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Abstract

The balancing and Lucas-balancing numbers are solutions of second order
recurrence relations. A linear combination of these numbers can also be
obtained as solutions of a fourth order recurrence relation. This recurrence
relation can be extended to generalized quaternion algebras. Also, the fourth
order recurrence relation has application in coding theory.
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1. Introduction

Flaut and Savin [6] studied a special number sequence satisfying a recurrence
relation of order three. They obtained a linear combination of the Pell and Lucas-
Pell numbers as solution of the the recurrence relation, which they named as the
generalized Pell-Fibonacci-Lucas numbers. Motivated by their work, we consider
a fourth-order difference equation and obtain some special number sequences as
a particular case of this equation. We use this recurrence relation in quaternion
algebra.

We start with a fourth order recurrence relation

(1.1) Yn = aYn−1 + bYn−2 + cYn−3 + dYn−4,

which is defined on the finite field of integers modulo p denoted by Zp, where p is a
positive prime number and the initial values for (1.1) are given by Y0 = i0, Y1 = i1,
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Y2 = i2 and Y3 = i3. If a = 6, b = −1, c = d = 0, i0 = 0, i1 = 1, then (1.1)
reduces to the recurrence relation for balancing numbers and if a = 6, b = −1,
c = d = 0, i0 = 1, i1 = 3, (1.1) reduces to the recurrence relation of Lucas-
balancing numbers. In this paper, we study the properties of a sequence arising
out of the recurrence relation (1.1). Apart from that, we use the sequence {Yn}
to study some properties of quaternion algebra. In particular, we obtain certain
formulas relating the product of balancing and Lucas-balancing numbers which
are used in proving certain results involving quaternions. Finally, we conclude
this paper by providing some applications related to a sequence arising out of
(1.1).

The coding theory has been an emerging field in recent time for the applica-
tions point of view [2, 4, 7, 11, 12]. The utilization of coding-theoretic concepts
have been an interesting area and reinterpretation of some earlier ideas on com-
plexity emerged in the past few years. The concept of error-correcting codes came
into existence for providing safety and security of sending information over noisy
channels.

In [1], Elhameed et al. studied the generalized Fibonacci and Pell numbers.
Furthermore, Voight [13] considered the arithmetic of quaternion algebras. In
a different work, Flaut and Savin [6] dealt with some special sequences from a
third degree difference equation. In [2], Basu and Prasad studied the generalized
relation of the code elements for the Fibonacci coding theory. Motivated by
these works, we introduce certain special numbers and exhibit their applications
in coding theory. In addition, the concept of coding theory will be used to find
certain polynomials which are used to prove an identity.

2. Coding theory

A code say C is a mapping from finite set say R
j
1 to another finite set Rj

2 which
possess a characteristic that while a string s1 is given, near to a valid encoding
say C(s2), it is possible to obtain the message s2 from the corrupted encoding
s1. There are a lot of applications of this property of the error-correcting codes
in recent times. Let C ⊂ Zn

p be a linear code of length n and (c0, c1, c2, . . . , cn−1)
be a codeword. Moreover, a linear code is said to be a cyclic code if

(c0, c1, c2, . . . , cn−1) ∈ C ⇒ (cn−1, c0, c1, c2, . . . , cn−2) ∈ C.

It is very beneficial and effective if each codeword in a cyclic code is illustrated
via polynomials. Hence, the main task is to associate a polynomial, known as the
associated code polynomial, to the codeword which has numerous applications.
Now, a code polynomial g(x) generates the cyclic code of length n if and only if
g(x)|xn−1. Furthermore, the polynomial xn−1

g(x) is said to be the check polynomial
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of C. Apart from that, the number of positions in which the symbols of the
corresponding codeword are varied is termed as the Hamming distance d′ between
two codewords of equal length n. Similarly, the number of symbols which differ
from the zero-symbol of the used alphabet is termed as the Hamming weight of
a code, denoted by w. Moreover the minimum Hamming distance say d′h and the
minimum Hamming weight say wh of a particular code is given by

(2.1) d′h = min{d′(c1, c2) : c1 6= c2, c1, c2 ∈ C}

and

(2.2) wh = min{w(c1, c2) : c1 6= c2, c1, c2 ∈ C},

respectively. Now, we apply the above definitions and concepts for constructing
an associated code polynomial which is associated with certain codeword.

In [6], authors have taken a D-polynomial associated with the sequence D,
as defined in their paper. Furthermore, they have established a relation involving
the D-polynomial (as defined in [6]), a cubic equation and the coefficient of the
sequence D. Hence, in a similar way, generalizing their result by considering a
fourth order difference equation, we construct our polynomial and name it the Y-
polynomial associated with the sequence (1.1) and state our result in the following
theorem.

Theorem 2.1. Let ld′ (p) be the period and βd′ (p) be the number of zeros in a

single period of the sequence in (1.1). Furthermore, let us consider a polynomial

δ(x) =
∑l

d
′ (p)

i=0 Yix
i ∈ Zp[x] which is associated with the sequence Y = {Yn} =

{Y0, Y1, . . . , Yn, . . . }, which behaves as a codeword and we name the polynomial

δ(x) as the Y-polynomial. Then, the following relation holds

δ(x)(dx4 + cx3 + bx2 + ax− 1)

= dYl−1x
l+3 + (dYl−2 + cYl−3)x

l+2 + (dYl−3 + cYl−2

+ bYl−1)x
l+1 + (aYl−1 + bYl−2 + cYl−3 + dYl−4)x

l

+ (−Y3 + aY2 + bY1 + cY0)x
3 + (−Y2 + aY1 + bY0)x

2 + (aY0 − Y1)x− Y0.

Proof. Let us denote ld′ (p) = l and let Yn = aYn−1+bYn−2+cYn−3+dYn−4, Y0 =
x0, Y1 = x1, Y2 = x2, Y3 = x3, be a difference equation of order four. Now, by
definition of a Y-polynomial δ(x),

(2.3) δ(x)(dx4 + cx3 + bx2 + ax− 1) = (dx4 + cx3 + bx2 + ax− 1)

l−1
∑

i=0

Yix
i.

It can be verified that the power of x, in the expansion of (2.3), varies from 0 to
l+3. Now, the coefficient of all xm, 4 ≤ m ≤ l−1, is obtained as −Ym+aYm−1+
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bYm−2+ cYm−3+ dYm−4. Using (1.1), it can be easily verified that the coefficient
of xm vanishes out for 4 ≤ m ≤ l − 1. So, the task is to calculate the coefficient
of xm for other possible values of m except 4 ≤ m ≤ l − 1. Furthermore,

l + 3 = 4 + (l − 1),

l + 2 = 4 + (l − 2) = 3 + (l − 1),

l + 1 = 4 + (l − 3) = 3 + (l − 2) = 2 + (l − 1),

l = 4 + (l − 4) = 3 + (l − 3) = 2 + (l − 2) = 1 + (l − 1),

3 = 0 + 3 = 1 + 2 = 2 + 1,

2 = 0 + 2 = 1 + 1 = 2 + 0,

1 = 0 + 1 = 1 + 0,

0 = 0 + 0.

So, the coefficients of xm are given by

m Coefficient

l + 3 dYl−1

l + 2 dYl−2 + cYl−3

l + 1 dYl−3 + cYl−2 + bYl−1

l aYl−1 + bYl−2 + cYl−3 + dYl−4

3 −Y3 + aY2 + bY1 + cY0

2 −Y2 + aY1 + bY0

1 aY0 − Y1

0 Y0

Hence,

δ(x)(dx4 + cx3 + bx2 + ax− 1)

= dYl−1x
l+3 + cYl−1x

l+2 + bYl−1x
l+1 + aYl−1x

l − Yl−1x
l−1

+ dYl−2x
l+2 + cYl−2x

l+1 + bYl−2x
l + aYl−2x

l−1 − Yl−2x
l−2

+ dYl−3x
l+1 + cYl−3x

l + bYl−3x
l−1 + aYl−3x

l−2 − Yl−3x
l−3

+ dYl−4x
l + cYl−4x

l−1 + bYl−4x
l−2 + aYl−4x

l−3 − Yl−4x
l−4

+ dYl−5x
l−1 + cYl−5x

l−2 + bYl−5x
l−3 + aYl−5x

l−4 − Yl−5x
l−5

+ · · ·+ dY5x
9 + cY5x

8 + bY5x
7 + aY5x

6 − Y5x
5 + dY4x

8

+ cY4x
7 + bY4x

6 + aY4x
5 − Y4x

4 + dY3x
7 + cY3x

6 + bY3x
5
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+ aY3x
4 − Y3x

3 + dY2x
6 + cY2x

5 + bY2x
4 + aY2x

3 − Y2x
2

+ dY1x
5 + cY1x

4 + bY1x
3 + aY1x

2 − Y1x+ dY0x
4 + cY0x

3

+ bY0x
2 + aY0x− Y0.

Now, by virtue of (1.1), we get the desired result.

2.1. Maximum distance separable code

Let us consider a linear code C, with dimension e, and length of the codewords
be n. If the code satisfies

(2.4) e+ d′ = n+ 1,

then C is called the Maximum distance separable(MDS) code.

2.1.1. Example–1

Here we take the example of tetranacci sequence {Yn} defined by Yn = Yn−1 +
Yn−2 + Yn−3 + Yn−4, Y0 = 0, Y1 = 1, Y2 = 1, Y3 = 2 and taking {Yn} modulo 3,
renders us the values 0, 1, 1, 2, 1, 2, 0, 2, 2, 0, 1, 2, 2, 2, 1, 1, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0 and
hence, lBn

(5) = 26 and βBn
(p) = 9. Also, the corresponding balancing polynomial

is given by b(x) = x+x2+2x3+x4+2x5+2x7+2x8+x10+2x11+2x12+2x13+
x14+x15+x17+2x19+2x22+x23. Furthermore, the Hamming distance generated
by the polynomial b′(x), of C, given by d′ = 17. Since n+1 = 27 6= d′ + e, hence
C is not an MDS code.

3. The generalized quaternion algebra related to the proposed

sequences

In [5, 10], Flaut and Savin introduced the generalized Fibonacci-Lucas numbers
and the generalized Fibonacci-Lucas quaternions and, in addition to it, several
properties of these quaternion elements were also obtained. Furthermore, as men-
tioned in the introduction section, the generalized Pell-Fibonacci-Lucas numbers
and the generalized Pell-Fibonacci-Lucas quaternions were introduced in [6]. In
a similar manner, we introduce the L-C sequence and the L-C quaternions in this
section.

A balancing number n is a positive integer that satisfies the Diophantine
equation 1+2+ · · ·+(n− 1) = (n+1)+ · · ·+(n+ r) for some positive integer r,
called the balancer corresponding to n [3]. The n-th balancing number is denoted
by Bn, for each n, 8B2

n + 1 is a perfect square and its positive square root Cn is
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called a Lucas-balancing number [9]. The balancing and Lucas-balancing numbers
are solutions of the Pell’s equation y2−8x2 = 1 and their Binet formulas are Bn =
α2n−β2n

α2−β2 and Cn = α2n+β2n

2 respectively, where α = 1+
√
2 and β = 1−

√
2. These

numbers satisfy the recurrence relations Bn+1 = 6Bn−Bn−1, Cn+1 = 6Cn−Cn−1

with initial terms B0 = 0, B1 = 1, C0 = 1 and C1 = 3 [8, 9] respectively.

Lemma 3.1. If n, l are positive integers, (Bn)n≥0 is the sequence of balanc-

ing numbers and (Cn)n≥0 is the sequence of Lucas-balancing numbers, then the

following statements hold:

(a) CnCn+l =
1
2(C2n+l + Cl);

(b) BnCn+l =
1
2(B2n+l −Bl);

(c) CnBn+l =
1
2(B2n+l +Bl);

(d) BnBn+l =
1
16 (C2n+l − Cl).

Proof. The proof of the lemma is trivial by virtue of Binet formulas for balancing
and Lucas-balancing numbers.

Let us define a sequence which is a linear combination of balancing numbers
and Lucas-balancing numbers

(3.1) l
s,t
n+1 = sBn + tCn+1,

where s and t are arbitrary integers and n ≥ 0 ∈ Z+ and we call (ls,tn )n≥1 as
the L-C sequence. Let us denote the rational generalized quaternion algebra as
H(z1, z2), where z1, z2 ∈ Q − {0} in which {1, g1, g2, g3} is the corresponding
basis, where 1 is the identity element and, in which, the multiplication of the
remaining elements possess the property given by

g1 · g1 = z1 g1 · g2 = g3 g1 · g3 = z1 · g2
g2 · g1 = −g3 g2 · g2 = z1 g2 · g3 = −z2 · g1

g3 · g1 = −z1 · g2 g3 · g2 = z2 · g1 g3 · g3 = z1 · z2

3.1. The L–C quaternion

Here, we define the nth L–C quaternion to be the quaternion element

Ls,t
n = ls,tn · 1 + l

s,t
n+1i+ l

s,t
n+2j + l

s,t
n+3k.

Lemma 3.2.

Ls,t
n = 0 ⇐⇒ s = t = 0.
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Proof. The converse part of the theorem is trivial, i.e., if s = t = 0, then

L0,0
n = l0,0n · 1 + l

0,0
n+1i+ l

0,0
n+2j + l

0,0
n+3k = 0.

Now, since {1, g1, g2, g3} is the basis of the generalized quaternion algebra
HQ(z1, z2), l

s,t
n = 0 = l

s,t
n+1 = l

s,t
n+2 = l

s,t
n+3, from which we get ls,tn−1 = 0, . . . , ls,t2 =

l
s,t
1 = 0. Now, by (3.1),

l
s,t
1 = sB0 + tC1 = 3t

and since l
s,t
1 = 0, we get

(3.2) t = 0.

In a similar manner, ls,t1 = 0 implies that sB1+tC2 = s+17t = 0 and consequently,
we obtain s = 0 from (3.2).

Lemma 3.3. The following result holds

sBn+1 + tCn = l−s,t
n + l

6s,0
n+1,∀n ∈ N− {0},

where (l−s,t
n )n≥1 denotes the L–C sequence as in (3.1).

Proof. By virtue of recurrence relation for balancing numbers,

sBn+1 + tCn = s(6Bn −Bn−1) + tCn = −sBn−1 + tCn + 6sBn = l−s,t
n + l

6s,0
n+1.

Definition 3.4. A subring U ⊆ H(z1, z2) is an order in H(z1, z2), if U is a

finitely generated Z-submodule of H(z1, z2).

Theorem 3.5. Let us consider the set defined by

U =

{

n
∑

i=1

16Lsi,ti
ni

: ni ∈ N∗, si, ti ∈ Z, i = 1, 2, . . . , n

}

∪ {1}.

Then, U is an order of the quaternion algebra HQ(z1, z2).

Proof. By virtue of Lemma 3.2, we have 0 ∈ U . We need to claim that U is a
Z-submodule of the generalized quaternion algebra HQ(z1, z2). Furthermore, we
have

(3.3) als,tn + bls
′,t′

m = las,atn + lbs
′,bt′

m ,

for n,m ∈ N∗, and a, b, s, t, s′, t′ are arbitrary integers. Now, (3.3) can be simpli-
fied as

aLs,t
n + bLs′,t′

m = Las,at
n + Lbs′,bt′

m .



236 A. Patra

Then, we obtain that U is a free Z-submodule for the quaternion algebra
HQ(z1, z2). Now we need to prove that U is subring of HQ(z1, z2), in order to
find an order of the generalized quaternion algebra. Let m and n be two integers
with n < m. Then,

16ls,tn · 16ls′,t′m = 16(sBn−1 + tCn) · 16(s′Bm−1 + t′Cm)

= 256ss′Bn−1Bm−1+ 256st′Bn−1Cm+ 256s′tBm−1Cn+ 256tt′CnCm.

By virtue of Lemma 3.1(a–d), we obtain

16ls,tn · 16ls′,t′m = 16ss′ (Cm+n−2 − Cm−n) + 128st′ (Bm+n−1 −Bm−n+1)

+ 128s′t (Bm+n−1 +Bm−n−1) + 128tt′(Cm+n +Cm−n)

= 128(s′tBm−n−1 + tt′Cm−n) + 16(−8st′Bm−n+1 − ss′Cm−n)

+ 16(8s′tBm+n−1 + ss′Cm+n−2) + 128(st′Bm+n−1 + tt′Cm+n)

= 16l8s
′t,8tt′

m−n + 16l8st
′,−ss′

m−n + 16l−48st′,0
m−n+1 + 16l−8s′t,ss′

m+n−2

+ 16l48s
′t,0

m+n−1 + 16l8st
′,8tt′

m+n .

Hence, we obtain 16ls,tn ·16ls′,t′m ∈ U , which implies that U is an order of HQ(z1, z2).

Conclusion

In this paper, some special numbers, which we call the L–C numbers, were ob-
tained as a particular case of a fourth order difference equation. Moreover, these
numbers were represented by the linear combination of some known number se-
quences, and furthermore, their quarternion elements have also been defined and
some properties related to them were proved. In addition to it, some applications
of the special number sequences were shown in the field of coding theory which
exhibits the importance of these sequences. One can study the properties and
applications of certain other number sequences obatined from other higher order
difference equations.
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