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Abstract

Let F,le] = F,[X]/(X* — X3) be a finite quotient ring where e* =
g3, with F, is a finite field of order ¢ such that ¢ is a power of a prime
number p greater than or equal to 5. In this work, we will study the elliptic
curve over Fyle], e* = &% of characteristic p # 2,3 given by homogeneous
Weierstrass equation of the form Y2Z = X3 + aXZ? + bZ> where a and b
are parameters taken in Fy[e]. Firstly, we study the arithmetic operation of
this ring. In addition, we define the elliptic curve E, ;(F4[e]) and we will
show that Er(a),x)(Fq) and Er () x, @) (Fq) are two elliptic curves over
the finite field [Fy, such that m is a canonical projection and m; is a sum
projection of coordinate of element in F,[e]. Precisely, we give a classification
of elements in elliptic curve over the finite ring Fy[e].
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1. INTRODUCTION

Elliptic curves play an important role in many areas of mathematics. They are
the basis of the demonstration of fermat’s great theorem by Andrew Wiles, it
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was proposed for the asymmetrical cryptography by Koblitz [7] and Miller [8] in
1985 separately.

In 2016, Boulbot, Chillali and Mouhib [2] had constructed a non local ring
F,le] = Fy[X]/(X3—X?), €3 = €2, defined an elliptic curve over F,[e] and they had
given the classification of elements in E, ;(F,[e]). In this paper, we will extend
the construction of Fy[X]/(X? — X?) to F,[X]/(X*— X3). Our goal in this paper
is to study the elliptic curve over the ring Fyle] := F,[X]/(X* — X3). We start
this work by studying the arithmetic of the ring IF[e], et = &3, in particular we
show that Fye] is not a local ring. In Section 3, the study of the discriminant
and the homogeneous Weierstrass equation of the elliptic curve E, ,(F,[¢]), allow
us to define two elliptic curves Er () o) (Fq) and Er (q) x, ) (Fy) over the finite
field IF,, where mp and 71 are two surjective morphisms of rings defined by

o Fyle] — I, ond L Fyle] — F,
X = Z?:O $i€l — Z?:O Zj.

We conclude this section by giving a classification of the elements of the elliptic
curve E, ,(F,[e]) into three types.

X = Z?:o ziet — 1z

2. THE FINITE RING F[e],e* = &

In this section, we follow the approach in [2, 5] and [10]. The ring F,¢], ¢* = &3

can be constructed by using the quotient ring of IF;[X] by the polynomial X 4_x3.
[F, is a finite field of order ¢ where ¢ is a power of a prime number p, p > 5. An
element X in Fy[e] can be written in the form X = xq + z16 + 2262 + 73¢® where
(xo,x1,22,23) € Fg.

2.1. Arithmetic operations

The arithmetic operations in F,[e] can be decomposed into operations in F, and
they are computed as follows:

X+Y = (wo+y0) + (w1 +y1)e + (w2 + y2)e + (3 + y3)e® and
XY = zoyo + (zoy1 + 2140)€ + (2oy2 + T1y1 + 22y0)e?
+ (o + 21 + w2 + 23)y3 + (21 + x2 + x3)y2 + (22 + 3)y1 + T390)€”,
where X = xg + 216 4+ 296 + 2363 and Y = yo + y1€ + yoe? + yze>.

Lemma 2.1. (Fy[e],+,-) is a finite unitary commutative ring isomorphic to the
quotient ring F [X]/(X* — X3).

Lemma 2.2. The ring Fyle] is a vector space over Fy of dimension 4, and we
have {1,e,€%,€3} as basis, then: Fyle] = Fy + Fye + Fye? + Fe3.
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Proof. Let X = Z?:o riet and Y = Z?:o yie' be two elements of Fyle] and k in

F,, we have
o X +Y = (z0+yo) + (21 + y1)e + (x2 + y2)e® + (23 + y3)e?
o k- X = Z?:O k‘,IZEi = kxg + kx1e + k‘$2€2 + k$3€3. u

Proposition 2.3. The product operation in Fyle] can be written as

XY = zoyo + Oxvye + Qxye?
+ ((wo + 1 + 2 + 3) (Yo + y1 + y2 + y3) — Toyo — Oxy — Qxv)e®, where
Oxy = (w0 +z1)(¥o + ¥1) — ToYo — T1Y1 = Toy1 + T1Yo and
Qxy = (w0 + o1+ 22) (Yo + y1 + y2) — wo(yo +y1) — z1(yo + y2) — 22(y1 + ¥2)
= ZoY2 + T1Y1 + T2Yo-

Proof. We have

(ko + 1+ 224+ 23) (Yo + y1 +y2 + y3) — Toyo — Oxy — Qxy
= (zo + @1 + 22 + x3)ys + (x1 + 22 + 3)y2 + (T2 + 3)y1 + T3Y0- u

Corollary 2.4. Let X = zo + 216 + 228> + 136> € Fy[e]. We have

X? =2 + Ox2e + Qx26? + ((xo + 21 + 32 + 23)% — 2 — 2} — 2wo21 — 22022)°
3

X? = a3+ Oxse + Qyse? + ((wo + 21 + 22 + 23)° — 2§ — 3(wox] + 2223 + 1123) )€
where

Ox2 = w0+x1) —x%—x%,

®X3 3

(

Qx2 = (zo + 71 + 12)% — 23 — 23 — 2w071 — 27172,
(zo +71)% — 23 — 23 — 3wo2? and

Qxs = (

To+ a1+ xg) — x% — xi{’ — x% -3 ($0$2 + x1x2 + xlxo + a:gxl) 6xori1xa.
The next proposition characterize the set (Fy[e])* of invertible elements in Fg[e].

Proposition 2.5. Let X = z¢ + 16 + 2982 + 238% € Fyle]. The element X is
invertible if and only if xo and xo+ x1 +x2 + 23 are invertible in IFy. The inverse
of X is given by

X 1= xal — x1x626 + (m%xa?’ — $2$62) g2

_ -2 —2 - -1
+ ((3:0 + 21+ 2o+ 23)" L+ T1x) "+ T — x%xo?’ — T, ) 3.

Proof. Let X = xg + x16 + 292 + 3¢ and Y = yg + y1e + y2e? + y3e® be two
elements of Fy[e]. We have

XY = zoyo +@Xy€+Qxy€2
+ ((wo + 21 + x2 +23)(yo + Y1 + y2 + y3) — Toyo — Oxy — Axy)e’

where O xy = xoy1 + 1Yo and Qxy = zoy2 + x1y1 + T2yo. Then
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X Y=1

zoyo =1

Oxy =0

Qxy =0

(w0 + 21 + 22+ 23) (Yo + Y1 + Y2 + ¥3) — Zoyo — Oxy — Qxy =0
zoyo =1

xoy1 + x1yo =0

xoy2 + x1y1 + x2yo = 0
(xo+z1+a2+23)(Yo+ 41 +y2+ys) =1
(yo =257

Y1 = —$1$a2

— —2 2,.—3
Yo = —T2Zy " + X1X

2 3 -1

2 —

ys = (zo+ 21+ 22+ 23) "1 + x1w0_2 + T2z

so X € (Fy[e])* if and only if xg # O[p] and xo + z1 + z2 + 23 #Z O[p].
In this case we have

-1 —1 —2 2,3 —2) 2
X V= oyt —amaxgte + (afag” — woag?)e

2

+ (w0 + 21+ w2+ 23) 7+ oizg? + woxy® — afay® —ap el

Corollary 2.6. Let X € Fyle], then X is not invertible if and only if xo = O[p]
or xg + 1 + 2 + x3 = 0[p] where (xo,x1,x,x3) € Fy.

Lemma 2.7. Fyfe] is a non local ring.
Proof. We consider the two ideals of Fy[e] defined by

Jo = {mle + w9e? + 2363 | (21,22, 73) € Fg’} and
Ji = {@o + 16 4+ 96? — (w0 + @1 + 32)e® | (w0, w1, 72) € F2},

it’s clear that Jy U J; is the set of non invertible elements in F,[e] and for all
xo,%1,%2,T,y, and z in F, we have

3

o + T1€ + $2€2 - (xo +x1 + $2)€ =xe + y€2 + 2¢3

= z0+ (11 —2)e + (22 —y)e? — (zo + 71 + 22 + 2)e3 =0

x0:0 $0:0

1 —x=0 T =2
= =

zg—y=0 T2 =Y

To+x1+T20+2=0 T+ 2o =—2
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we have Jo N Jy = {ae + ye? — 2% | (2,y,2) € F3}, so Jo U Jy is not an ideal.
Finally, the ring [Fy[¢] is not local. [

Lemma 2.8. 1y and miare two surjective morphisms of rings.

Proof. Let X = xg + x16 + 292 + 3¢ and Y = yg + y1e + y2e? + y3e® be two
elements of F,[e].
From the definition of the sum and product law in F,[e], we have

(X +Y) =0+ yo = mo(X) +m(Y) and mo(X - Y) =z - yo = mo(X) - mo(Y)
S0 g is morphism of rings.
(X +Y) =20 +yo+21+y1 + T2+ y2+ 23+ Y3
= m(X)+m(Y) and
(X -Y) = (w0 + 21 +x2+23) - (Yo +y1 +y2+y3)
= m(X) -m(Y),

so 71 is morphism of rings.
Finally for all x € F, C Fye], we have mo(x) = mi(z) = x, so mp and 7 are
two surjective morphisms. ]

Remark 2.9. The kernel of 7y, and 71 is an ideal such that:
kermg = {X € Fyle] | mo(X) = 0}.
kerm = {X € Fyle] | m(X) = 0}.

Corollary 2.10. For alli € {0,1} the mapping 7; given by:

7« Fyle]/ ker mj — Imm; = m;(Fg[e])
X =X +kerm; — m;(X)

is an isomorphism.

Proof. For i € {0,1} we have 7; is a ring morphism and ker 7; is an ideal. The
mapping 7; is well defined. Let X, X’ € F,[e] such that

{mo‘f) = mi(X)

ﬁi(X/) = 7TZ'(X,)

X=X & X—X ckerm;
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7; is a ring morphism:

m; is a surjective:

If y € Imm; = m;(Fyfe]), then

X € Fyfe] such that y = m;(X)

3X € F,[e]/ ker m; such that y = 7;(X)
m; is a injective:

ﬁZ(X) = ﬁi(X/) & 7TZ(X) = 7Ti(X/)

o m(X —X) =0
& X — X' € kerm;
& X=X
Finally, Fy[e]/ ker m; & Im mr; for all ¢ € {0, 1}. ]

Corollary 2.11. 7; is an isomophism for i € {0,1}, in particular we have

card(Fqe])

card(ker m) = card(Fy[e]/kerm;) = card(Imm;).

2.2. Costs of arithmetic operations

Let s, m and 7 denote the costs of addition, multiplication and inversion in FFy,
respectively and let S, M and I denote the costs of addition, multiplication and
inversion in Fye], respectively.

We have S = 4s, M = 11s+ 8m and I = 7s + 3m + 4i where M is calculated
by the propsition 2.3.

3. ELLIPTIC CURVE OVER F,[g],e* = &3

In this section, we consider X,Y, Z,a and b are elements of the ring F,[¢] fixed by
X =xo+awie+x0e? +12383, Y = yo+yie +yoe? +ys3ed, 7 = 29+ 216 + 20e% + 2363
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and a = ag + aje + ase? + asze® and b = by + bie + bae? + bse?, with the prime
number p is greater than or equal to 5.

The discriminant of elliptic curve over the ring F,[e] is A := 4a® + 27b? and
we denote by Ay and /A the images of the discriminant A by my and m; the
respectively, Ao = mo(A) = 4ad + 2763 and Ay = 71 (D) = 4(ag + a1 +az +a3)® +
27(bg + by + ba + 63)2.

Definition. We define an elliptic curve over the ring F,[e], as a curve in the
projective space P?(F,[e]), which is given by the homogeneous equation of degree
3, by Y2Z = X3 +aXZ?+bZ3 where a and b in F,[e] such that the discriminant
A is invertible in Fyle]. In this case we denote the elliptic curve over F,[e] by
Eqp(Fgle]) and we write:

Eap(Fole)) = {[X : Y : Z] e P2(Fyle]) | Y2Z = X3 + aX Z? + bZ3}.

Proposition 3.1. The discriminant A is invertible in Fyle] if and only if A
and Ay are invertible in F.

Proof. Tt is clear that A = Ag + Oc + Qe + (A1 — Ng — O — Q)e® where
O = 40,3 + 2702 and Q = 4Q,3 + 27Q2. Then from the Proposition 2.5 we
deduce the result. [ |

Corollary 3.2. If A is invertible in Fy[e], then we can talk about the elliptic
curves Er ) xo@)(Fq) and Er o)z ) (Fq) defined over the finite field Fy by

EWO(G)JTO(I)) (Fq) = {[m ryz] € IP>2(Fq)| yZZ =z® + aoxzz + boz3} and
Ery@ymin)(Fq) = {[z 1y : 2] € P2F)| y?2 = 2% + (Xi_gai)w2? + (Xi_o bi)2% )

Proposition 3.3. Let X,Y and Z inF[e], then [X : Y : Z] is a point of P?(F[e])
if and only if [m;(X) : m(Y) : m(2)]is a point of P?(F,), where i € {0,1}.

Proof. Suppose that [X : Y : Z] € P?(F,[e]), then there exist the triple
(o, B,7) € (Fyle])? such that aX + 8Y +vZ = 1. Hence, we have

mo(a)mo(X) + mo(B)mo(Y) + mo(v)m0(Z)
71 ()T (X) + m(B)m1 (V) + mi(v)m1(2)

1, and
1

so (mo(X), mo(Y),m0(Z)) # (0,0,0) and (m1(X), 71 (Y),m(Z)) # (0,0,0), which
proves that [m;(X) : m(Y) : m;(2)] € P2(F,) for i € {0,1}.

Reciprocally, let [m;(X) : m(Y) : m;(Z)] € P?(F,) where i € {0,1}. suppose
that o # O[p], then we distinguish between two cases of z¢ + x1 + z2 + x3:

(a) xo+x1+x2+ 23 # 0[p], then X is invertible in F,[e], so the projective point
(X :Y : Z] € P2(Fy[e]).
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(b) xo+x1+x2+23 = 0[p], then yo+y1 +y2+ys Z 0[p] or 2o+ 21+ 22+ 23 Z 0[p).

1. if yo + y1 + y2 + y3 Z O[p], then
zo+ 216 + o + (Yo + Y1 + Y2 + Y3 — To — 1 — Ta)E
= x0 + 216 + w282 — (0 + 71 + 12)e® + (Yo + y1 + y2 + y3)e
= X + &% € (Fy[e])*, so there exist ¥ € F,[e]:
VX +&30Y =1, hence [X : Y : Z] € P2(F[e]).

2. if 29 + 21 + 22 + 23 # O[p], then
T + w16 + 1082 + (20 + 21 + 20 + 23 — X9 — T, — T2)E
=29+ 21 + $2€2 — ($0 +x + $2)€3 + (Z(] + 214+ 29 + 23)63
= X +&3Z € (F,[e])*, so there exist ® € F[e]:
®X +e3®Z =1, hence [X : YV : Z] € P*(F,[e)).

3

3

In the case where yo # 0[p] or zy # 0[p|, we follow the same proof. ]

Proposition 3.4. Let X,Y and Z in Fye], if the point [X :Y : Z] is a solution
of the Weierstrass equation in Eq,(Fyle]), then [m;(X) : m(Y) : m(Z)] where
i € {0,1} is a solution of the same equation in Er, () x @) (Fq)-

Proof. From the Proposition 2.3 and the corollary 2.4, we have:
o V? =y + Oye + Qyoe® + ((Z?:o Z/z’)z — Y3 — Oy2 — Qy2)e?
o 22 =2 +0e+ 002+ (20, zi)2 — 28— Oz — Qp)e?
o aX = apxo + Ouxe + Nuxe? + ((Z?:o ai)(zg’zo xl) —agrg — Oux — an)s?’
o 73 =234 0Oy se + Qyac? + ((Z?:O zi)?’ — 25 — Oz — Qyps)e?,

then
Y2Z = ngO + ®y225 + QyzzE2

+ (X ?/i)Z(Z?:o zi) — ygz0 — Oy2z — Qy2z)e?
X3 = 23+ Oyse+ Qs + (X2 m1)° — a8 — Oxs — Qi)
aXZ? = apro2d + Oux 26 + Qux 7262
+ (( Z?:o a;) ( Z?:o ;) ( Z?:o Zz‘)2 — apx0zy — Oaxz2 — Yaxz2)e’
bZ3 = bozd + Opyse + Oy gae?
+ ((Zhob:) (Zo2)” — bozf — Opzs — Yyzs)e®
hence Y2Z = X3 + aXZ2 + bZ3 if and only if

Y3zo = o3 + apwozd + bozd
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®Y2Z - @Xs + GaXZ2 + @bz's
Qy2z =Qxs + Qoxzz + Qyzs
( io yi)2 ( Yo zi) = ( i %')3 +( io a;) ( > zi) ( > Zi)2
+ (2o b)) (X Zi)3
which proves that for i € {0,1}, [m(X) : mi(y) : m(Z)] is a solution of the

Weierstrass equation in B (q) r ) (Fq)- [

Theorem 3.5. Let a = a+ase®, b=b+bse®, X = X +a3e3, Y =Y +ys3e3, and
Z = Z + z3¢3, the elements of F,le], which verified the equation of Weierstrass
Y27 = X3 +aXZ? 40273,
then
Y2Z = X%+ aXZ%4+0Z°% 4+ (D — (Axz + Bys + Cz3))e®
where

D = az(zo + 1 + 22)(20 + 21 + 22)? + b3(20 + 21 + 22)°
+ 3x3(wo + 21 + w2) + 25 — y3(20 + 21 + 22 + 23)
+ 22((wo + 1 + 22 + 73)(ap + a1 + az + a3)
+ 3(20 + 21 + 22)(bo + by + b2 + b3))
A = =3(xo + x1 + 32)> — (20 + 21 + 22)*(ao + a1 + a2 + as)
2(yo +y1 + y2)(20 + 21 + 22 + 23)
C = —2(z0 + 21 + 22)(xo + 1 + 22 + x3)(ap + a1 + az + a3)
— 3(20 + 21 + 22)(bo + b1 + ba + b3) + (yo + y1 + y2)*.

™
I

Proof. We have
V2= (Y+ y353)2 = Y2+ 2Vyse® +y3ed = V2 + (2u3(yo + y1 + y2) + y3) &3
V2Z = (Y + y353)2(2 +2383) = (Y2 + (2y3(yo + v1 + v2) + y3)e®) (Z + 2z3¢3)

=Y2Z+ (2‘3(2/0 +y1 + y2)% + 2y3(yo + y1 + y2) (20 + 21 + 22 + 23)
+ y3(20 + 21 + 22 + 23)) €°

X3 = (X' + x363)3 = X3+ 3X2$3€3 + 3X$§€3 + xgeg
= X3+ (3X2x3 + 33Xz} + z3)e?
= X34 (3w3(wo + 21 + 2)* + 323 (20 + 71 + 32) + 23)€?

aXZ? = (a+ a3e®) (X + x36%)(Z + 23¢%)?

= (@4 aze®) (X 2% + (w3(20 + 21 + 22)°
+ 223(20 + 21 + 22) (w0 + 71 + T2 + T3) + 25 (X0 + T1 + T2 + 73)))
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aXZ? 4 (z3(z0 + 21 + 22)*(ag + a1 + az + as)

+ 223(z0 + 21 + 22)(x0 + &1 + x2 + x3)(ap + a1 + az + as)

+ 23(wo + 21 + 72 + 23) (a0 + a1 + az + a3)

+ az(zo + 21 + 22) (20 + 21 + 22)?)e3

bZ% = (b+ b3e®)(Z + 23¢%)3
= (b4 b3e®)(Z% 4 (323(20 + 21 + 22)2 + 322 (20 + 21 + 22) + 25)€%)
= bZ3 + (3z3(20 + 21 + 22)%(bo + b1 + ba + b3)
+ 325 (20 + 21 + 22) (bo + by + b + b3) + b3(20 + 21 + 22)°)e?

since Y2Z = X3 +aXZ% +bZ3, then

Y27 = X34+ aXZ? +bZ% 4+ (D — (Axs + Bys + Cz3))e®
where

D = az(zo + 1+ 22)(20 + 21 + 22)% + b3(20 + 21 + 22)3
+ 323 (w0 + o1 + x2) + 75 — Y3 (20 + 21 + 22 + 23)
+ 23((wo + =1 + w2 + x3)(a0 + a1 + ag + a3)
+ 3(z0 + 21 + 22)(bg + by + by + b3))
A = =3(zo+ 21 +22)% — (20 + 21 + 22)%(ap + a1 + a2 + a3)
= 2(yo + Y1 +y2)(20 + 21 + 22 + 23)
C = —2(z0 + 21 + 22)(xo + 1 + 22 + x3) (a0 + a1 + a2 + as3)
— 3(20 + 21 + 22)%(bo + b1 + b2 + b3) + (yo + y1 + y2)?

Sy

then, we deduce the theorem. [ |

Corollary 3.6. If D = Aa:3~+ Bys + Cz3, then a, ~l~), X, Y, and Z are satisfy
the equation of Weierstrass Y22 = X3 4+ aXZ? + bZ3.

From the Propositions 3.1, 3.3, and 3.4, we deduce the theorem.

Theorem 3.7. Let XY and Z in Fyle]. If [X : Y : Z] € Eqp(Fyle]), then
[7i(X) : mi(Y) : mi(Z)] € Ery(a),mp)(Fq) where i € {0,1}.

Theorem 3.8. The set E, ,(Fy[e]) is an abelian group, written additively, and has
[0:1:0] as its zero element, and for all P = (X1 : Y1 : Z1] and Q = [Xa : Yo : Z5]
in Eqp(Fqle]) we have P+ Q = [ X3 : Y3 : Z3], where:

e [fP=Q, then
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X3 = NMYs — a(X1Zo + X2Z1) — 3bZ1 Z5)(X1Ya + X2Y1)
+ (a?Z1Zy — 36(X1Z + X2 Z1) — aX1X2) (Y122 + Yo Zh),

Yy = YYE 4+ a(3X3X3 — a’Z3Z3) + (X7 XoZo + X1 X321 — bZ3Z3)
— (X272 + 2X\ X2 Z17s) — 3ab(X1 2122 + X222 75),

Zy = (3X1Xs + aZ1Z5)(X1Ya + X2Y1)
+ (NMYa + a(X1Z2 + X2 Z1) + 362, Z2) (Y1 Zo + Yo Z1).

o If P+#Q, then

X3 = (X1Ys — XoV1) (Vi Zo + Yo Zh) + (V1Ya — 3621 Z5) (X1 Zo — X2 Zy)
+ a(X327 - X1 Z3),

Y3 = (3X1Xs +aZ122)(XaY1 — X Y2)
+ (a(X1Z2 + XoZ1) + 362, Zo — V1Y) (Y1 Zo — Ya ),

Zy = (02025 + 3X1X2) (X125 — XoZy) — Y222 + Y222

Proof. Just like on a field, an elliptical curve can also be defined on a ring under
some conditions. The conditions:

(i) (6 € R*), as Lenstra indicates in [6] is not needed for this definition, but
just to use a precise form of the elliptic curve equation.

(ii) (any projective R-module of rank 1 is free), is on the other hand necessary,
it is verified by the finished rings. This is therefore a sufficient condition to be
able to define an elliptic curve over a ring, while preserving the group law defined
geometrically by the secant and the tangent.

So, using the explicit formulae of Bosma and Lenstra article, see [1] [page:
236-238], we prove the theorem. [

Corollary 3.9. Fori € {0,1} The mappings p; given by
@i+ Eap(Fole]) — Erja),me)(Fq)
(X :Y:Z] — [m(X):m(Y): mi(2)]
1s well defined.
Proof. Let [X : Y : Z] € E,p(Fyle]). From the previous theorem 3.7, we have
[mi(X) = mi(Y) : 7(2)] € Er,(a),m,5)(Fq) where i € {0,1}.

IF[X:Y :Z] =[X":Y' :Z then there exist ® € (Fyle])* such that
X'=®X,Y'=®Y and Z' = ®Z, then

ei([ XY 7)) = [m(X): m(Y') : m(2))]
= [m(®X) : m(PY) : mi(PZ)]
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= [mi(®)mi(X) : m@@m i (®)mi(2))]

7r,-(<I>)€IFj;
= [m(X) : m(Y) : mi(2)]
= pi([X:Y :Z2]). -

Corollary 3.10. ¢; is a morphism of group where i € {0, 1}.
Proof. Let [Xl Y7 Zl], [XQ 1Y, ZQ] S Ea7b(Fq[€])
QOZ([Xl 'Y Zl] + [X2 1 Y5 Z2]) = QOZ([Xg 1 Y3 Z3])
= [mi(X3) : mi(Y3) : mi(Z3)],

by the Theorem 3.8 and 7; is a morphism of ring we have

[mi(X3) : mi(Ys) : mi(Z3)] = [mi(Xq) : mi(Y1) : mi(Z20)] + [mi(X2) : mi(Ya) © mi(Z2)]

= SOi([Xl Y7 Zl]) + QOZ‘([XQ 1Y, ZQ]),
thus
SOi([Xl 1Y Zl] + [XQ 1Yy ZQ]) = SOi([Xl 1Y Zl]) + gOi([XQ 1Yy ZQ])

Then ¢; is a morphism of group where i € {0,1}. [ ]

Corollary 3.11. g is a surjective mapping.

Proof. Let [z :y: 2] € Erj(q)x)(Fg), then
o If y £ 0p], then [x:y:z] ~[r:1: 2] hence
[2(1 —e—e2+e3):1:2(1 —e—¢e%+¢&3)] is an antecedent of [z : 1 : z].
o If y =0[p], then z # 0[p] and [z : y : z] ~ [z : 0 : 1] hence
[z(1—e—e?+&%) :e+e?+e®:1—e—e? + &3] is a antecedent of [x: 0: 1]. m

Corollary 3.12. ¢; is a surjective mapping.

Proof. Let [v:y: 2] € Er (q),x ) (Fg), then

o If y#0[p], then [z :y: 2] ~[z:1: 2] hence
[z(e — 2+ %) : 1: 2(e — e +&3)] is a antecedent of [x : 1: z].
e If y =0[p], then z Z 0[p] and [z : y: 2] ~ [z : 0: 1] hence
[z(e —e?+ &%) :1+e—e?2—ed:e—e?+ % is an antecedent of [x:0:1]. m

Lemma 3.13. The kernel of p; is a sub-group such that
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ker p; = {[X : Y : Z] € Eqp(Fyle]) | [mi(X) : m(Y) : m(Z)] =[0:1:0]}
where i € {0,1}.
Proposition 3.14. The mapping @; where i € {0,1} given by

i Eap(Fyle])/ ker o5 — Tm i = Era) r, () (Fy)
(X :Y:Z]+kerp; — [m(X) :m(Y) : mi(2)]
s an isomorphism of group.

Proof. Let P, Q € E,;(F,[e])/ ker ¢; such that P = P +kerp; and Q = Q +
ker p; where P = [X; : Y1 : Z1] and Q = [X2 : Y : Z3]. For all i € {0,1} we have
¢i(P) = ¢i(P)

Pi(Q) = »i(Q)

©; is well defined:

P=Q & P—Q c€kery;
S pi(P—Q)=1[0:1:0]

< pi(P)—i(Q) =1[0:1:0] (¢; is a morphism group)

< ¢i(P) = »i(Q)

< @i(P) = &i(Q)

@; is a morphism of group:
¢i(P+Q) = ¢:i(P+Q)

= ¢i(P+Q)
= 0i(P) +»i(Q)
= &i(P) + ¢i(Q)

p; 1s a surjective:

If M €Im ©Y; = Em(a),m(b) (Fq)

3P € E,,(Fy[e]) such that M = ¢;(P)

3P € E,,(F,[e])/ ker p; such that M = 3;(P)
@; 18 a injective:

@i(P) = ¢i(Q) & ¢i(P) = ¢i(Q)

Finally, E,(Fyle])/ ker ¢; = Im ¢; for all ¢ € {0,1}. |
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Corollary 3.15. @; is an isomorphism for i € {0,1}, in particular we have

card(Eq,(Fqle]))
card(ker ¢;)

= card(E,,(Fqle]) / ker ;) = card(Im ;)
= card(Em. (a),m; (b) (Fq)) .

In the rest of this article, we will classify the elements of the elliptic curve
Eq4(Fgle]) into three types, depending on whether the third projective coordinate
7Z is invertible or not. The result is in the following proposition.

Proposition 3.16. Every element of the elliptic curve E, ,(Fq[e]) has one of the
forms:

1. [X :Y :1], where X,Y € F,[e].

2. [xls + zoe? 4+ 2363 1 1 : 216 + 2962 + 2363]
such that [x1 + 2o + 3 : 1: 21 + 22 + 23] € B (a),m(6)(Fg) -

3. [xls + @98 + 2363 1 1 +y1e +yoe? — (1 +y1 +y2)e 1 216 + 2062 + 2383]
such that [z1 + 22 + 23 : 0 21 + 22 + 23] € Er (0),m, ) (Fy)-

2 2
4. [xo + z16 + x96% — doico 23 1 1t 20 + 216 + 2962 — doico zia?’]

such that [xo : 1 : 20] € Ery(a),mo(b) (Fq)-

5. [xo +x16+ 2982 — Z?:o xi€3 T yre 4 yoe? +yze’ : 20 + 216 + 20e? — Z?:o zia?’]
such that y1 + y2 +y3 # 0[p] and [z0 : 0: 1] € Er(a)ro) (Fq)-

Proof. LetI' = [X : Y : Z] € E,(Fy[e]), we have three cases of third projective
coordinate Z:

1. If Z is invertibe, then [X : Y : Z] ~ [X : YV : 1].

2. If Z = 216 + 2062 + 238> where (21, 22, 23) € (F,)3,
then @o([X : Y : Z]) = [xo : yo : 0] so xg = O[p] and yo # O[p], hence
(X 1Y : Z]) = [m1e + 208 + w38 : 1+ y1e + yoe? + yse® : 216 + 2082 + 2367
and there are two sub-cases of y; 4+ y2 + y3 € Fy:

oY1 +y2+ys Z —1[p], then 1 + y1e + yoe? + y3e> is invertible in Fyle], so
we have: [X : Y : Z] ~ [xle + x0e? + x3e 1 11 21 + 2062 + 2363], where
[T1 4+ 2o+ mg:1:21+ 20+ 23] € Em(a),m(b) (Fq)

o y1 +yo+y3z = —1[p], then 1+ y1e + y2e? — (1 + y1 + y2)e is not invertible
in Fyle], so we have [X : Y : Z] is equal to
[x1€+x252 +x383 1 1+ yre+yoe? — (1 +y1 +y2)ed : 216 + 2962 —|-2383], where
[wl +xo+x3:0: 21+ 20+ 2’3] S Em(a),m(b) (Fq)

3. If Z = 20 + 216 + 2262 — (20 + 21 + 22)e> where (20, 21,22) € (F;)?, then
p([X Y Z))=[zo+x1+22+23: 90+ 41 +y2+ys: 0],
so xg + @1 + x2 +x3 = 0[p] and yo + y1 + y2 + y3 # O[p], hence [X : Y : Z]
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is equal to [wo + x1€ + w282 — Z?:o wi€3 Yo + Y€+ y2€2 + y3€3 120+ 21€ +
2962 — Z?:o zis?’], so we have two sub-cases of yg € F:

o yo # O[P], then yo + y1€ + y2e? + y3e3 is invertible in F,[e], then
(X:Y:Z]~ [wo + 216 + 2962 — Z?:o x;€3 111 29 + 216 + 2962 — Z?:o zia?’],
where [z : 1 : 20] € Erj(a),me) (Fq)-

o yo = 0[P], then Y = y1 + y2e? + y3e3 is not invertible in F¢],
so we have: [X : Y : Z] is equal to
[wo+T16 + w262 — 37 wie® : yre+y2e +y3e® 1 20+ 218+ 2062 — 37 zie?]
where [z : 0 : 20] € Erj(a),m)(Fq), then necessary 2o # 0[p] and
(XY : Z] = [xo+z16+ 2082 — S22 xied et ype? +ysed 14 as+ fe? —
(1+a+ B)e’], where y1 + y2 +y3 # Ofp] and [z : 0: 1] € Ery(a) mo(e) (Fy)-

Which proves the proposition. [ |

4. (CONCLUSION

In this paper, we have studied the elliptic curve over the non local ring Fg[e],
et = &3 of the characteristic p # 2,3. And we have given a classification of the

elements in E, ;(IF4[¢]) using two elliptic curves over the finite field F, which they
are B xob)(Fq) and Era) r v) (Fg)-
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