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Abstract

Introduced the notions of annulets and N -filters in stone Almost Dis-
tributive Lattices and investigated their properties. Utilized annulets to
characterize the N -filters. Derived that every proper N -filter is the in-
tersection of all N -prime filters containing it and also proved that the set
FN (L) of all N -filters is isomorphic to the class ConE(L) of all G-extentions
of L. Given some topological properties of the space of all N -prime filters.
Derived a necessary and sufficient condition for the space of all N -prime
filters to be a Hausdorff space.
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1. Introduction

After Boole’s axiomatization of two valued propositional calculus as a Boolean
algebra, a number of generalizations both ring theoretically and lattice theoreti-
cally have come into being. The concept of an Almost Distributive Lattice (ADL)
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was introduced by Swamy and Rao [6] as a common abstraction of many existing
ring theoretic generalizations of a Boolean algebra on one hand and the class of
distributive lattices on the other. In that paper, the concept of an ideal in an
ADL was introduced analogous to that in a distributive lattice and it was ob-
served that the set PI(L) of all principal ideals of L forms a distributive lattice.
This provided a path to extend many existing concepts of lattice theory to the
class of ADLs. With this motivation, Swamy, Rao and Nanaji [7] introduced the
concept of pseudo-complementation on an ADL. They observed that unlike in a
distributive lattice, an ADL L can have more than one pseudo-complementation.
If ∗,⊥ are two pseudo-complementations on L, it was observed that x∗ ∨ x∗∗ is
maximal, for all x ∈ L if and only if x⊥∨x⊥⊥ is maximal, for all x ∈ L.With this
motivation, in refswamy stone, the concept of a Stone ADL was introduced as an
ADL with a pseudo-complementation ∗ satisfying the condition x∗ ∨ x∗∗ is max-
imal, for all x ∈ L. They studied the properties of pseudo-complemented ADLs
and characterized Stone ADLs algebraically, topologically and by means of prime
ideals. In [5], Rao and Ravi Kumar proved that some important results on min-
imal prime ideal of an ADL. In [1], Abd El-Mohsen Badawy introduced normal
filters in a stone lattice and proved their properties. Also, the normal filters of a
stone lattice are characterized in terms of annulets. In this paper, we extend the
concept of N -filters (normal filter) to a stone ADL, analogously and studied their
properties. We characterize the N -filters in terms of annulets. In addition to this,
it was observed that a mapping Θ is an isomorphism of the set of all N -filters of
a stone ADL onto the set of all ideals of stone ADL. Some topological properties
of the space SpecNF

(L) of all N -prime filters of an ADL L are observed. A set
of equivalent conditions are derived for the space SpecNF

(L) to become a T1-
space. A necessary and sufficient condition is obtained for SpecNF

(L) to become
a Hausdorff space.

2. Preliminaries

In this section, we recall certain definitions and important results, those will be
required in the text of the paper.

Definition 2.1 [6]. An Almost Distributive Lattice with zero or simply ADL is
an algebra (L,∨,∧, 0) of type (2, 2, 0) satisfying:

(1) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

(2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

(3) (x ∨ y) ∧ y = y

(4) (x ∨ y) ∧ x = x

(5) x ∨ (x ∧ y) = x
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(6) 0 ∧ x = 0

(7) x ∨ 0 = x, for all x, y, z ∈ L.

Example 2.2. Every non-empty set X can be regarded as an ADL as follows.
Let x0 ∈ X. Define the binary operations ∨,∧ on X by

x ∨ y =

{

x if x 6= x0

y if x = x0
x ∧ y =

{

y if x 6= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.

If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a ≤ b if and only if a = a∧ b
(or equivalently, a ∨ b = b), then ≤ is a partial ordering on L.

Theorem 2.3 [6]. If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the

following:

(1) a ∨ b = a⇔ a ∧ b = b

(2) a ∨ b = b⇔ a ∧ b = a

(3) ∧ is associative in L

(4) a ∧ b ∧ c = b ∧ a ∧ c

(5) (a ∨ b) ∧ c = (b ∨ a) ∧ c

(6) a ∧ b = 0 ⇔ b ∧ a = 0

(7) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(8) a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a

(9) a ≤ a ∨ b and a ∧ b ≤ b

(10) a ∧ a = a and a ∨ a = a

(11) 0 ∨ a = a and a ∧ 0 = 0.

(12) If a ≤ c, b ≤ c, then a ∧ b = b ∧ a and a ∨ b = b ∨ a

(13) a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a
distributive lattice except the right distributivity of ∨ over ∧, commutativity of
∨, commutativity of ∧. Any one of these properties make an ADL L a distributive
lattice. That is

Theorem 2.4 [6]. Let (L,∨,∧, 0) be an ADL with 0. Then the following are

equivalent:

(1) (L,∨,∧, 0) is a distributive lattice

(2) a ∨ b = b ∨ a, for all a, b ∈ L

(3) a ∧ b = b ∧ a, for all a, b ∈ L
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(4) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in
the partially ordered set (L,≤). That is, for any a ∈ L, m ≤ a⇒ m = a.

Theorem 2.5 [6]. Let L be an ADL and m ∈ L. Then the following are equiva-

lent:

(1) m is maximal with respect to ≤

(2) m ∨ a = m, for all a ∈ L

(3) m ∧ a = a, for all a ∈ L

(4) a ∨m is maximal, for all a ∈ L.

As in distributive lattices [2, 3], a non-empty sub set I of an ADL L is called
an ideal of L if a ∨ b ∈ I and a ∧ x ∈ I for any a, b ∈ I and x ∈ L. Also, a
non-empty subset F of L is said to be a filter of L if a∧ b ∈ F and x∨ a ∈ F for
a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least
element {0} and greatest element L under set inclusion in which, for any I, J ∈
I(L), I ∩ J is the infimum of I and J while the supremum is given by I ∨ J :=
{a ∨ b | a ∈ I, b ∈ J}. A proper ideal P of L is called a prime ideal if, for any
x, y ∈ L, x ∧ y ∈ P ⇒ x ∈ P or y ∈ P . A proper ideal M of L is said to
be maximal if it is not properly contained in any proper ideal of L. It can be
observed that every maximal ideal of L is a prime ideal. Every proper ideal of L is
contained in a maximal ideal. For any subset S of L the smallest ideal containing
S is given by (S] := {(

∨n
i=1 si) ∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we

write (s] instead of (S]. Similarly, for any S ⊆ L, [S):={x ∨ (
∧n

i=1 si) | si ∈ S,
x ∈ L and n ∈ N}. If S = {s}, we write [s) instead of [S).

Theorem 2.6 [6]. For any x, y in L the following are equivalent:

(1) (x] ⊆ (y]

(2) y ∧ x = x

(3) y ∨ x = y

(4) [y) ⊆ [x).

For any x, y ∈ L, it can be verified that (x]∨(y] = (x∨y] and (x]∧(y] = (x∧y].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.

Theorem 2.7 [4]. Let I be an ideal and F a filter of L such that I ∩ F = ∅.
Then there exists a prime ideal P such that I ⊆ P and P ∩ F = ∅.
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Definition 2.8. Let (L,∨,∧, 0) be an ADL. Then a unary operation a −→ a∗

on L is called a pseudo-complementation on L if, for any a, b ∈ L, it satisfies the
following conditions:

(1) a ∧ b = 0 ⇒ a∗ ∧ b = b

(2) a ∧ a∗ = 0

(3) (a ∨ b)∗ = a∗ ∧ b∗.

Then (L,∨,∧,∗ , 0) is called a pseudo-complemented ADL.

Theorem 2.9. Let L be an ADL and ∗ a pseudo-complementation on L. Then,
for any a, b ∈ L, we have the following:

(1) 0∗∗ = 0

(2) 0∗ ∧ a = a

(3) a∗∗ ∧ a = a

(4) a∗∗∗ = a∗

(5) a ≤ b⇒ b∗ ≤ a∗

(6) a∗ ∧ b∗ = b∗ ∧ a∗

(7) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗

(8) a∗ ∧ b = (a ∧ b)∗ ∧ b∗.

For any pseudo-complemented ADL L, let us denote the set of all elements
of the form x∗ = 0 by D(L). Then the following lemma is a direct consequence.

Definition 2.10 [8]. Let L be an ADL and ∗ a pseudo-complementation on
L.Then L is called Stone ADL if, for any x ∈ L, x∗ ∨ x∗∗ = 0∗.

Lemma 2.11 [8]. Let L be a Stone ADL and a, b ∈ L. Then the following con-

ditions hold:

(1) 0∗ ∧ a = a and 0∗ ∨ a = 0∗

(2) (a ∧ b)∗ = a∗ ∨ b∗.

3. Annulets of Stone ADLs

Definition 3.1. Let S be a non-empty subset of a stone ADL L, which is closed
under ∧. Define S⊥ as S⊥ = {a ∈ L | a∗ ∧ s = 0, for some s ∈ S}.

Lemma 3.2. Let S, T be any two non-empty subsets of a stone ADL L with

maximal elements, which are closed under ∧. Then we have the following:

(1) S⊥ is a filter of L containing S
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(2) [S) ⊆ S⊥ and D(L) ⊆ S⊥

(3) S⊥ = [S) ∨D(L)

(4) S ⊆ T ⇒ S⊥ ⊆ T⊥

(5) S⊥⊥ = S⊥

(6) [S)⊥ = S⊥

(7) L⊥ = L.

Proof. (1) Let m be any maximal element of L. Clearly, m ∈ S⊥ and hence
S⊥ 6= ∅. We have that s∗∧ s = 0, for all s ∈ S. That implies s ∈ S⊥, for all s ∈ S.
Therefore S ⊆ S⊥. Let a, b ∈ S⊥. Then there exist elements s1, s2 ∈ S such
that a∗ ∧ s1 = 0 and b∗ ∧ s2 = 0. Since s1, s2 ∈ S, we get that s1 ∧ s2 ∈ S. Now,
(a∧b)∗∧s1∧s2 = (a∗∨b∗)∧s1∧s2 = (a∗∧s1∧s2)∨(b∗∧s1∧s2) = 0. That implies
a∧ b ∈ S⊥. Let a ∈ S⊥. Then there exists an element s ∈ S such that a∗ ∧ s = 0.
Let r be any element of L. Since (r ∨ a)∗ ≤ a∗, we get that (r ∨ a)∗ ∧ s = 0. That
implies r ∨ a ∈ S⊥. Therefore S⊥ is a filter of L containing S.

(2) Clearly, we have that S ⊆ [S). By (1), we have that S ⊆ S⊥. Since [S)
is the smallest filter containing S and S⊥ is a filter of L containing S, we get
that [S) ⊆ S⊥. Let a ∈ D(L). Then a∗ = 0 and hence a∗ ∧ s = 0, for all s ∈ S.
Therefore a ∈ S⊥. Thus D(L) ⊆ S⊥.

(3) By (2), we have that [S)∨D(L) ⊆ S⊥. Let a ∈ S⊥. Then there exists an
element s ∈ S such that a∗∧s = 0. Now, a = a∨0 = a∨(s∧a∗) = (a∨s)∧(a∨a∗).
Since a∨a∗ ∈ D(L) and a∨s ∈ [s) ⊆ [S), we get that (a∨s)∧(a∨a∗) ∈ [S)∨D(L)
and hence a ∈ [S) ∨D(L). Therefore S⊥ ⊆ [S) ∨D(L). Thus S⊥ = [S) ∨D(L).

(4) Assume that S ⊆ T. Let a ∈ S⊥. Then there exists an element s ∈ S such
that a∗ ∧ s = 0. Since S ⊆ T, we get that a ∈ T⊥. Therefore S⊥ ⊆ T⊥.

(5) By (1) and (4), we get that S⊥ ⊆ S⊥⊥. Let a ∈ S⊥⊥. Then there exists
an element s ∈ S⊥ such that a∗ ∧ s = 0. That implies s∗ ∧ a∗ = a∗. Since s ∈ S⊥,
there exists an element t ∈ S such that s∗ ∧ t = 0. Since s, t ∈ S, we get that
s∧t ∈ S. Now a∗∧t = s∗∧a∗∧t = a∗∧s∗∧t = 0. That implies a ∈ S⊥. Therefore
S⊥⊥ ⊆ S⊥ and hence S⊥⊥ = S⊥.

(6) By (2), we have that [S) ⊆ S⊥. So that [S)⊥ ⊆ S⊥⊥ = S⊥ and hence
[S)⊥ ⊆ S⊥. Let a ∈ S⊥. Then there exists an element s ∈ S such that a∗ ∧ s = 0.
Since s ∈ S ⊆ [S), we get that a ∈ [S)⊥. Therefore S⊥ ⊆ [S)⊥ and hence
S⊥ = [S)⊥.

(7) It is clear.

Theorem 3.3. Let L be a stone ADL. Then F⊥(L) = {F⊥ | F is a filter of L}
is a bounded distributive lattice.

Proof. Let F1, F2 be any two filters of L. By the above result, we have that
F⊥
1 ⊆ (F1 ∨ F2)

⊥ and F⊥
2 ⊆ (F1 ∨ F2)

⊥. That implies (F1 ∨ F2)
⊥ is an upper
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bound of F⊥
1 and F⊥

2 . Let F
⊥
3 be any upper bound of F⊥

1 and F⊥
2 . Then F

⊥
1 ⊆ F⊥

3

and F⊥
2 ⊆ F⊥

3 . That implies F1 ⊆ F⊥
3 and F2 ⊆ F⊥

3 . That implies (F1 ∨ F2)
⊥ ⊆

F⊥⊥
3 = F⊥

3 . Therefore (F1 ∨ F2)
⊥ is a least upper bound of F⊥

1 and F⊥
2 . Hence

(F1 ∨F2)
⊥ = F⊥

1 ∨F⊥
2 . Clearly, we have that F1 ∩F2 ⊆ F1 and F1 ∩F2 ⊆ F2. By

the above result, we have that (F1 ∩F2)
⊥ ⊆ F⊥

1 and (F1 ∩F2)
⊥ ⊆ F⊥

2 . Therefore
(F1 ∩ F2)

⊥ ⊆ F⊥
1 ∩ F⊥

2 . Let a ∈ F⊥
1 ∩ F⊥

2 . Then a ∈ F⊥
1 and a ∈ F⊥

2 . Then
there exist elements f1 ∈ F1 and f2 ∈ F2 such that a∗ ∧ f1 = 0 and a∗ ∧ f2 = 0.
Since F1, F2 are filter of L and f1 ∈ F⊥

1 , f2 ∈ F
⊥
2 , we get that f1 ∨ f2 ∈ F1 ∩ F2.

Now, a∗ ∧ (f1 ∨ f2) = (a∗ ∧ f1) ∨ (a∗ ∧ f2) = 0. That implies a ∈ (F1 ∩ F2)
⊥.

Therefore F⊥
1 ∩F⊥

2 ⊆ (F1 ∩F2)
⊥ and hence (F1 ∩F2)

⊥ = F⊥
1 ∩F⊥

2 . Thus F
⊥(L)

is a sublattice of F(L). Since F(L) is a distributive lattice, we get that F⊥(L) is
a distributive lattice with least element D(L) and greatest element L. Therefore
(F⊥(L),∨,∩,D(L), L) is a bounded distributive lattice.

For any subset S = {x} of L, {x}⊥ = {a ∈ L | a∗ ∧ x = 0}. We write (x)⊥

instead of {x}⊥. Clearly, (x)⊥ is a filter of L. Then it called the annulet of x.

Lemma 3.4. Let x, y be any two elements of a Stone ADL L with maximal

elements. Then we have the following:

(1) x ∈ (x)⊥

(2) [x) ⊆ (x)⊥

(3) x ≤ y ⇒ (y)⊥ ⊆ (x)⊥

(4) x ∈ (y)⊥ ⇒ (x)⊥ ⊆ (y)⊥

(5) (x)⊥⊥ = (x)⊥

(6) [x)⊥ = (x)⊥

(7) (x)⊥ = L⇔ x = 0

(8) D(L) ⊆ (x)⊥, for all x ∈ L.

(9) For any maximal element m of L, (m)⊥ = D(L)

(10) (x)⊥ = [x) ∨D(L) = [x∗∗) ∨D(L).

(11) If D(L) is a principal filter of L then (x)⊥ is a principal filter of L, for all

x ∈ L

(12) (x ∨ y)⊥ = (y ∨ x)⊥ and (x ∧ y)⊥ = (y ∧ x)⊥

(13) (x ∨ y)⊥ = (x)⊥ ∩ (y)⊥.

(14) If (x)⊥ = (y)⊥, then (x ∨ z)⊥ = (y ∨ z)⊥ and (x ∧ z)⊥ = (y ∧ z)⊥, for all

z ∈ L.

(15) If x ∧ y = 0 then (x)⊥ ∨ (y)⊥ = L

(16) (x)⊥ = (y)⊥ if and only if x∗ = y∗

(17) (x)⊥ = (x∗∗)⊥
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(18) (x ∨ (y ∨ z))⊥ = ((x ∨ y) ∨ z)⊥.

Proof. (1) Since x∗ ∧ x = 0, we get that x ∈ (x)⊥.
(2) Since (x)⊥ is a filter of L and x ∈ (x)⊥, we get that [x) ⊆ (x)⊥.
(3) Assume that x ≤ y. Then x ∧ y = x. Let a ∈ (y)⊥. Then a∗ ∧ y = 0 and

hence a∗ ∧ x = 0. Therefore a ∈ (x)⊥. Thus (y)⊥ ⊆ (x)⊥.
(4) Assume that x ∈ (y)⊥. Then x∗ ∧ y = 0. Let a ∈ (x)⊥. Then a∗ ∧ x = 0

and hence x∗ ∧ a∗ = a∗. Now, a∗ ∧ y = x∗ ∧ a∗ ∧ y = 0. Then a ∈ (y)⊥. Therefore
(x)⊥ ⊆ (y)⊥.

(5) Clearly, we have x ∈ (x)⊥. By (4), we have that (x)⊥ ⊆ (x)⊥⊥. Let
a ∈ (x)⊥⊥. Then there exists an element b ∈ (x)⊥ such that a∗ ∧ b = 0. That
implies b∗∧a∗ = a∗. Since b ∈ (x)⊥, we have b∗∧x = 0. Now, a∗∧x = b∗∧a∗∧x = 0.
That implies a ∈ (x)⊥ and hence (x)⊥⊥ ⊆ (x)⊥. Therefore (x)⊥⊥ = (x)⊥.

(6) By (2), we have that [x) ⊆ (x)⊥. Then (x)⊥⊥ ⊆ [x)⊥. By (5), we get
that (x)⊥ ⊆ [x)⊥. Let a ∈ [x)⊥. Then there exists an element b ∈ [x) such that
a∗ ∧ b = 0. Since b ∈ [x), we have that b ∨ x = b and hence b ∧ x = x. Now,
a∗ ∧ x = a∗ ∧ b ∧ x = 0. Therefore a ∈ (x)⊥ and hence [x)⊥ ⊆ (x)⊥. Thus
[x)⊥ = (x)⊥.

(7) Assume that (x)⊥ = L. Then 0 ∈ (x)⊥. That implies 0∗∧x = 0 and hence
x = 0. Assume that x = 0. Clearly, we have that a∗ ∧ x = 0, for all a ∈ L. That
implies a ∈ (x)⊥, for all a ∈ L. Therefore (x)⊥ = L.

(8) Let a ∈ D(L). Then a∗ = 0. Clearly, we have that a∗ ∧ x = 0, for all
x ∈ L. That implies a ∈ (x)⊥, for all x ∈ L. Therefore D(L) ⊆ (x)⊥, for all x ∈ L.

(9) Let m be any maximal element of L. By (8), we have that D(L) ⊆ (m)⊥.
Let a ∈ (m)⊥. Then a∗ ∧ m = 0 and hence m ∧ a∗ = 0. That implies a∗ = 0.
Therefore a ∈ D(L) and hence (m)⊥ ⊆ D(L). Thus (m)⊥ = D(L).

(10) Clearly, we have that [x)∨D(L) ⊆ (x)⊥. Let a ∈ (x)⊥. Then a∗∧x = 0.
Now, a = a ∨ 0 = a ∨ (x ∧ a∗) = (a ∨ x) ∧ (a ∨ a∗). Since a ∨ x ∈ [x) and
a∨a∗ ∈ D(L), we get that (a∨x)∧(a∨a∗) ∈ [x)∨D(L) and hence a ∈ [x)∨D(L).
Therefore (x)⊥ = [x) ∨ D(L). Let a ∈ [x∗∗). Then a ∨ x∗∗ = a. That implies
(a ∨ x∗∗)∗ = a∗. That implies a∗ ∧ x∗ = a∗ and hence a∗ ∧ x = 0. Therefore
a ∈ (x)⊥. Thus [x∗∗) ⊆ (x)⊥. Clearly, we have that [x∗∗) ∨ D(L) ⊆ (x)⊥. Let
a ∈ (x)⊥. Then a∗ ∧ x = 0. That implies x∗ ∧ a∗ = a∗ and hence x∗∗ ∨ a∗∗ = a∗∗.
Now, a = a ∨ 0 = a ∨ (a∗∗ ∧ a∗) = (a ∨ a∗∗) ∧ (a ∨ a∗) = a∗∗ ∧ (a ∨ a∗) =
(x∗∗∨a∗∗)∧(a∨a∗) = (a∗∗∨x∗∗)∧(a∨a∗). Since a∗∗∨x∗∗ ∈ [x∗∗) and a∨a∗ ∈ D(L),
we get that (a∗∗ ∨ x∗∗) ∧ (a ∨ a∗) ∈ [x∗∗) ∨D(L). Therefore (x)⊥ ⊆ [x∗∗) ∨D(L)
and hence (x)⊥ = [x∗∗) ∨D(L).

(11) Let D(L) be a principal filter of L. Then there exists an element a ∈ L
such that D(L) = [a). By (10), we have that (x)⊥ = [x∗∗) ∨D(L), for all x ∈ L.
That implies (x)⊥ = [x∗∗)∨ [a) = [x∗∗ ∧ a). Therefore (x)⊥ is a principal filter of
L, for all x ∈ L.

(12) Clear.
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(13) Clearly, we have that (x∨ y)⊥ ⊆ (x)⊥ ∩ (y)⊥. Conversely, let a ∈ (x)⊥ ∩
(y)⊥. Then a ∈ (x)⊥ and a ∈ (y)⊥. That implies a∗ ∧ x = 0 and a∗ ∧ y = 0. That
implies a∗∧ (x∨y) = 0 and hence a ∈ (x∨y)⊥. Therefore (x)⊥∩ (y)⊥ ⊆ (x∨y)⊥.
Thus (x ∨ y)⊥ = (x)⊥ ∩ (y)⊥.

(14) Let z be any element of a stone ADL L. Assume that (x)⊥ = (y)⊥.
Now, a ∈ (x∨ z)⊥ ⇔ a∗ ∧ (x∨ z) = 0 ⇔ (a∗ ∧ x)∨ (a∗ ∧ z) = 0 ⇔ a∗ ∧ x = 0

and a∗ ∧ z = 0 ⇔ a ∈ (x)⊥ = (y)⊥ and a∗ ∧ z = 0 ⇔ a∗ ∧ y = 0 and a∗ ∧ z =
0 ⇔ (a∗ ∧ y) ∨ (a∗ ∧ z) = 0 ⇔ a∗ ∧ (y ∨ z) = 0 ⇔ a ∈ (y ∨ z)⊥. Therefore
(x∨ z)⊥ = (y ∨ z)⊥. Now, a /∈ (x∧ z)⊥ ⇔ a∗ ∧ x∧ z 6= 0 ⇔ a∗ ∧ x∧ a∗ ∧ z 6= 0 ⇔
a∗ ∧ x 6= 0 and a∗ ∧ z 6= 0 ⇔ a /∈ (x)⊥ = (y)⊥ and a∗ ∧ z 6= 0 ⇔ a∗ ∧ y 6= 0 and
a∗ ∧ z 6= 0 ⇔ a∗ ∧ y ∧ z 6= 0 ⇔ a /∈ (y ∧ z)⊥. Therefore (x ∧ z)⊥ = (y ∧ z)⊥.

(15) Assume that x ∧ y = 0. We prove that (x)⊥ ∨ (y)⊥ = L. Suppose
(x)⊥∨(y)⊥ 6= L. Then there exists a maximal filterM of L such that (x)⊥∨(y)⊥ ⊆
M. That implies (x)⊥ ⊆ M and (y)⊥ ⊆ M. That implies x, y ∈ M and hence
x ∧ y ∈ M. That implies 0 ∈ M. That implies M = L, which is a contradiction
to proper filter M of L. Therefore (x)⊥ ∨ (y)⊥ = L.

(16) Assume that (x)⊥ = (y)⊥. Then x ∈ (y)⊥ and y ∈ (x)⊥. That implies
x∗∧y = 0 and y∗∧x = 0. That implies y∗∧x∗ = x∗ and x∗∧y∗ = y∗. That implies
(y ∨ x)∗ = x∗ and (x ∨ y)∗ = y∗. Since (x ∨ y)∗ = (y ∨ x)∗, we get that x∗ = y∗.
Conversely, assume that x∗ = y∗. Now, a ∈ (x)⊥ ⇔ a∗ ∧ x = 0 ⇔ (a∗ ∧ x)∗ =
0∗ ⇔ a∗∗ ∨ x∗ = 0∗ ⇔ a∗∗ ∨ y∗ = 0∗ ⇔ (a∗ ∧ y)∗ = 0∗ ⇔ (a∗ ∧ y)∗∗ = 0∗∗ = 0 ⇔
(a∗ ∧ y)∗∗ ∧ (a∗ ∧ y) = 0 ⇔ a∗ ∧ y = 0 ⇔ a ∈ (y)⊥. Therefore (x)⊥ = (y)⊥.

(17) Now, a ∈ (x)⊥ ⇔ a∗ ∧ x = 0 ⇔ (a∗ ∧ x)∗∗ = 0 ⇔ a∗ ∧ x∗∗ = 0 ⇔ a ∈
(x∗∗)⊥. Hence (x)⊥ = (x∗∗)⊥.

(18) Clear.

We denote the set of all annulets of a stone ADL L by A⊥(L), i.e., A⊥(L) =
{(x)⊥ | x ∈ L}.

Theorem 3.5. Let L be a stone ADL with maximal element m. Then (A⊥(L),+,
•, (m)⊥, (0)⊥) can be made into a Boolean ring, where + is the additive operation

and • is the multiplication operation are defined as (x)⊥+(y)⊥ = ((x∨ y∗)∧ (y ∨
x∗))⊥ and (x)⊥ • (y)⊥ = (x ∨ y)⊥, for all x, y ∈ L.

Proof. Let (x)⊥, (y)⊥, (z)⊥ ∈ A⊥(L). Now,

(x)⊥ + ((y)⊥ + (z)⊥)

= (x)⊥ + ((y ∨ z∗) ∧ (z ∨ y∗))⊥

= ((x ∨ ((y ∨ z∗) ∧ (z ∨ y∗))∗) ∧ (((y ∨ z∗) ∧ (z ∨ y∗)) ∨ x∗))⊥

= ((x ∨ (y∗ ∧ z∗∗) ∨ (z∗ ∧ y∗∗)) ∧ ((y ∨ z∗) ∧ (z ∨ y∗)) ∨ x∗)⊥

= ((((x ∨ y∗) ∧ (x ∨ z∗∗)) ∨ (z∗ ∧ y∗∗)) ∧ (((y ∨ z∗) ∧ (z ∨ y∗)) ∨ x∗))⊥
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= ((x ∨ y∗ ∨ (z∗ ∧ y∗∗)) ∧ (x ∨ z∗∗ ∨ (z∗ ∧ y∗∗)) ∧ (((y ∨ z∗) ∧ (z ∨ y∗)) ∨ x∗))⊥

= (((x ∨ y∗ ∨ z∗) ∧ (x ∨ y∗ ∨ y∗∗) ∧ (x ∨ z∗∗ ∨ z∗) ∧ (x ∨ z∗∗ ∨ y∗∗))

∧ (((y ∨ z∗) ∧ (z ∨ y∗)) ∨ x∗))⊥

= (((x ∨ y∗ ∨ z∗) ∧ (x ∨ z∗∗ ∨ y∗∗)) ∧ (((y ∨ z∗) ∧ (z ∨ y∗)) ∨ x∗))⊥

= ((x ∨ y∗ ∨ z∗) ∧ (x ∨ z∗∗ ∨ y∗∗) ∧ (y ∨ z∗ ∨ x∗) ∧ (z ∨ y∗ ∨ x∗))⊥ −→ (1)

Now,

((x)⊥ + (y)⊥) + (z)⊥

= ((x ∨ y∗) ∧ (y ∨ x∗))⊥ + (z)⊥

= ((x ∨ y∗) ∧ (x∗ ∨ y))⊥ + (z)⊥

= ((((x ∨ y∗) ∧ (x∗ ∨ y)) ∨ z∗) ∧ ((z ∨ ((x ∨ y∗) ∧ (x∗ ∨ y))∗)))⊥

= ((((x ∨ y∗) ∧ (x∗ ∨ y)) ∨ z∗) ∧ ((((x ∨ y∗) ∧ (x∗ ∨ y))∗) ∨ z))⊥

= ((x ∨ y∗ ∨ z∗) ∧ (x∗ ∨ y ∨ z∗) ∧ (((x∗ ∧ y∗∗) ∨ (x∗∗ ∧ y∗)) ∨ z))⊥

= ((x ∨ y∗ ∨ z∗) ∧ (x∗ ∨ y ∨ z∗) ∧ (((x∗ ∧ y∗∗) ∨ x∗∗) ∧ ((x∗ ∧ y∗∗) ∨ y∗) ∨ z))⊥

= ((x ∨ y∗ ∨ z∗) ∧ (x∗ ∨ y ∨ z∗) ∧ (((x∗ ∨ x∗∗) ∧ (y∗∗ ∨ x∗∗)∧

(x∗ ∨ y∗) ∧ (y∗∗ ∨ y∗)) ∨ z))⊥

= ((x ∨ y∗ ∨ z∗) ∧ (x∗ ∨ y ∨ z∗) ∧ (y∗∗ ∨ x∗∗ ∨ z) ∧ (x∗ ∨ y∗ ∨ z))⊥ −→ (2)

Now,

((x ∨ y∗ ∨ z∗) ∧ (x ∨ z∗∗ ∨ y∗∗) ∧ (y ∨ z∗ ∨ x∗) ∧ (z ∨ y∗ ∨ x∗))∗

= (x∗ ∧ y∗∗ ∧ z∗∗) ∨ (x∗ ∧ z∗ ∧ y∗) ∨ (y∗ ∧ z∗∗ ∧ x∗∗) ∨ (z∗ ∧ y∗∗ ∧ x∗∗) −→ (3).

Now,

((x ∨ y∗ ∨ z∗) ∧ (x∗ ∨ y ∨ z∗) ∧ (y∗∗ ∨ x∗∗ ∨ z) ∧ (x∗ ∨ y∗ ∨ z))∗

= ((x ∨ y∗ ∨ z∗) ∧ (y∗∗ ∨ x∗∗ ∨ z) ∧ (x∗ ∨ y ∨ z∗) ∧ (x∗ ∨ y∗ ∨ z))∗

= (x∗ ∧ y∗∗ ∧ z∗∗) ∨ (x∗ ∧ z∗ ∧ y∗) ∨ (y∗ ∧ z∗∗ ∧ x∗∗) ∨ (z∗ ∧ y∗∗ ∧ x∗∗) −→ (4).

Therefore (3) and (4) are same. So that ((x∨ y∗ ∨ z∗)∧ (x∨ z∗∗ ∨ y∗∗)∧ (y ∨ z∗ ∨
x∗)∧ (z∨y∗∨x∗))∗ = ((x∨y∗∨z∗)∧ (x∗∨y∨z∗)∧ (y∗∗∨x∗∗∨z)∧ (x∗∨y∗∨z))∗.
By Lemma 3.4(16), we get that ((x ∨ y∗ ∨ z∗) ∧ (x ∨ z∗∗ ∨ y∗∗) ∧ (y ∨ z∗ ∨ x∗) ∧
(z ∨ y∗ ∨ x∗))⊥ = ((x ∨ y∗ ∨ z∗) ∧ (x∗ ∨ y ∨ z∗) ∧ (y∗∗ ∨ x∗∗ ∨ z) ∧ (x∗ ∨ y∗ ∨ z))⊥.
Hence (x)⊥ + ((y)⊥ + (z)⊥) = ((x)⊥ + (y)⊥) + (z)⊥. Thus + is associative. Let
(x)⊥ be any element of A⊥(L). Now, (x)⊥ + (0∗)⊥ = ((x ∨ 0∗∗) ∧ (x∗ ∨ 0∗))⊥ =
((x∨0)∧(x∧0)∗)⊥ = (x∧0∗)⊥ = (x)⊥. Therefore (0∗)⊥ is the additive identity. Let
(x)⊥ be any element of A⊥(L). Now (x)⊥+(x)⊥ = ((x∨x∗)∧(x∗∨x))⊥ = (x∨x∗)⊥.
Now (x∨x∗)∗ = x∗ ∧x∗∗ = 0 = (0∗)∗. That implies (x∨x∗)∗ = (0∗)∗. By Lemma
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3.4(16), we get that (x∨x∗)⊥ = (0∗)⊥. Since (x)⊥+(x)⊥ = (x∨x∗)⊥ = (0∗)⊥, we
have that (x)⊥ is the additive inverse of (x)⊥ in A⊥(L). Let (x)⊥, (y)⊥ ∈ A⊥(L).
Now, (x)⊥ +(y)⊥ = ((x∨ y∗)∧ (y ∨x∗))⊥ = ((y ∨x∗)∧ (x∨ y∗))⊥ = (y)⊥ +(x)⊥.
Therefore + is commutative. Let (x)⊥ be any element of A⊥(L). Now, (x)⊥ •
(0)⊥ = (x ∨ 0)⊥ = (x)⊥. Therefore (0)⊥ is the multiplicative identity of A⊥(L).
Let (x)⊥, (y)⊥, (z)⊥ ∈ A⊥(L). Now, (x)⊥ • ((y)⊥ • (z)⊥) = (x)⊥ • (y ∨ z)⊥ =
(x∨ (y∨z))⊥ = ((x∨y)∨z)⊥ = (x∨y)⊥ •(z)⊥ = ((x)⊥ •(y)⊥)•(z)⊥. Therefore •
is associative. Let (x)⊥, (y)⊥ ∈ A⊥(L). Now, (x)⊥ • (y)⊥ = (x∨ y)⊥ = (y∨x)⊥ =
(y)⊥ • (x)⊥. Therefore • is commutative. Let (x)⊥, (y)⊥, (z)⊥ ∈ A⊥(L). Now,
(x)⊥ • ((y)⊥+(z)⊥) = (x)⊥ • ((y ∨ z∗)∧ (z∨ y∗))⊥ = (x∨ ((y∨ z∗)∧ (y∗ ∨ z)))⊥ =
((x∨ y ∨ z∗)∧ (x∨ y∗ ∨ z))⊥ −→ (5). Now, (x)⊥ • (y)⊥ +(x)⊥ • (z)⊥ = (x∨ y)⊥ +
(x∨z)⊥ = (((x∨y)∨ (x∨z)∗)∧ ((x∨z)∨ (x∨y)∗))⊥ = ((x∨y∨x∗)∧ (x∨y∨z∗)∧
(x∗∨x∨z)∧ (y∗∨x∨z))⊥ −→ (6). Now, ((x∨y∨x∗)∧ (x∨y∨z∗)∧ (x∗∨x∨z)∧
(y∗ ∨x∨ z))∗ = (x∗∧ y∗∧x∗∗)∨ (x∗ ∧ y∗∧ z∗∗)∨ (x∗∗∧x∗∧ z∗)∨ (y∗∗ ∧x∗∧ z∗) =
(x∗ ∧ y∗ ∧ z∗∗) ∨ (y∗∗ ∧ x∗ ∧ z∗) −→ (7). Now, ((x ∨ y ∨ z∗) ∧ (x ∨ y∗ ∨ z))∗ =
(x∗ ∧ y∗ ∧ z∗∗) ∨ (y∗∗ ∧ x∗ ∧ z∗) −→ (8). Therefore (7) and (8) are equal. That is
((x∨y∨x∗)∧(x∨y∨z∗)∧(x∗∨x∨z)∧(y∗∨x∨z))∗ = ((x∨y∨x∗)∧(x∨y∗∨z))∗.
By Lemma 3.4(16), we get that ((x ∨ y ∨ z∗) ∧ (x ∨ y ∨ z∗) ∧ (x∗ ∨ x ∨ z) ∧ (y∗ ∨
x ∨ z))⊥ = ((x ∨ y ∨ z∗) ∧ (x ∨ y∗ ∨ z))⊥. Therefore (5) and (6) are equal. Hence
(x)⊥ • ((y)⊥ + (z)⊥) = (x)⊥ • (y)⊥ + (x)⊥ • (z)⊥. Since • is commutative, we get
that ((y)⊥ +(z)⊥) • (x)⊥ = (y)⊥ • (x)⊥ +(z)⊥ • (x)⊥. Let (x)⊥ be any element of
A⊥(L). Now, (x)⊥ • (x)⊥ = (x∨ x)⊥ = (x)⊥. Therefore (A⊥(L),+, •, (m)⊥, (0)⊥)
is a Boolean ring.

Clearly, we have that there is a one-to-one correspondence between Boolean
ring and Boolean lattice. So that we can convert the Boolean ring (A⊥(L),+, •,
(m)⊥, (0)⊥) of a stone ADL L into a Boolean lattice in the following.

Corollary 3.6. Let (A⊥(L),+, •, (m)⊥, (0)⊥) be a Boolean ring of all annulets

of a stone ADL. Then (A⊥(L),∨,∩,′ , (m)⊥, (0)⊥) is a Boolean lattice, where

(x)⊥ ∨ (y)⊥ = (x ∧ y)⊥, (x)⊥ ∩ (y)⊥ = (x ∨ y)⊥, ((x)⊥)′ = (x∗)⊥.

4. N -filters of stone ADLs

Definition 4.1. A filter F of a stone ADL L is said to be an N -filter if F = F⊥.

Lemma 4.2. Let L be a stone ADL. Then we have the following:

(1) For any x ∈ L, (x)⊥ is an N -filter of L.

(2) For any filter F, F⊥ is an N -filter of L.

(3) D(L) is an N -filter of L.



310 N. Rafi, R.K. Bandaru and M. Srujana

Proof. (1) and (2) are clear.

(3) Clearly, we have that D(L) ⊆ (D(L))⊥. Let a ∈ (D(L))⊥. Then there
exists an element b ∈ D(L) such that a∗ ∧ b = 0. That implies b∗ ∧ a∗ = a∗. Since
b ∈ D(L), we get that b∗ = 0. Now a∗ = b∗∧a∗ = 0∧a∗ = 0. That implies a∗ = 0
and hence a ∈ D(L). That implies (D(L))⊥ ⊆ D(L). Therefore D(L) = (D(L))⊥.
Thus D(L) is an N -filter of L.

Theorem 4.3. Let F be a filter of a stone ADL L. Then the following statements

are equivalent:

(1) F is an N -filter.

(2) For any a ∈ L, a∗∗ ∈ F ⇒ a ∈ F .

(3) For any a, b ∈ L, (a)⊥ = (b)⊥ and a ∈ F ⇒ b ∈ F .

(4) F =
⋃

a∈F (a)
⊥.

(5) For any a ∈ L, a ∈ F ⇒ (a)⊥ ⊆ F.

Proof. (1)⇒(2) Assume that F is an N -filter of L. Then F = F⊥. Let a be any
element of L with a∗∗ ∈ F. Then a∗∗ ∈ F⊥. Then there exists an element b ∈ F
such that a∗∗∗ ∧ b = 0. That implies a∗ ∧ b = 0 and hence a ∈ F⊥. Therefore
a ∈ F.

(2)⇒(3) Assume (2). Let a, b ∈ L with (a)⊥ = (b)⊥ and a ∈ F. Since
b∗ ∧ b = 0, we get that b ∈ (b)⊥ = (a)⊥. That implies b∗ ∧ a = 0 and hence
b∗∗ ∧ a = a. Since a ∈ F, we have that b∗∗ ∧ a ∈ F. That implies b∗∗ ∈ F. By our
assumption we get that b ∈ F.

(3)⇒(4) Assume condition (3). Let a ∈ F. Clearly, we have that [a) ⊆ (a)⊥.
That implies F =

⋃

a∈F [a) ⊆
⋃

a∈F (a)
⊥ and hence F ⊆

⋃

a∈F (a)
⊥. Let b ∈

⋃

a∈F (a)
⊥. Then there exists an element c ∈ F such that b ∈ (c)⊥. That implies

(b)⊥ ⊆ (c)⊥ and hence (b)⊥ = (b)⊥ ∩ (c)⊥ = (b ∨ c)⊥. Since c ∈ F, we get that
b ∨ c ∈ F. By our assumption, we get that b ∈ F. That implies

⋃

a∈F (a)
⊥ ⊆ F.

Therefore F =
⋃

x∈F (x)
⊥.

(4)⇒(5) Clear.

(5)⇒(1) Assume (5). Clearly, we have F ⊆ F⊥. Let a ∈ F⊥. Then there
exists an element x ∈ F such that a∗∧x = 0. That implies a ∈ (x)⊥. Since x ∈ F,
we get that (x)⊥ ⊆ F. Since a ∈ (x)⊥, we get that a ∈ F. Therefore F⊥ ⊆ F and
hence F = F⊥. Thus F is an N -filter of L.

Theorem 4.4. Let L be a stone ADL with maximal element m. Then we have:

(1) The set FN (L) of all N -filters of L is a bounded distributive lattice.

(2) A⊥(L) is a bounded sublattice of FN (L).

Proof. (1) Let F1, F2 ∈ FN (L). Then F1 = F1
⊥ and F2 = F2

⊥. Clearly, we have
that (F1 ∨ F2)

⊥ = F1
⊥ ∨ F2

⊥ = F1 ∨ F2 and (F1 ∩ F2)
⊥ = F1

⊥ ∩ F2
⊥ = F1 ∩ F2.
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Therefore F1 ∨ F2, F1 ∩ F2 ∈ FN (L) and hence FN (L) is a sublattice of F(L).
Clearly, we have that D(L) is the smallest N -filter of L and L is the greatest N -
filter of L. Since F(L) is a distributive lattice, we get that (FN (L),∨,∩,D(L), L)
is a bounded distributive lattice.

(2) We have that every annulet is an N -filter of L. So that A⊥(L) ⊆ FN (L).
Now, we prove that A⊥(L) is a sublattice of FN (L).We define ∨ and ∩ on A⊥(L)
as (x)⊥ ∨ (y)⊥ = (x∧ y)⊥ and (x)⊥ ∩ (y)⊥ = (x∨ y)⊥, for all (x)⊥, (y)⊥ ∈ A⊥(L).
Clearly, we get that (A⊥(L),∨,∩) is a sublattice of FN (L). Since (0∗)⊥ = D(L)
and (0)⊥ = L, we get that (A⊥(L),∨,∩, (0∗)⊥, (0)⊥) is a bounded sublattice of
FN (L).

Definition 4.5. A congruence relation Θ on a Pseudo-complemented ADL L is
called a Glivenko-type if (a, b) ∈ Θ implies a∗ = b∗.

We denote the class of all Glivenko-type congruence on a pseudo-complemented
ADL L by ConG(L).

Lemma 4.6. Define a relation θ on a stone ADL L as follows (a, b) ∈ θ iff

(a)⊥ = (b)⊥. Then θ is a congruence relation on L.

Definition 4.7. A congruence relation Θ on a stone ADL L is said to be a
G-extention on L if α ⊆ Θ, for all α ∈ ConG(L).

Theorem 4.8. Let a be any element of a stone ADL L. Then a relation ψ(a)⊥ =

{(x, y) ∈ L×L | x∗∧a = y∗∧a} is a G-extension on L such that [0∗]ψ(x)⊥ = (x)⊥.

Proof. Clearly, ψ(a)⊥ is an equivalence relation on L. Let (x, y), (z, w) ∈ ψ(a)⊥ .
Then x∗ ∧ a = y∗ ∧ a and z∗ ∧ a = w∗ ∧ a. Now, (x ∧ z)∗ ∧ a = (x∗ ∨ z∗) ∧
a = (x∗ ∧ a) ∨ (z∗ ∧ a) = (y∗ ∧ a) ∨ (w∗ ∧ a) = (y∗ ∨ w∗) ∧ a = (y ∧ w)∗ ∧ a.
Therefore (x ∧ z, y ∧ w) ∈ ψ(a)⊥ . Similarly, we get (z ∧ x, w ∧ y) ∈ ψ(a)⊥ . Now
(x∨z)∗∧a = x∗∧z∗∧a = x∗∧a∧z∗∧a = y∗∧a∧w∗∧a = y∗∧w∗∧a = (y∨w)∗∧a.
Therefore (x ∨ z, y ∨ w) ∈ ψ(a)⊥ . Similarly, we get that (z ∨ x, w ∨ y) ∈ ψ(a)⊥ .
Let (x, y) ∈ ψ(a)⊥ . Then x∗ ∧ a = y∗ ∧ a. That (x∗ ∧ a)∗ = (y∗ ∧ a)∗. That
implies x∗∗ ∨ a∗ = y∗∗ ∨ a∗. That implies (x∗∗ ∨ a∗) ∧ a = (y∗∗ ∨ a∗) ∧ a. That
implies (x∗∗ ∧ a) ∨ (a∗ ∧ a) = (y∗∗ ∧ a) ∨ (a∗ ∧ a). That implies x∗∗ ∧ a = y∗∗ ∧ a.
Therefore (x∗, y∗) ∈ ψ(a)⊥ . Hence ψ(a)⊥ is a congruence relation on L. Let θ1
be any relation on L define as (x, y) ∈ θ1 iff x∗ = y∗. It is clear that θ1 is
a G-extension congruence on L. Let (x, y) ∈ θ1. Then x∗ = y∗. That implies
x∗ ∧ a = y∗ ∧ a, for all a ∈ L. That implies (x, y) ∈ ψ(a)⊥ . Therefore θ1 ⊆ ψ(a)⊥

and hence ψ(a)⊥ is a G-extension on L. Now, x ∈ [0∗]ψ(a)⊥ ⇔ (x, 0∗) ∈ ψ(a)⊥ ⇔

x∗ ∧ a = (0∗)∗ ∧ a⇔ x∗ ∧ a = 0 ⇔ x ∈ (a)⊥. Therefore [0∗]ψ(a)⊥ = (a)⊥.

We denote the set {ψ(a)⊥}a∈L of all G-extensions on L by Con⊥E(L).
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Theorem 4.9. Let L be a stone ADL. Then (Con⊥E(L),⊕,⊙, ψ(0∗)⊥ , ψ(0)⊥) is a

Boolean ring, where ψ(x)⊥ ⊕ ψ(y)⊥ = ψ(x)⊥+(y)⊥ and ψ(x)⊥ ⊙ ψ(y)⊥ = ψ(x)⊥•(y)⊥ .

Moreover Con⊥E(L) and A⊥(L) are isomorphic rings.

Proof. It is easy to verify that (Con⊥E(L),⊕,⊙, ψ(0∗)⊥ , ψ(0)⊥) and (A⊥(L),+, •,

(0∗)⊥, (0)⊥) are Boolean rings. Define f : A⊥(L) −→ Con⊥E(L) by f((x)⊥) =
ψ(x)⊥ . Let (x)⊥, (y)⊥ ∈ A⊥(L) with (x)⊥ = (y)⊥. Then x ∈ (y)⊥ and y ∈ (x)⊥.
That implies x∗∧y = 0 and y∗∧x = 0. Hence x∗∗∧y = y and y∗∗∧x = x. Now, we
prove that ψ(x)⊥ = ψ(y)⊥ . Let (a, b) ∈ ψ(x)⊥ . Then a

∗∧x = b∗∧x. Now a∗∧y = a∗∧
x∗∗∧y = a∗∗∗∧x∗∗∧y = (a∗∧x)∗∗∧y = (b∗∧x)∗∗∧y = b∗∗∗∧x∗∗∧y = b∗∧x∗∗∧y =
b∗∧y. That implies (a, b) ∈ ψ(y)⊥ . Therefore ψ(x)⊥ ⊆ ψ(y)⊥ . Similarly, we get that
ψ(y)⊥ ⊆ ψ(x)⊥ . Therefore ψ(x)⊥ = ψ(y)⊥ and hence f is well defined. Let x, y ∈ L

with ψ(x)⊥ = ψ(y)⊥ . We prove that (x)⊥ = (y)⊥. Now, a ∈ (x)⊥ ⇔ a∗ ∧ x = 0 =

(0∗∗) ∧ x ⇔ (a, 0∗) ∈ ψ(x)⊥ = ψ(y)⊥ ⇔ a∗ ∧ y = 0∗∗ ∧ y = 0 ⇔ a ∈ (y)⊥. That

implies (x)⊥ = (y)⊥ and hence f is one-one. Clearly, f is onto. Let (x)⊥, (y)⊥ ∈
A⊥(L). Now f((x)⊥ + (y)⊥) = ψ((x)⊥+(y)⊥) = ψ(x)⊥ ⊕ψ(y)⊥ = f((x)⊥) + f((y)⊥).

Now, f((x)⊥ • (y)⊥) = ψ((x)⊥•(y)⊥) = ψ(x)⊥ ⊙ψ(y)⊥ = f((x)⊥) • f((y)⊥). We have

that f((0∗)⊥) = ψ(0∗)⊥ and f((0)⊥) = ψ(0)⊥ . Therefore f is homomorphism and
hence f is isomorphism.

Corollary 4.10. Let (Con⊥E(L),⊕,⊙, ψ(0∗)⊥ , ψ(0)⊥) be a Boolean ring of all G-

extensions on a stone ADL L. Then (Con⊥E(L),∨,∩,
′ , ψ(0∗)⊥ , ψ(0)⊥) is a Boolean

lattice, where ψ(x)⊥∨ψ(y)⊥ = ψ(x∧y)⊥ , ψ(x)⊥∩ψ(y)⊥ = ψ(x∨y)⊥ and ψ′
(x)⊥

= ψ(x∗)⊥ .

Further more, A⊥(L) and Con⊥E(L) are isomorphic as a Boolean lattices.

Proof. We prove that (Con⊥E(L),∨,∩,
′ , ψ(0∗)⊥ , ψ(0)⊥) is a Boolean lattice. De-

fine ψ(x)⊥ ∨ ψ(y)⊥ = ψ(x)⊥ ⊕ ψ(y)⊥ ⊕ (ψ(x)⊥ ⊙ ψ(y)⊥), ψ(x)⊥ ∩ ψ(y)⊥ = ψ(x)⊥ ⊙

ψ(y)⊥ , ψ
′
(x)⊥

= ψ(0)⊥ ⊕ψ(x)⊥ . By the known theorem, we have that (x)⊥+(y)⊥ =

((x ∨ y)∗ ∧ (y ∨ x∗))⊥ and (x)⊥ • (y)⊥ = (x ∨ y)⊥. Now. ψ(x)⊥ ∨ ψ(y)⊥ =
ψ(x)⊥ ⊕ ψ(y)⊥ ⊕ (ψ(x)⊥ ⊙ ψ(y)⊥) = ψ(x)⊥+(y)⊥ ⊕ ψ(x)⊥•(y)⊥ = ψ(x∧y)⊥ ⊕ ψ(x∨y)⊥ =
ψ(x∧y)⊥+(x∨y)⊥ = ψ((x∧y)∧(x∨y))⊥ = ψ(x∧y)⊥ . Now, ψ(x)⊥ ∩ψ(y)⊥ = ψ(x)⊥⊙ψ(y)⊥ =
ψ(x)⊥•(y)⊥ = ψ(x∨y)⊥ . Now, ψ

′
(x)⊥

= ψ(0)⊥ ⊕ ψ(x)⊥ = ψ(x)⊥=(0)⊥ = ψ(x∗)⊥ . There-

fore (Con⊥E(L),∨,∩,
′ , ψ(0∗)⊥ , ψ(0)⊥) is a Boolean lattice. Define f : A⊥(L) −→

Con⊥E(L) by f((x)
⊥) = ψ(x)⊥ . Clearly, f is isomorphism.

Definition 4.11. Let F be an N -filter of a stone ADL L. Define a relation ψF

on L as ψF = {(x, y) ∈ L× L | x∗ ∧ f = y∗ ∧ f, for some f ∈ F}.

Theorem 4.12. Let F be an N -filter of a stone ADL L. Then ψF is a G-
extension on L such that [0∗]ψF = F.
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Proof. Clearly, we have that ψF is a congruence relation on L. Define a relation
θ1 on L as (x, y) ∈ θ1 iff x∗ = y∗. Clearly, we get that θ1 ∈ ConG(L). Let
(x, y) ∈ θ1. Then x∗ = y∗. That implies x∗ ∧ 0∗ = y∗ ∧ 0∗, where 0∗ ∈ F.
Therefore (x, y) ∈ ψF and hence θ1 ⊆ ψF . Now, a ∈ [0∗]ψF ⇔ (a, 0∗) ∈ ψF ⇔
a∗ ∧ f = (0∗)∗ ∧ f, for some f ∈ F ⇔ a∗ ∧ f = 0 ⇔ a ∈ (f)⊥ ⇔ a ∈

⋃

f∈F (f)
⊥ =

F ⇔ a ∈ F. Therefore [0∗]ψF = F.

Theorem 4.13. Let F,G be any two N -filters of a stone ADL L. Then we have

the following:

(1) F ⊆ G if and only if ψF ⊆ ψG.

(2) ψ ⊆ ψF , where ψ is the Glivenko congruence on L.

(3) ψF = ψ if and only if F = (0∗)⊥.

(4) ψF = ∇L if and only if F = (0)⊥.

(5) The quotient ADL L/ψF forms a Boolean Lattice.

Proof. (1) Assume that F ⊆ G. Let (a, b) ∈ ψF . Then there exists an element f
of F such that a∗∧f = b∗∧f. Since F ⊆ G, we get that f ∈ G. Since a∗∧f = b∗∧f,
we get that (a, b) ∈ ψG. Therefore ψF ⊆ ψG. Conversely, assume that ψF ⊆ ψG.
We prove that F ⊆ G. It enough to show that [0∗]ψF ⊆ [0∗]ψG. Let a ∈ [0∗]ψF .
Then (a, 0∗) ∈ ψF . By our assumption, we get that (a, 0∗) ∈ ψG. That implies
a ∈ [0∗]ψG and hence [0∗]ψF ⊆ [0∗]ψG. Since ψF , ψG are G-extensions onL and
F,G are N -filters of L, we get that F = [0∗]ψF ⊆ [0∗]ψG = G. Therefore F ⊆ G.

(2) Let ψ be the Glivenko congruence on a stone ADL L. Clearly, we have
that ψF is a G-extension on L. Since F is an N -filter of L, we get that ψ ⊆ ψF .

(3) Assume that ψF = ψ. We prove that (0∗)⊥ = F. Clearly, we have that
(0∗)⊥ ⊆ F. Let a ∈ F. Since a∗ ∧ a = 0∗∗ ∧ a, we get that (a, 0∗) ∈ ψF = ψ.
That implies a∗ = 0∗∗ = 0. That implies a ∈ D(L) = (0∗)⊥. Therefore F ⊆ (0∗)⊥

and hence F = (0∗)⊥. Conversely, assume that F = (0∗)⊥. By (2), we have
that ψ ⊆ ψF . Let (a, b) ∈ ψF . Then there exists an element f ∈ F such that
a∗ ∧ f = b∗ ∧ f. Since f ∈ F, we get that f ∈ (0∗)⊥ = D(L). That implies f∗ = 0
and hence f∗∗ = 0∗. Now a∗ = 0∗ ∧ a∗ = f∗∗ ∧ a∗∗∗ = (a∗ ∧ f)∗∗ = (b∗ ∧ f)∗∗ =
f∗∗ ∧ b∗∗∗ = 0∗ ∧ b∗ = b∗. That implies a∗ = b∗ and hence (a, b) ∈ ψ. Therefore
ψF ⊆ ψ. Thus ψF = ψ.

(4) Assume that ψF = ∇L. Then F = [0∗]ψF = L and hence F = L = (0)⊥.
Conversely, assume that F = (0)⊥. Then F = [0∗]ψF = L and hence ψF = ∇L.

(5) Clearly, L/ψF is a Boolean lattice.

Theorem 4.14. Let Θ be any G-extesion on a stone ADL. Then we have the

following:

(1) [0∗]Θ is an N -filter of L.

(2) Θ can be expressed as ψF , for some N -filter F of L.
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Proof. (1) Clearly, 0∗ ∈ [0∗]Θ and hence [0∗]Θ is a non-empty set. Let a, b ∈
[0∗]Θ. Then (a, 0∗), (b, 0∗) ∈ Θ. That implies a∗ = 0∗∗ and b∗ = 0∗∗. Now, (a ∧
b)∗ = a∗ ∨ b∗ = 0∗∗. That implies (a ∧ b, 0∗) ∈ Θ and hence a ∧ b ∈ [0∗]Θ. Let
a ∈ [0∗]Θ. Then (a, 0∗) ∈ Θ and hence a∗ = 0∗∗. Let r be and element of L. Now,
(r ∨ a)∗ = r∗ ∧ a∗ = 0∗∗. That implies (r ∨ a, 0∗) ∈ Θ and hence r ∨ a ∈ [0∗]Θ.
Therefore [0∗]Θ is a filter of L. Clearly, we have that [0∗]Θ ⊆ ([0∗]Θ)⊥. Let
a ∈ ([0∗]Θ)⊥. Then there exists an element x ∈ [0∗]Θ such that a∗ ∧ x = 0. That
implies x∗ ∧ a∗ = a∗. Since x ∈ [0∗]Θ, we get that x∗ = 0. Since x∗ ∧ a∗ = a∗,
we get that a∗ = 0 = 0∗∗ and hence a ∈ [0∗]Θ. Therefore [0∗]Θ = ([0∗]Θ)⊥. Thus
[0∗]Θ is an N -filter of L.

(2) Let (a, b) ∈ Θ. Then a∗ = b∗. That implies a∗∗ = b∗∗ and hence (a∗, b∗) ∈
Θ. Since (a, b) ∈ Θ, we get that (a∨a∗, b∨b∗) ∈ Θ. That implies (a∗∨a∗∗, b∗∨b∗∗) ∈
Θ and (a∗ ∨ b∗∗, b∗ ∨ b∗∗) ∈ Θ. That implies (0∗, b∗ ∨ a∗∗) ∈ Θ and (a∗ ∨ b∗∗, 0∗) ∈
Θ. That implies b∗ ∨ a∗∗ ∈ [0∗]Θ and a∗ ∨ b∗∗ ∈ [0∗]Θ. Since [0∗]Θ is an N -
filter of L, we have that [0∗]Θ = [0∗]ψ[0∗]Θ and hence b∗ ∨ a∗∗ ∈ [0∗]ψ[0∗]Θ and
a∗∨b∗∗ ∈ [0∗]ψ[0∗]Θ. That implies (b∗∨a∗∗, 0∗) ∈ ψ[0∗]Θ and (a∗∨b∗∗, 0∗) ∈ ψ[0∗]Θ.
That implies (a∗ ∨ b∗∗, b∗ ∨ a∗∗) ∈ ψ[0∗]Θ. That implies (a∗ ∧ (a∗ ∨ b∗∗), a∗ ∧
(b∗ ∨ a∗∗)) ∈ ψ[0∗]Θ and (b∗ ∧ (a∗ ∨ b∗∗), b∗ ∧ (b∗ ∨ a∗∗)) ∈ ψ[0∗]Θ. That implies
(a∗, a∗ ∧ b∗) ∈ ψ[0∗]Θ and (b∗ ∧ a∗, b∗) ∈ ψ[0∗]Θ. Therefore (a∗, b∗) ∈ ψ[0∗]Θ and
hence (a∗∗, b∗∗) ∈ ψ[0∗]Θ. Since a∨ a

∗, b ∨ b∗ ∈ D(L) ⊆ [0∗]Θ = [0∗]ψ[0∗]Θ, we get
that (a∨a∗, b∨b∗) ∈ ψ[0∗]Θ. That implies (a∗∗∧(a∨a∗), b∗∗∧(b∨b∗)) ∈ ψ[0∗]Θ and
hence (a, b) ∈ ψ[0∗]Θ. Therefore Θ ⊆ ψ[0∗]Θ. Let (a, b) ∈ ψ[0∗]Θ. Then (a∗, b∗) ∈
ψ[0∗]Θ. That implies (a∗ ∨ a∗∗, b∗ ∨ a∗∗) ∈ ψ[0∗]Θ and (a∗ ∨ b∗∗, b∗ ∨ b∗∗) ∈ ψ[0∗]Θ.
That implies (0∗, b∗ ∨ a∗∗) ∈ ψ[0∗]Θ and (a∗ ∨ b∗∗, 0∗) ∈ ψ[0∗]Θ. That implies
b∗ ∨ a∗∗ ∈ [0∗]ψ[0∗]Θ = [0∗]Θ and a∗ ∨ b∗∗ ∈ [0∗]ψ[0∗]Θ = [0∗]Θ. That implies
(0∗, b∗∨a∗∗) ∈ Θ and (a∗∨b∗∗, 0∗) ∈ Θ. That implies (b∗∨a∗∗, a∗∨b∗∗) ∈ Θ. That
implies (a∗∧ (b∗∨a∗∗), a∗∧ (a∗∨b∗∗)) ∈ Θ and (b∗∧ (b∗∨a∗∗), b∗∧ (a∗∨b∗∗)) ∈ Θ.
That implies (a∗ ∧ b∗, a∗) ∈ Θ and (b∗, b∗ ∧ a∗) ∈ Θ. That implies (a∗, b∗) ∈ Θ
and hence (a∗∗, b∗∗) ∈ Θ. Since (a, b) ∈ Θ, we get that (a ∨ a∗, b ∨ b∗) ∈ Θ. Since
(a∗∗, b∗∗) ∈ Θ, we get that (a∗∗∧(a∨a∗), b∗∗∧(b∨b∗)) ∈ Θ. That implies (a, b) ∈ Θ
and hence ψ[0∗]Θ ⊆ Θ. Thus ψ[0∗]Θ = Θ.

Theorem 4.15. Let L be a stone ADL. Then there is one-to-one correspondence

between the set FN (L) of all N -filters and the set ConE(L) of all G-extensions
on L.

Proof. Clearly, we have that (FN (L),⊆) and (ConE(L),⊆) are posets. Now
define f : FN (L) −→ ConE(L) by f(G) = ψG, for all G ∈ FN (L). By Theorem
4.13(1), we have that f is one-one. Let Θ ∈ ConE(L). Then by Theorem 4.14(1),
[0∗]Θ is an N -filter of L and hence Θ = ψ[0∗]Θ = f([0∗]Θ). Therefore f is onto.
By Theorem 4.13(1), we get that G ⊆ H if and only if f(G) ⊆ f(H). Therefore f
is an order preserving mapping. Similarly, we get f−1 is also an order preserving
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mapping. Hence f is an order isomorphism. Thus FN (L) and ConE(L) are
isomorphic partially ordered sets.

Corollary 4.16. Let L be a stone ADL. Then a poset ConE(L) forms a bounded

distributive lattice.

Now, we introduce the following two notations.

(1) For any filter F of L, define an operator α as α(F ) = {(a)⊥ | a ∈ F}.

(2) For any ideal I of A⊥(L), define an operator β as β(I) = {a ∈ L | (a)⊥ ∈ I}.

Lemma 4.17. Let L be a stone ADL with maaimal elements. Then we have the

following:

(1) For any filter F of L,α(F ) is an ideal of A⊥(L).

(2) For any ideal I of A⊥(L), β(I) is a filter of L.

(3) For any filters F,G of L, F ⊆ G⇒ α(F ) ⊆ α(G).

(4) For any ideals I, J of A⊥(L), I ⊆ J ⇒ β(I) ⊆ β(J).

Proof. (1) Let F be a filter of L. Since 0∗ ∈ F, we get that (0∗)⊥ ∈ α(F ) and
hence α(F ) 6= ∅. Let (a)⊥, (b)⊥ ∈ α(F ). Now, (a)⊥ ∨ (b)⊥ = (a∧ b)⊥ ∈ α(F ). Let
(a)⊥ ∈ α(F ) and (r)⊥ ∈ A⊥(L). Then (a)⊥ ∩ (r)⊥ = (a ∨ r)⊥ ∈ α(F ). Therefore
α(F ) is an ideal in A⊥(L).

(2) Let I be an ideal of A⊥(L). Since (0∗)⊥ ∈ I, we get that 0∗ ∈ β(I). Then
β(I) 6= ∅. Let a, b ∈ β(I). Then (a)⊥, (b)⊥ ∈ I. Hence (a∧ b)⊥ = (a)⊥ ∨ (b)⊥ ∈ I.
Thus a ∧ b ∈ β(I). Let a ∈ β(I) and r ∈ L. Then (a)⊥ ∈ I and (r)⊥ ∈ A⊥(L).
Since I is an ideal of A⊥(L), we get (a∨r)⊥ = (a)⊥∩(r)⊥ ∈ I. Hence a∨r ∈ β(I).
Therefore β(I) is a filter of L.

(3) Let F,G be two filters of L. Suppose F ⊆ G.We prove that α(F ) ⊆ α(G).
Let (a)⊥ ∈ α(F ). Then a ∈ F ⊆ G. Hence (a)⊥ ∈ α(G). Thus α(F ) ⊆ α(G).

(4) Let I, J be two ideals of A⊥(L) such that I ⊆ J. We prove that β(I) ⊆
β(J). Let a ∈ β(I). Then (a)⊥ ∈ I ⊆ J and hence (a)⊥ ∈ J. Therefore a ∈ β(J).
Thus β(I) ⊆ β(J).

Proposition 4.1. Let L be a stone ADL. Then the map F 7→ β ◦ α(F ) is a

closure operator on the filters of L, i.e.,

(1) F ⊆ β ◦ α(F )

(2) F ⊆ G implies β ◦ α(F ) ⊆ β ◦ α(G)

(3) β ◦ α{β ◦ α(F )} = β ◦ α(F ) for any filters F,G of L.

Proof. (1) Let a ∈ F. Then we get (a)⊥ ∈ α(F ). Hence (a)⊥ = (b)⊥ for some
b ∈ F. Since α(F ) is an ideal of A⊥(L), we get that a ∈ β ◦ α(F ). Therefore
F ⊆ β ◦ α(F ).
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(2) Suppose F ⊆ G. Let a ∈ β ◦α(F ). Then (a)⊥ ∈ α(F ). Hence (a)⊥ = (b)⊥

for some b ∈ F ⊆ G. Hence (a)⊥ = (b)⊥ ∈ α(G). Since α(G) is an ideal of A⊥(L),
we get a ∈ β ◦ α(G). Therefore β ◦ α(F ) ⊆ β ◦ α(G).

(3) Clearly, β ◦ α(F ) ⊆ β ◦ α{β ◦ α(F )}. Let a ∈ β ◦ α{β ◦ α(F )}. Then
(a)⊥ ∈ α{β ◦α(F )}. Hence (a)⊥ = (b)⊥ for some b ∈ β ◦ α(F ). Now b ∈ β ◦α(F )
implies that (a)⊥ = (b)⊥ ∈ α(F ). Therefore a ∈ β ◦ α(F ).

Theorem 4.18. Let F be a filer of a stone ADL L. Then F is an N -filter of L
if and only if β ◦ α(F ) = F.

Proof. Assume that F is an N -filter of L. Clearly, we have that F ⊆ β ◦ α(F ).
Let a ∈ β◦α(F ). Then (a)⊥ ∈ α(F ). Then there exists an element b ∈ F such that
(a)⊥ = (b)⊥. Since F is an N -filter, we get that a ∈ F and hence β ◦ α(F ) ⊆ F.
Therefore β ◦α(F ) = F. Conversely, assume that β ◦α(F ) = F. We prove that F
is an N -filter of L. Let a, b ∈ L with (a)⊥ = (b)⊥ and a ∈ F. Since a ∈ F, we get
that a ∈ β ◦ α(F ). Then (a)⊥ ∈ α(F ). Then there exists an element c ∈ F such
that (a)⊥ = (c)⊥. That implies (b)⊥ = (c)⊥ and c ∈ F. That implies (b)⊥ ∈ α(F ).
That implies b ∈ β ◦α(F ). That implies b ∈ F and hence F is an N -filter of L.

Definition 4.19. For any prime filter P of a stone ADL L, define ℓ(P ) = {a ∈
L | a∗ /∈ P}.

Proposition 4.2. Let P be a prime filter of a stone ADL L. Then ℓ(P ) is a filter

of L containing P.

Proof. Clearly, 0∗ ∈ ℓ(P ). Let a, b ∈ ℓ(P ). Then a∗ /∈ P and b∗ /∈ P. Since P is
prime, we get that a∗ ∨ b∗ /∈ P and hence (a∧ b)∗ /∈ P. That implies a∧ b ∈ ℓ(P ).
Let a ∈ ℓ(P ). Then a∗ /∈ P. Let r be any element of L.We prove that (r∨a)∗ /∈ P.
Suppose (r∨a)∗ ∈ P. Then r∗∧a∗ ∈ P and hence (r∗∧a∗)∨a∗ ∈ P. That implies
a∗ ∈ P, which is a contradiction. Therefore (r ∨ a)∗ /∈ P and hence r ∨ a ∈ ℓ(P ).
Thus ℓ(P ) is a filter of L. Let a ∈ P. We prove that a ∈ ℓ(P ). Suppose a /∈ ℓ(P ).
Then a∗ ∈ P and hence a∗ ∧ a ∈ P. That implies 0 ∈ P. That implies P = L,
which is a contradiction. Therefore a ∈ ℓ(P ) and hence P ⊆ ℓ(P ).

Theorem 4.20. Let P be a prime filter of a stone ADL L. For any x ∈ L,
(x)⊥ =

⋂

x∈P ℓ(P ).

Proof. Let x be any element of P with a ∈ (x)⊥. Then a∗∧x = 0.We prove that
a ∈ ℓ(P ). Suppose a /∈ ℓ(P ). Then a∗ ∈ P. Since x ∈ P, we get that a∗∧x ∈ P and
hence 0 ∈ P. That implies P = L, which is a contradiction. Therefore a ∈ ℓ(P ).
Hence (x)⊥ ⊆ ℓ(P ), for every x ∈ P. Thus (x)⊥ ⊆

⋂

x∈P ℓ(P ). Let a ∈
⋂

x∈P ℓ(P ).
Then a ∈ ℓ(Q), for all prime filter Q of L with x ∈ Q. Then a∗ /∈ Q. We prove
that a∗ ∧ x = 0. Suppose a∗ ∧ x 6= 0. Then there exists a maximal filter M of L
such that a∗∧x ∈M. That implies a∗, x ∈M. Since x ∈M, we get that a ∈ ℓ(M).
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That implies a∗ /∈M, which is a contradiction. Therefore a∗∧x = 0. That implies
a ∈ (x)⊥ and hence

⋂

x∈P ℓ(P ) ⊆ (x)⊥. Therefore (x)⊥ =
⋂

x∈P ℓ(P ).

Corollary 4.21. Let P be a prime filter of a stone ADL. If x ∈ P then (x)⊥ ⊆
ℓ(P ).

Definition 4.22. An N -filter P of a stone ADL L is said to be an N -prime filter
if P is a prime filter of L.

Theorem 4.23. Let F be an N -filter and I, an ideal of L with F ∩ I = ∅. There
exists an N -prime filter P of L such that F ⊆ P and P ∩ I = ∅.

Proof. Consider F = {G | G is an N -filter and G∩ I = ∅}. Clearly F ∈ F and F

satisfies the Zorn’s lemma hypothesis. Then F has a maximal element say N. Let
a, b ∈ L with a∨b ∈ N.We prove that either a ∈ N or b ∈ N. Suppose that a /∈ N
and b /∈ N. Then N ⊂ N ∨ [a) ⊆ β ◦α(N ∨ [a)) and N ⊂ N ∨ [b) ⊆ β ◦α(N ∨ [b)).
That implies N ⊂ β ◦ α(N ∨ [a)) and N ⊂ β ◦ α(N ∨ [b)). Since β ◦ α(M ∨ [a))
and β ◦ α(N ∨ [b)) are N -filters of L, we get that β ◦ α(N ∨ [a)) ∩ I 6= ∅ and
β◦α(N ∨ [b))∩I 6= ∅. Then choose x ∈ β◦α(N ∨ [a))∩I and y ∈ β◦α(N ∨ [b))∩I.
Therefore x∨ y ∈ I and x∨ y ∈ β ◦α(N ∨ [a))∩β ◦α(N ∨ [b)) = β ◦α((N ∨ [a))∩
(N ∨ [b))) = β ◦ α(N ∨ [a ∨ b)) = β ◦ α(N) = N. Therefore N ∩ I 6= ∅, which is a
contradiction. Hence a ∈ N or b ∈ N. Thus N is an N -prime filter of L.

Theorem 4.24. Let L be a stone ADL. Then every proper N -filter of L is the

intersection of all N -prime filters containing it.

Proof. Let F be a proper N -filter of L. Consider the following set F0 =
⋂

{P | P
is an N -prime filter and F ⊆ P}. Clearly, F ⊆ F0. Let x /∈ F. Take F = {G | G
is a N -filter,F ⊆ G,x /∈ G}. Clearly, we have that F ∈ F and F satisfies the
hypothesis of Zorn’s lemma. That implies F has a maximal element N, say. We
prove that N is prime. Suppose that a, b ∈ L with a /∈ N and b /∈ N. Then
N ⊂ N ∨ [a) ⊆ β ◦α{N ∨ [a)} and N ⊂ N ∨ [b) ⊆ β ◦α{N ∨ [b)}. By maximality
of N, we get x ∈ β ◦ α{N ∨ [a)} and x ∈ β ◦ α{N ∨ [b)}. Hence we get that
x ∈ β◦α{N ∨ [a)}∩β◦α{N ∨ [b)} = β◦α{[N ∨ [a)]∩ [N∨ [b)]} = β◦α{N ∨ [a∨b)}.
If a ∨ b ∈ N, then x ∈ β ◦ α(N) = N, which is a contradiction. Thus N is an
N -prime filter such that x /∈ N. Therefore x /∈ F0 and hence F = F0. Thus every
proper N -filter of L is the intersection of all N -prime filters containing it.

5. The space of N -prime filters

In this section, we discuss some topological concepts on the collection of N -prime
filters of a Stone ADL.
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Let SpecNF
(L) be the set of all N -prime filters of a stone ADL L. For any

A ⊆ L, define h(A) = {P ∈ SpecNF
(L) | A * P} and for any a ∈ L; h(a) =

h({a}). For any two subsets A and B of L, it is obvious that A ⊆ B implies
h(A) ⊆ h(B). The following observations can be verified directly.

Lemma 5.1. For any a, b ∈ L, the following conditions holds.

(1)
⋃

a∈L h(a) = SpecNF
(L)

(2) h(a) ∩ h(b) = h(a ∨ b)

(3) h(a) ∪ h(b) = h(a ∧ b)

(4) h(a) = ∅ ⇔ a is maximal.

From the above Lemma, it can be easily observed that the collection {h(a) |
a ∈ L} forms a base for a topology on SpecNF

(L) which is called a hull-kernel
topology.

Theorem 5.2. For any filter F of L, h(F ) = h(β ◦ α(F )).

Proof. Clearly we get that h(F ) ⊆ h(β ◦ α(F )). Let P ∈ h(β ◦ α(F )). Then
β ◦α(F ) * P. Therefore we can choose an element a ∈ β ◦α(F ) such that a /∈ P.
Since a ∈ β ◦α(F ), we have (a)⊥ ∈ α(F ) and hence there exists an element b ∈ F
such that (a)⊥ = (b)⊥. Suppose F ⊆ P. Then b ∈ P. Since P is an N -filter of
L, we get that a ∈ P, which is a contradiction. Therefore F * P and hence
P ∈ h(F ). Thus h(β ◦ α(F )) ⊆ h(F ).

In the following theorem, the compact open set of SpecNF
(L) are character-

ized.

Theorem 5.3. For any stone ADL, the set of all compact open sets of SpecNF
(L)

is the base {h(a) | a ∈ L}.

Proof. Let a ∈ L with h(a) ⊆
⋃

i∈∆ h(ai). Let F be a filter generated by {ai | i ∈
∆}. Suppose a /∈ β ◦ α(F ). Since β ◦ α(F ) is an N -filter of L, there exists an
N -prime filter P of L such that a /∈ P and β ◦ α(F ) ⊆ P. Since a /∈ P, we get
that P ∈ h(a) ⊆

⋃

i∈∆ h(ai). That implies ai /∈ P, for some i ∈ ∆, which is a
contradiction to that F ⊆ β ◦ α(F ) ⊆ P. Therefore a ∈ β ◦ α(F ). That implies
(a)⊥ ∈ α(F ) and hence there exists an element b ∈ F such that (a)⊥ = (b)⊥.
Since F is a filter generated by {ai | i ∈ ∆}, we get that b = a1 ∧ a2 ∧ · · · ∧ an,
for some a1, a2, . . . , an ∈ {ai | i ∈ ∆}. That implies (b)⊥ = (a1 ∧ a2 ∧ · · · ∧ an)

⊥.
Let P ∈ h(a). Then a /∈ P. Suppose P /∈

⋃

i∈∆ h(ai). Then ai ∈ P, for all
i = 1, 2, . . . , n and hence a1 ∧ a2 ∧ · · · ∧ an ∈ P. That implies b ∈ P, which is
a contradiction. Therefore P ∈

⋃

i∈∆ h(ai) and hence h(a) ⊆
⋃n

i=1 h(ai). Thus
h(a) is a compact space. It is enough to show that every compact open subset of
SpecNF

(L) is of the form h(a), for some a ∈ L. Let C be a compact open subset of
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SpecNF
(L). Since C is open, we get that C =

⋃

x∈A h(x), for some A ⊆ L. Since C
is compact, there exist x1, x2, . . . , xn ∈ A such that C =

⋃n
i=1 h(xi) = h(

∧n
i=1 xi).

Therefore C = h(a), for some a ∈ L.

Corollary 5.4. Let L be a stone ADL. Then SpecNF
(L) is a compact space.

Theorem 5.5. Let L be a stone ADL. Then the following are equivalent:

(1) SpecNF
(L) is T1-space

(2) every N -prime filter is maximal

(3) every N -prime filter is minimal

(4) SpecNF
(L) is Haudorff space.

Proof. (1)⇒(2) Assume that SpecNF
(L) is T1-space. Let P be an N -prime filter

of L. Suppose Q is any N -prime filter of L with P ( Q. Since SpecNF
(L) is T1-

space, there exist basic open sets h(a) and h(b) such that P ∈ h(a) \ h(b) and
Q ∈ h(b) \ h(a). Since P /∈ h(b), we get that b ∈ P $ Q. Therefore Q /∈ h(b),
which is a contradiction. Hence P is maximal.

(2)⇒(3) It is obvious.
(3)⇒(1) Assume that every N -prime filter is minimal. Let P,Q ∈ SpecNF

(L)
with P 6= Q. Since P and Q are minimal, it is clear that P * Q and Q * P. Then
there exist a, b ∈ L such that a ∈ P \Q and b ∈ Q\P. That implies P ∈ h(b)\h(a)
and Q ∈ h(a) \ h(b). Therefore SpecNF

(L) is T1-space.
(2)⇒(4) Assume that everyN -prime filter is maximal. Let P,Q ∈ SpecNF

(L)
with P 6= Q. Choose an element x ∈ P such that x /∈ Q. By our assumption, P
is maximal filter of L. Since x ∈ P, then there y /∈ P such that x ∨ y is maximal
element. So that Q ∈ h(x) and P ∈ h(y). Now h(x) ∩ h(y) = h(x ∨ y) = ∅, since
x ∨ y is maximal.

(4)⇒(1) Clear.
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