r

1
, r

2
, . . . , rm are positive integers, then

PD(Zn) is not a regular graph.

Proof. Similar to the proof of Lemma 3.5, we can prove that deg(0) = ϕ(p
1
) +

ϕ(p
2
) + · · · + ϕ(pm) and deg(1) = ϕ(p

1
) + ϕ(p

2
) + · · · + ϕ(pm) + 1 in PD(Zn).

Hence PD(Zn) is not a regular graph.

We are now in a position to characterize all finite cyclic groups Zn for which
PD(Zn) is regular.

Theorem 3.7. PD(Zn) is a regular graph if and only if n = p or 2p for some
prime p.

Proof. First we assume that n = p for some prime p. Then by Theorem 2.1, it
follows that PD(Zp) is a complete graph with p vertices and hence PD(Zp) is
a (p− 1)-regular graph. On the other hand if n = 2p for some odd prime p, then
by Corollary 3.2, we have PD(Z2p) is a p-regular graph. Moreover, from Figure
1, we see that PD(Z4) is 1-regular.

Converse part follows from Lemma 3.6.

Corollary 3.8. For any positive integer n(6= 4), if PD(Zn) is regular then it is
connected.

Proof. From Theorem 3.7, we have PD(Zn) is regular if and only if n = p or
2p for some prime p. Now for any prime p, PD(Zp) is complete and hence it is
connected. If p is an odd prime, then by Theorem 3.7, we have PD(Z2p) is a
p-regular graph with 2p vertices and hence it is connected.

Remark 3.9. The converse of Corollary 3.8 is not true in general. The following
graph shows that PD(Z15) is connected but not regular.

Definition 3.10 [8]. The line graph of a graph G, written L(G), is the graph
whose vertices are the edges of G, with ef ∈ E(L(G)) when e = uv and f = vw
in G.

Theorem 3.11. For any odd prime p,

(i) the line graph L(PD(Zp)) of PD(Zp) is (2p − 4)-regular,

(ii) the line graph L(PD(Z2p)) of PD(Z2p) is (2p− 2)-regular.
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Figure 5. PD(Z15)

Proof. (i) Let p be an odd prime. Then PD(Zp) is (p−1)-regular. Let e be any
edge of PD(Zp). Then e represents a vertex ev in L(PD(Zp)). Let ae and be be
the end vertices of the edge e in PD(Zp). Again deg(ae) = deg(be) = (p − 1) in
PD(Zp). Since PD(Zp) is simple, the edge e has the vertex ae in common with
(p− 2) edges and the vertex be in common with (p− 2) edges in PD(Zp). Hence
deg(ev) = (p − 2) + (p− 2) = (2p − 4) in L(PD(Zp)). Therefore L(PD(Zp)) is
(2p − 4)-regular graph.

(ii) Since PD(Z2p), where p is any odd prime, is p-regular, so by the sim-
ilar argument as in (i) of this theorem, we have the line graph L(PD(Z2p)) of
PD(Z2p) is (2p − 2)-regular.

Theorem 3.12 (Dirac [8]). Let G be a simple graph with n(> 2) vertices. If
deg(v) ≥ n

2 for every vertex v of G, then G is Hamiltonian.

Theorem 3.13. If n = p or 2p, where p an odd prime, then PD(Zn) is a
Hamiltonian graph.

Proof. Let p be an odd prime. From Theorem 2.1, it follows that PD(Zp) is
complete and hence it is Hamiltonian. On the other hand from Theorem 3.7,
we have PD(Z2p) is a p-regular graph and by Theorem 3.12, it follows that
PD(Z2p) is a Hamiltonian graph.

Theorem 3.14. For a finite commutative group G, PD(G) is a bipartite graph
if and only if G ∼= Z2r , for some positive integer r.
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Proof. Let G ∼= Z2r , for some positive integer r. If G is isomorphic to either Z2

or Z22 then clearly PD(G) is a bipartite graph. We now consider r ≥ 3. Then
in the order prime divisor graph PD(Z2r ), deg(0) = deg(2r−1) = deg(2r−2) =
deg(3 · 2r−2) = 1 and also

{
0, 2r−1

}
,
{
2r−2, 3 · 2r−2

}
form two components. Let

x ∈ Z2r such that x /∈
{
0, 2r−1, 2r−2, 3 · 2r−2

}
. Then

{
x, 2r−1 − x, 2r−1 + x,

2r − x
}
forms a component which is isomorphic to C4. Hence every component

of PD(Z2r) is isomorphic to either K2 or C4. Hence PD(Z2r) has no odd cycle
and consequently, PD(G) is a bipartite graph.

Conversely, let G be a finite commutative group of order n such that PD(G)
is a bipartite graph. We now show that n is not divisible by any odd prime p. If
any odd prime p divides n, then G contains an element x of order p. Since p is
an odd prime, we have x 6= x−1 and o(x−1) = p. This implies x↔ e↔ x−1 ↔ x
forms a cycle in PD(G) of length 3. Therefore PD(G) contains an odd cycle,
which contradicts that PD(G) is a bipartite graph. Hence n is of the form 2r, for
some positive integer r. Therefore G ∼= Z2n1 ⊕Z2n2 ⊕· · ·⊕Z2nk for some positive
integers n

1
, n

2
, . . . , n

k
. We now show that k = 1. On the contrary, let k > 1.

Then
{
(2n1

−1, 0, . . . , 0), (0, 2n2
−1, . . . , 0), (2n1

−1, 2n2
−1, . . . , 0)

}
forms a triangle.

Thus PD(G) is not bipartite graph, which is again a contradiction. Therefore,
k = 1 and thus G ∼= Z2r , for some positive integer r.

Theorem 3.15. Let p be an odd prime and n ≥ 2 is an integer. Then PD(Zpn)

have one (p − 1)-regular component and pn−1
−1

2 components each of them is p-
regular.

Proof. In PD(Zpn),
{
0, pn−1, 2pn−1, . . . , (p− 1)pn−1

}
forms a component with

p vertices and this component is of (p− 1)-regular.

Let Ai =
{
i, pn−1 − i, 2pn−1 − i, . . . , pn − i, pn−1 + i, 2pn−1 + i, . . . ,

(p − 1)pn−1 + i
}

= Ui ∪ Vi, where Ui =
{
pn−1 − i, 2pn−1 − i, . . . , pn − i

}
and

Vi =
{
i, pn−1 + i, 2pn−1 + i, . . . , (p− 1)pn−1 + i

}
, for all i = 1, 2, . . . , p

n−1
−1

2 .

We now show that every Ai, for all i = 1, 2, . . . , p
n−1

−1
2 , contains 2p elements.

Let u1, u2 ∈ Ui be any two elements of Ui. Let u1 = rpn−1 − i, u2 = spn−1 − i
for some r, s ∈ {1, 2, . . . , p}. If possible let u1 = u2, i.e., rp

n−1 − i + t1p
n =

spn−1 − i + t2p
n, i.e., (r − s) = (t2 − t1)p which is possible only when r = s

and hence Ui contains p elements. Similarly, we can show that Vi contains p
elements. Now we need to show that Ui ∩ Vi = ∅. If possible let u ∈ Ui ∩ Vi.
Then u = cpn−1 − i + t3p

n = dpn−1 + i + t4p
n, where c ∈ {1, 2, . . . , p} and

d ∈ {0, 1, . . . , (p − 1)}, i.e., (c − d)pn−1 + (t3 − t4)p
n = 2i, i.e., 2i is divisible by

pn−1, a contradiction since 2i ≤ pn−1 − 1 < pn−1. Therefore, Ui ∩ Vi = ∅ and
hence Ai contains 2p elements.

Let rpn−1 − i ∈ Ui for some r ∈ {1, 2, . . . , p}, and spn−1 + i ∈ Vi for some
s ∈ {0, 1, . . . , (p− 1)}, be any two elements. In Zpn , o(rpn−1 − i+ spn−1 + i) = p
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and thus every element of Ui is adjacent to each element of Vi. But for any two
elements rpn−1 − i, tpn−1 − i ∈ Ui (r, t ∈ {1, 2, . . . , p}), we have o(r1pn−1 − i +
r2pn−1 − i) 6= p and thus no two elements of Ui are adjacent. Similarly we can
show that no two elements in Vi are adjacent. Hence degree of every vertex in

Ai, for all i = 1, 2, . . . , p
n−1

−1
2 , is p in PD(Zpn).

We now show that every Ai, for all i = 1, 2, . . . , p
n−1

−1
2 , forms a component

of PD(Zpn). Let x ∈ Ai. Then x is adjacent to either i or pn−1 − i in PD(Zpn).
Therefore every element of Ai is connected to each other by a path of length at
most 2. It is easy to verify that there is no edge between a vertex in Ai and a

vertex in Aj for i 6= j and i, j ∈
{

1, 2, . . . , p
n−1

−1
2

}

. Therefore, every Ai, for all

i = 1, 2, . . . , p
n−1

−1
2 , forms a p-regular component with 2p vertices. Hence the

theorem.

4. Order prime divisor graph of the group Dn

For each positive integer n ≥ 3, the dihedral group of degree n, denoted by
Dn, is a non-commutative group containing 2n elements and is defined by Dn =
{〈a, b〉 : o(a) = n, o(b) = 2, ba = a−1b}. The study of dihedral group Dn helps
us to characterize non commutative groups. In this section, we establish some
graph-theoretic properties of PD(Dn).

Before going to our results, we first consider the order prime divisor graph
PD(D8).

Example 4.1.

ab

a

b
e

a4

a7b

a3b

a7

a6b

a6

a5b
a5

a4b

a3

a2b

a2

Figure 6. PD(D8)
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From Figure 6, we have deg(a) = deg(a3) = deg(a5) = deg(a7) = 10 and
deg(e) = deg(a2) = deg(a4) = deg(a6) = deg(b) = deg(ab) = deg(a2b) =
deg(a3b) = deg(a4b) = deg(a5b) = deg(a6b) = deg(a7b) = 9 in order prime
divisor graph PD(D8). Here 8 = 23 and note that degree of any vertex in
PD(D8) is either ϕ(2) + 8 or ϕ(2) + 8 + 1.

Theorem 4.2. Let n(≥ 3) be a number and n = p
r
1

1 p
r
2

2 · · · prm
m

be the factorization
of n as product of distinct primes and their positive powers. Then the degree of
a vertex of PD(Dn) is either ϕ(p1

)+ϕ(p
2
)+ · · ·+ϕ(pm)+n or ϕ(p

1
)+ϕ(p

2
)+

· · · + ϕ(pm) + n+ 1.

Proof. Now Dn = {〈a, b〉 : o(a) = n, o(b) = 2, ba = a−1b}. Let H = 〈a〉
and K = Hb. Then Dn = H ∪ K and all the n elements of K are of order
2. Also the subgroup H contains ϕ(p

1
) elements of order p

1
, ϕ(p

2
) elements of

order p
2
, and so on, ϕ(pm) elements of order pm . Now deg(e) in PD(Dn) is

exactly equal to the number of prime order elements in Dn. Therefore, deg(e) =
ϕ(p

1
) + ϕ(p

2
) + · · ·+ ϕ(pm) + n in PD(Dn). Let x(6= e) ∈ Dn be any element.

If o(x) = 2, then e is adjacent to x. Also for any other element y(6= x) ∈ G
with prime order, we see that x is adjacent to x−1y. Thus the total number of
adjacent vertices of x in PD(Dn) is ϕ(p1

) + ϕ(p
2
) + · · ·+ ϕ(pm) + n.

Suppose o(x) = p, where p is an odd prime. Then x2 is again an element of
order p. In this case e and x−1 are adjacent to x. Moreover, for any other element
z(6= x, x2) ∈ G with prime order, we see that x is adjacent to x−1z. Thus the total
number of adjacent vertices of x in PD(Dn) is ϕ(p1

) + ϕ(p
2
) + · · ·+ ϕ(pm) + n.

Finally, suppose that o(x) is composite. Then in this case x−1 is adjacent to
x. If x2 is an element of prime order, then for any other element u(6= x2) ∈ G
with prime order, we see that x is adjacent to x−1u. Thus, the total number of
adjacent vertices of x in PD(Dn) is ϕ(p

1
) + ϕ(p

2
) + · · · + ϕ(pm) + n. On the

other hand, if o(x2) is composite, then for any other element u ∈ G with prime
order, we see that x is adjacent to x−1u. Hence the total number of adjacent
vertices of x in PD(Dn) is ϕ(p1

) + ϕ(p
2
) + · · ·+ ϕ(pm) + n+ 1. Thus the proof

is completed.

Theorem 4.3. PD(Dn) (n ≥ 3) is a regular graph if and only if n = p or 2p
for some prime p.

Proof. Let p (≥ 3) be a prime. Now Dp is a non-commutative group of order 2p
such that every non identity element is of prime order. Hence by Theorem 2.1,
it follows that PD(Dp) is complete and thus it is (2p − 1)-regular.

For p = 2, we have from Figure 3 that PD(D2p) = PD(D4) is 5-regular.
We now establish the regularity of the graph PD(D2p), where p is any odd

prime. Note that D2p =
{
e, a, a2, . . . , a2p−1, b, ab, a2b, . . . , a2p−1b

}
= H ∪ K,

whereH = 〈a〉 is the cyclic subgroup of D2p generated by a andK = Hb is a right
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coset of H, different from H. Here every element of K is of order 2. Moreover,
H contains exactly (p − 1) elements of order p and a unique element of order
2. Let ar ∈ H and asb ∈ K. Then arasb = ar+s(mod 2p)b, for r, s = 1, 2, . . . , 2p.
Thus arasb ∈ K and hence o(arasb) = 2. Therefore, every element of H is
adjacent to every element of K in PD(D2p). Let a

r, as ∈ H, then aras ∈ H, for
r, s = 1, 2, . . . , 2p. Finally, for any two elements arb, asb ∈ K, we have arbasb ∈ H,
for r, s = 1, 2, . . . , 2p. We now show that every vertex of PD(D2p) is of degree
3p. For this let x be any vertex of PD(D2p).

Suppose x ∈ H. Then x is adjacent to every element of K. Moreover, similar
to the proof of Theorem 3.1, we can conclude that x is adjacent to exactly p
elements of H. Hence, if x ∈ H, then deg(x) = 3p. On the other hand, if
x ∈ K, then all the 2p elements of H are adjacent to x. Since x ∈ K, we must
have x2 = e and K = Hx. Also, Kx = (Hx)x = Hx2 = H. Now H contains
total p elements of prime order (exactly p− 1 elements of order p and 1 element
of order 2). Therefore, x is adjacent to exactly p elements of K. Hence total
number of adjacent vertices is 3p and thus deg(x) = 3p. Therefore, in either
cases deg(x) = 3p in PD(D2p). Consequently, PD(D2p) is a 3p-regular graph.

Conversely, we assume that PD(Dn) is regular. We show that n = p or
2p for some prime p. On the contrary we let n 6= p, 2p for any prime p. Let
n = p

r
1

1 p
r
2

2 · · · prm
m

, where p
1
, p

2
, . . . , pm are distinct primes and r

1
, r

2
, . . . , rm are

positive integers. Then by Theorem 4.2, it follows that deg(e) = ϕ(p
1
) +ϕ(p

2
) +

· · ·+ϕ(pm)+n whereas deg(a) = ϕ(p
1
)+ϕ(p

2
)+ · · ·+ϕ(pm)+n+1 in PD(Dn).

This leads to PD(Dn) is not regular, which is a contradiction. Consequently,
n = p or 2p for some prime p.

From Corollary 3.2, Theorem 4.3, Figure 1 and Figure 2, we have the follow-
ing result.

Theorem 4.4. If G is a group of order p or 2p, where p is prime, then PD(G)
is regular.

Theorem 4.5. Let p be an odd prime, then

(i) the line graph L(PD(Dp)) of PD(Dp) is (4p − 4)-regular.

(ii) the line graph L(PD(D2p)) of PD(D2p) is (6p − 2)-regular.

Proof. (i) For any prime p ≥ 3, PD(Dp) is (2p− 1)-regular graph. Thus by the
similar argument of the proof of Theorem 3.11(i), it follows that the line graph
L(PD(Dp)) of PD(Dp) is (4p− 4)-regular.

(ii) For any odd prime p, the graph PD(D2p) is 3p-regular. So by the similar
argument of the proof of Theorem 3.11(i), we have the line graph L(PD(D2p))
of PD(D2p) is (6p − 2)-regular.

Corollary 4.6. The line graph L(PD(D4)) of PD(D4) is 8-regular graph.
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Proof. Since PD(D4) is 5-regular graph, so by the similar argument of the
proof of Theorem 3.11(i), it follows that the line graph L(PD(D4)) of PD(D4)
is 8-regular.

Theorem 4.7. For any integer n(≥ 3), PD(Dn) is connected as well as Hamil-
tonian.

Proof. Let n(≥ 3) and n = p
r
1

1 p
r
2

2 · · · prm
m

be the factorization of n as product
of distinct primes and their positive powers. Then PD(Dn) is a graph with
2n vertices and by Theorem 4.2, we have degree of each vertex is either ϕ(p

1
) +

ϕ(p
2
)+ · · ·+ϕ(pm)+n or ϕ(p

1
)+ϕ(p

2
)+ · · ·+ϕ(pm)+n+1. Thus deg(v) ≥ n for

every vertex in PD(Dn). Therefore, by Theorem 3.12, it follows that PD(Dn)
is Hamiltonian and hence connected.

Theorem 4.8. The graph PD(Dn) is not Eulerian for any positive integer
n(≥ 3).

Proof. Let n(≥ 3) and n = p
r
1

1 p
r
2

2 · · · prm
m

be the factorization of n as product
of distinct primes and their positive powers. Then PD(Dn) is a graph with 2n
vertices and by Theorem 4.2, we have degree of each vertex is either ϕ(p

1
)+ϕ(p

2
)+

· · ·+ϕ(pm)+n or ϕ(p
1
)+ϕ(p

2
)+ · · ·+ϕ(pm)+n+1. Now ϕ(p

1
)+ϕ(p

2
)+ · · ·+

ϕ(pm)+n or ϕ(p
1
)+ϕ(p

2
)+· · ·+ϕ(pm)+n+1 are two consecutive positive integers.

So one of them must be even and another must be odd. Therefore, PD(Dn)
contains odd degree vertices. Consequently, PD(Dn) is not Eulerian.

Remark 4.9. For any odd prime p, the graph PD(Dp) is complete and hence
diam(PD (Dp)) = 1.

Theorem 4.10. For any composite number n (≥ 3), diam(PD(Dn)) = 2.

Proof. Now Dn = {〈a, b〉 : o(a) = n, o(b) = 2, ba = a−1b}. Let H = 〈a〉, the
cyclic subgroup generated by a andK = Hb be the right coset of H different from
H. Then Dn = H ∪K. Here, every element of K is of order 2. Let ar ∈ H and
asb ∈ K. Then arasb = ar+s(mod n)b, for r, s = 1, 2, . . . , n. Hence arasb ∈ K and
thus o(arasb) = 2. Therefore, every element of H is adjacent to every element of
K in PD(Dn). Let x, y be any two vertices of PD(Dn).

Case 1. If H contains exactly one of x or y and K contains the other, then
x↔ y is a path in PD(Dn) of length 1.

Case 2. We now consider the other possibility. Without loss of generality,
we assume that x, y ∈ H. Then two sub-cases arise.

Subcase (a). Suppose xy = e or o(xy) = p for some prime p. Then x ↔ y is
a path in PD(Dn) of length 1.
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Subcase (b). If x and y are not adjacent in PD(Dn). Then for any z ∈ K,
we get a path x↔ z ↔ y in PD(Dn) of length 2.

Therefore, there is a path between any two vertices of PD(Dn). Hence
PD(Dn) is connected and diam(PD (Dn)) = 2.

Theorem 4.11. For any n(≥ 3), the graph PD(Dn) is neither bipartite nor a
tree. Moreover, girth(PD(Dn)) = 3.

Proof. For any n ≥ 3, Dn =
{
〈a, b〉 : o(a) = n, o(b) = 2, ba = a−1b

}
. Let p be a

prime factor of n. Then n = pq for some positive integer q. Now aq ∈ Dn such
that o(aq) = p. Then aq ↔ b↔ e↔ aq forms a cycle of length 3. Since PD(Dn)
is a simple graph, it follows that girth(PD(Dn)) = 3. Since PD(Dn) contains
an odd cycle, it follows that PD(Dn) is neither bipartite nor a tree.

Theorem 4.12. For any integer (n ≥ 3), PD(Dn) is non planar.

Proof. We prove that PD(Dn) is non planar for any integer n(≥ 3). On the
contrary, suppose PD(Dk) is planar for some integer k(≥ 3). First we claim
that 2 is only one prime factor of k. If not, let p be an odd prime factor of k
and thus k = pmq for some positive integers m, q with gcd(p, q) = 1. Now Dk =
{〈a, b〉 : o(a) = k, o(b) = 2, ba = a−1b}. Let x ∈ Dk such that o(x) = p. Then
the induced subgraph of PD(Dk) induced by the set of vertices

{
e, x, x−1, b, xb

}

forms the complete subgraph K5. Hence by Kuratowski’s Theorem, we conclude
that PD(Dk) is non planar, which contradicts our assumption that PD(Dk) is
planar. This contradiction ensures that 2 is the only one prime factor of k and
hence k = 2r for some positive integer r ≥ 2.

Now we show that PD(D2r) is non planar. First we see from Fig. 3 that
PD(D4) contains complete bipartite graph K3,3 with bipartition {e, a, a3} and
{b, ab, a3b} as a subgraph. Hence by Kuratowski’s Theorem, we have PD(D4)
is non planar. Moreover, for r ≥ 3, we have D2r has a subgroup isomorphic to
D4. Thus PD(D2r) has a subgraph isomorphic to PD(D4). Since PD(D4) is
non planar, it follows that PD(D2r ) = PD(Dk) is also non planar. Hence the
theorem.

Theorem 4.13 (Brook’s Theorem [8]). If G is a connected graph other than a
complete graph or an odd cycle, then χ(G) ≤ ∆(G), where χ(G) and ∆(G) are
the chromatic number and the maximum vertex degree of G respectively.

Remark 4.14. If n is an odd prime, then PD(Dn) is a complete graph with 2n
vertices and hence χ(PD(Dn)) = 2n.

Theorem 4.15. Let n(≥ 3) be a composite number and n = p
r
1

1 p
r
2

2 · · · prm
m

be the
factorization of n, where p

1
, p

2
, . . . , pm are distinct primes and r

1
, r

2
, . . . , rm are

positive integers. Then χ(PD(Dn)) ≤ ϕ(p
1
) + ϕ(p

2
) + · · ·+ ϕ(pm) + n+ 1.
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Proof. If n(≥ 3) and n = p
r
1

1 p
r
2

2 · · · prm
m

be the factorization of n, where p
1
, p

2
,

. . . , pm are distinct primes and r
1
, r

2
, . . . , rm are positive integers. Then by The-

orem 4.2, it follows that degree of every vertex in PD(Dn) is either ϕ(p
1
) +

ϕ(p
2
) + · · · + ϕ(pm) + n or ϕ(p

1
) + ϕ(p

2
) + · · · + ϕ(pm) + n + 1. Therefore,

∆(PD(Dn)) = ϕ(p
1
) + ϕ(p

2
) + · · · + ϕ(pm) + n + 1. Moreover, PD(Dn) is

connected graph which is neither complete nor an odd cycle. Hence by Theorem
4.13, it follows that χ(PD(Dn)) ≤ ϕ(p

1
) + ϕ(p

2
) + · · ·+ ϕ(pm) + n+ 1.

5. Order prime divisor graphs of small finite groups

Here we discuss all possible order prime divisor graphs PD(G), where G is a
group of order at most 15. For this purpose, we first exhibit the order prime
divisor graph PD(Z12).

2

4
0

11

9

7

5

1
3

8

10

6

Figure 7. PD(Z12)

Order of Group G Group G Order Prime Divisor Graph PD(G)

2 Z2 K2

3 Z3 K3

4
Z4 K2 ∪K2 (Figure 1)

Z2 ⊕ Z2 K4 (Figure 2)

5 Z5 K5

6
Z6 3-regular connected graph
S3 K6

7 Z7 K7

8

Z8 K2 ∪K2 ∪ C4

Z2 ⊕ Z4 K4 ∪K4

Z2 ⊕ Z2 ⊕ Z2 K8

D4 Figure 3
Q8 K2 ∪K2 ∪K2 ∪K2
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9
Z9 Figure 4

Z3 ⊕ Z3 K9

10
Z10 5-regular connected graph
D5 K10

11 Z11 K11

12

Z12 Figure 7
Z2 ⊕ Z2 ⊕ Z3 5-regular connected graph

A4 K12

D6 9-regular connected graph
T Union of two 3-regular component

13 Z13 K13

14
Z14 7-regular connected graph
D7 K14

15 Z15 Figure 5
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