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Abstract

A generalized hypersubstitution of type τ = (n) is a function which
takes the n-ary operation symbol f to the term of the same type σ(f) which
does not necessarily preserve the arity. Let HypG(n) be the set of all these
generalized hypersubstitutions of type (n). The set HypG(n) with a binary
operation and the identity generalized hypersubstitution forms a monoid.
The objective of this paper is to study Green’s relations on the set of all
regular elements of HypG(n).
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1. Introduction

The concept of terms is one of the fundamental concepts of universal algebra.
Terms may be considered as words formed by letters. To define terms, one needs
variables and operation symbols. Let (fi)i∈I be a sequence of ni-ary operation
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symbols indexed by the set I where ni ∈ N
+ := N \ {0}. We denote by X :=

{x1, . . . , xn, . . .} a countably infinite set of symbols called variables and for each
n ≥ 1 let Xn := {x1, . . . , xn}. We call the sequence τ := (ni)i∈I of arities of fi,
the type. An n-ary term of type τ is defined inductively as follows.

(i) Every variable xj ∈ Xn is an n-ary term of type τ .

(ii) If t1, . . . , tni
are n-ary terms of type τ and fi is an ni-ary operation symbol,

then fi(t1, . . . , tni
) is an n-ary term of type τ .

Let Wτ (Xn) be the set of all n-ary terms of type τ which contains x1, . . . , xn and
is closed under finite application of (ii) and let Wτ (X) :=

⋃
n∈N+ Wτ (Xn) be the

set of all terms of type τ .

The application of terms in algebra is the defining of identities. We use identi-
ties to classify algebras into collections called varieties. Moreover, the knowledge
of the identities valid in algebra could be useful for solving functional equations
(see [1]). Not only the concept of identities is important in universal algebra but
also the concept of hyperidentities is so. We can also use hyperidentities to clas-
sify varieties into collections called hypervarieties. The main tool used to study
hyperidentities and hypervarieties is the concept of a hypersubstitution. The no-
tion of a hypersubstitution originated by Denecke, Lau, Pöschel, Schweigert [2].
A hypersubstitution of type τ is a map which takes every ni-ary operation symbol
to an ni-ary term of the same type. Such mapping can be uniquely extended to
a map defined on the set of all terms of the same type, and then any two such
hypersubstitutions can be composed in a natural way. They proved that the set
of all hypersubstitutions of type τ together with the identity forms a monoid. In
2000, Leeratanavalee and Denecke generalized the concepts of a hypersubstitu-
tion and a hyperidentity to the concepts of a generalized hypersubstitution and
a strong hyperidentity [4].

The concept of a regular subsemigroup plays an important role in the theory
of semigroups. Puninagool and Leeratanavalee determined all regular elements
in the monoid of all generalized hypersubstitutions of type τ = (n) [6]. In 2010,
Puninagool and Leeratanavalee studied Green’s relations on HypG(2) [5]. In this
paper, we study Green’s relations on some classes of elements of the monoid of
generalized hypersubstitutions of type τ = (n).

2. Preliminaries

In this section, we recall some basic concepts for the discussion in the next sec-
tion. Let τ = (ni)i∈I be a type. A generalized hypersubstitution of type τ is
a function which takes the ni-ary operation symbol fi to the term σ(fi) of the
same type which does not necessarily preserve the arity. The set of all generalized
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hypersubstitutions of type τ is denoted by HypG(τ).
To define a binary operation on the set of all generalized hypersubstitutions

of type τ , we have to define the concept of a generalized superposition of terms.

Definition 1 [4]. Let τ = (ni)i∈I and t, s1, . . . , sn ∈ Wτ (X). Then a generalized
superposition of terms

Sn : Wτ (X)×Wτ (X)n → Wτ (X)

is inductively defined by the following steps:

(i) If t = xj for 1 ≤ j ≤ n, then Sn(xj , s1, . . . , sn) := sj.

(ii) If t = xj for n < j, then Sn(xj , s1, . . . , sn) := xj.

(iii) If t = fi(t1, . . . , tni
), then Sn(fi(t1, . . . , tni

), s1, . . . , sn) := fi(S
n(t1, s1, . . . ,

sn), . . . , S
n(tni

, s1, . . . , sn)).

Every generalized hypersubstitution σ can be extended to a mapping σ̂ :
Wτ (X) → Wτ (X) by the following steps.

(i) σ̂[x] := x ∈ X.

(ii) σ̂[fi(t1 . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary operation sym-
bol fi and supposed that σ̂[tj], 1 ≤ j ≤ ni are already defined.

Then we define a binary operation ◦G on HypG(τ) by σ ◦G α := σ̂ ◦ α
where ◦ is the usual composition of mappings and σ, α ∈ HypG(τ). Let σid be
the hypersubstitution which maps each ni-ary operation symbol fi to the term
fi(x1, . . . , xni

). Leeratanavalee and Denecke proved the following proposition.

Proposition 1 [4]. For arbitrary terms t, t1, . . . , tn ∈ Wτ (X) and for arbitrary
generalized hypersubstitutions σ, α we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],

(ii) (σ̂ ◦ α)∧=σ̂ ◦ α̂.

By using the previous result, Leeratanavalee and Denecke proved that
HypG(τ) := (HypG(τ), ◦G, σid) is a monoid, for more detail see [4].

2.1. Green’s Relations

Let S be a semigroup with a binary operation · and 1 /∈ S. We extend the binary
operation from S to S ∪{1} by define 1 ∗ 1 = 1, x ∗ 1 = 1 ∗x = x and x ∗ y = x · y
for all x, y ∈ S. Then (S ∪ {1}, ∗) is a semigroup with the identity 1.

Let S be a semigroup. Then we define,

S1 =

{
S, if S has an identity

S ∪ {1}, otherwise.
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Let S be a semigroup and ∅ 6= A ⊆ S. We call A a left (right) ideal of S if
SA ⊆ A(AS ⊆ A) and callA an ideal of S if it is both left and right ideal of S.

Let S be a semigroup and ∅ 6= A ⊆ S. We now set

(A)l = ∩ {L|L is a left ideal of S containing A},

(A)r = ∩ {R|R is a right ideal of S containing A},

(A)i = ∩ {I|I is an ideal of S containing A}.

We call (Al) ((Ar), (Ai)) the left ideal (right ideal, ideal) of S generated by A.

It is easy to see that

(Al) = S1A = SA ∪A,

(Ar) = AS1 = A ∪ SA,

(Ai) = S1AS1 = SAS ∪ SA ∪AS ∪A.

For a1, . . . , an ∈ S, we write (a1, . . . , an)l instead of ({a1, . . . , an})l and call
it a left ideal of S generated by a1, . . . , an. Similarly, we can define (a1, . . . , an)r
and (a1, . . . , an)i. If A is a left ideal of S and A = (a)l for some a ∈ S, we then
call A the principal left ideal generated by a. We can define the principal right
ideal and principal ideal in the same manner.

Let S be a semigroup. We define the relations L,R,H,D,J on S as follow:

aLb ⇔ (a)l = (b)l,
aRb ⇔ (a)r = (b)r,
H ⇔ L ∩R,
D ⇔ L ◦ R,

aLb ⇔ (a)i = (b)i.

Lemma 1 [3]. Let S be a semigroup. Then for any two element a, b ∈ S1

aLb ⇔ a = xb and b = ya for some x, y ∈ S1,
aRb ⇔ a = bx and b = ay for some x, y ∈ S1,
aHb ⇔ aLb and aRb,
aDb ⇔ (a, c) ∈ L and (c, b) ∈ R for some c ∈ S1,
aJ b ⇔ a = xby and b = uav for some x, y, u, v ∈ S1.

Remark. Let S be a semigroup. Then the following statements hold.

1. L,R,H,D and J are equivalence relations.

2. H ⊆ R ⊆ D ⊆ J and H ⊆ L ⊆ D ⊆ J .
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3. Green’s Relations on Regular Submonoids of the Monoid of

all Generalized Hypersubstitution of Type (n)

Green’s relations onHypG(2) have been studied by Puninagool and Leeratanavalee
[5]. They studied Green’s relations on some classes of elements of the monoid of
generalized hypersubstitutions of type τ = (2). In this section, we study Green’s
relations on the monoid of all regular elements of HypG(n).

For a type τ = (2) with an n-ary operation symbol f and t ∈ W(n)(X), we
denote:

σt:= the generalized hypersubstitution σ of type τ = (n) which maps f to

the term t,
var(t):= the set of all variables occurring in the term t.

Let σt ∈ HypG(n), we denote

R1 := {σxi
| xi ∈ X};

R2 :=
{
σt | t /∈ X and var(t) ∩Xn = ∅

}
;

R3 := {σt | t = f(t1, . . . , tn) where ti1 = xj1 , . . . , tim = xjm for some i1, . . . , im ∈

{1, . . . , n} and for distinct j1, . . . , jm ∈ {1, . . . , n} and var(t) ∩Xn =

{xj1 , . . . , xjm}}.

In 2010, Puninagool and Leeratanavalee showed that
⋃3

i=1 Ri is the set of all
regular elements in HypG(n).

Definition 2 [7]. For a type τ = (n) with an n-ary operation symbol f , t ∈
W(n)(X) and 1 ≤ i ≤ n, an i−most(t) is defined inductively by:

(i) if t is a variable, then i−most(t) = t,

(ii) if t = f(t1, . . . , tn) where t1, . . . , tn ∈ W(n)(X), then i − most(t) := i −
most(ti).

Example 1. Let τ = (3) be a type, t = f(x2, f(x5, x1, x3), f(x4, x7, x5)). Con-
sider 1 − most(t) = x2, 2 − most(t) = 2 − most(f(x5, x1, x3)) = x1 and 3 −
most(t) = 3−most(f(x4, x7, x5)) = x5.

Lemma 2 [7]. Let s, t ∈ W(n)(X). If j −most(t) = xk ∈ Xn and k−most(s) =
xi, then j −most(σ̂t[s]) = xi.

Lemma 3 [6]. Let σs, σt ∈ HypG(n). Then the following statements hold

(i) var((σs ◦G σt)(f)) ∩Xn ⊆ var(t) ∩Xn.

(ii) If s uses only one variable , then the term σs ◦G σt uses only one variable.

Theorem 1. Every σxi
∈ R1 is L-related and H-related only to itself, but is

R-related, D-related and J -related to all elements of R1 and not R-,L-,H-,D-

and J -related to any other generalized hypersubstitution.
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Proof. Let σxi
∈ R1. Since every element in R1 is idempotent [6], i.e., (σxi

◦G
σxi

)(f) = σ̂xi
[xi] = xi = σxi

(f), we have that every σxi
∈ R1 can only be L-

related to itself. Since σxi
◦G σxj

= σxj
for all σxi

, σxj
∈ R1, we have that any

two elements in R1 are R-related and also D-related and J -related to each other
because R ⊆ D ⊆ J . Since H = L∩R, we have σxi

is H-related only to itself for
any σxi

∈ R1. Moreover, if we asume that σxi
J σt where t /∈ X then there exist

σp, σq, σu, σv ∈ HypG(n) such that

σxi
= σp ◦G σt ◦G σq,(1)

σt = σu ◦G σxi
◦G σv.(2)

Then by generalized superposition of terms, we have σu ◦G σxi
◦G σv ∈ R1 which

contradicts to σt /∈ R1. So σt ∈ R1. Therefore σxi
∈ R1 is R-, L-,H-, D and

J -related to any other generalized hypersubstitution.

Theorem 2. Every σt ∈ R2 is R and H-related only to itself, but is L-related,
D-related and J -related to all elements of R2 and not R-,L-,H-,D- and J -related

to any other generalized hypersubstitution.

Proof. Let σt ∈ R2. Since every element in R2 is idempotent [6], i.e., (σt ◦G
σt)(f) = σ̂t[t] = t = σt(f), we have every σt ∈ R2 can only be R-related to itself.
Let σs, σt ∈ R2. Then σs ◦G σt = σt and σt ◦G σs = σs. So σsLσt. Hence every
two elements in R2 are L-related and also D-related and J -related to each other
because L ⊆ D ⊆ J . Since H = L ∩ R, σt is H-related only to itself for every
σxt ∈ R2. Next we show that each element of R2 is not related to any generalized
hypersubstitutions. Assume σs ∈ HypG(n), σt ∈ R2 where σsJ σt. By Theorem
1, we get σs /∈ R1 then there exist σp, σq, σu, σv ∈ HypG(n) such that

σs = σp ◦G σt ◦G σq,(3)

σt = σu ◦G σs ◦G σv.(4)

Since s /∈ X and by (3), q /∈ X. Since σt ∈ R2 and q /∈ X, σt ◦G σq = σt. Since
σt ∈ R2, x1, . . . , xn are not occuring in the term σp ◦G σt = σp ◦G σt ◦G σq = σs.
Hence x1, . . . , xn /∈ var(s). So σs ∈ R2. Therefore σt ∈ R2 is R-, L-,H-, D- and
J -related to any other generalized hypersubstitution.

Theorem 3. Let σs, σt ∈ R3. Then σsRσt if and only if s is the term obtained

from t such that if i−most(t) = xk ∈ Xn, then i−most(s) = xπ(k) where π is a

permutation on {1, . . . , n}.

Proof. Assume that σsRσt. Then there exist σp, σq ∈ HypG(n) such that

σt = σs ◦G σp,(5)

σs = σt ◦G σq.(6)
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Next, we prove by contradiction that if i−most(t) = xk ∈ Xn, then i−most(s) =
xπ(k) where π is a permutation on {1, . . . , n}. Assume that i−most(s) 6= xπ(k).

Case I. i−most(s) = xl ∈ X \Xn. Then i−most(σs◦Gσp) = xl 6= i−most(t)
which contradicts to (5).

Case II. i − most(t) = xk1 ∈ Xn and j − most(t) = xk2 ∈ Xn where i −
most(s) = j−most(s) = xπ(k1) ∈ Xn. By Lemma 2, we get j−most(σ̂s[p]) = xk1
which contradicts to (5). So i−most(s) = xπ(k).

Conversely, assume the condition holds. We will prove that σt = σs ◦G σp
and σs = σt ◦G σq for some σp, σq ∈ HypG(n). Choose p = f(p1, . . . , pn) where
π(k) −most(p) = xk;∃ k ∈ {1, . . . , n}.

Case I. i−most(t) = xk ∈ Xn. Since i−most(s) = xπ(k) and π(k)−most(p) =
xk, by Lemma 2 we have, i−most(t) = i−most(σ̂s[p]) = xk.

Case II. i − most(t) = xk ∈ X \ Xn. It is easy to see that i − most(t) =
i−most(σ̂s[p]). For σs = σt ◦G σq, the proof is similar to the previous proof.

Theorem 4. Let σs, σt ∈ R3. Then σsLσt if and only if var(t) ∩ Xn = var(s)
∩ Xn.

Proof. Assume that σsLσt, then there exist σp, σq ∈ HypG(n) such that

σt = σp ◦G σs,(7)

σs = σq ◦G σt.(8)

By Lemma 3, we get var(t) ∩ Xn ⊆ var(s) ∩ Xn and var(s) ∩ Xn ⊆ var(t) ∩
Xn. Hence var(t) ∩ Xn = var(s) ∩ Xn. Conversely, assume that the condition
holds. Let t = f(t1, . . . , tn) where ti1 = xj1 , . . . , tim = xjm and var(t) ∩ Xn =
{xj1 , . . . , xjm}, s = f(s1, . . . , sn) where sl1 = xj1 , . . . , slm = xjm and var(s) ∩
Xn = {xj1 , . . . , xjm}. We will prove that σt = σp◦Gσs and σs = σq◦Gσt;∃σp, σq ∈
HypG(n). Choose p = f(p1, . . . , pn) where p has the same pattern as the term t
and pi1 = xl1 , . . . , pim = xlm .

Case I. ik−most(t) = xjk ∈ Xn;∃ jk ∈ {j1, . . . , jm}. Since ik−most(p) = xlk
and lk −most(s) = xjk , by Lemma 2 we have, ik −most(t) = ik −most(σ̂p[s]) =
xjk .

Case II. f ∈ J \ {j1, . . . , jm}. Let pf = f(u1, . . . , un). If i −most(p) = xlk ,
then i − most(t) = i −most(σ̂p[s]) = xjk . If i −most(p) = xf ∈ X \Xn, then
i−most(t) = i−most(σ̂p[s]) = xf .

For σs = σq ◦G σt, the proof is similar to the previous proof.

Theorem 5. Let σs, σt ∈ R3. Then σsJ σt if and only if |var(t)∩Xn| = |var(s)
∩ Xn|.
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Proof. Let σs, σt ∈ R3 where s = f(s1, . . . , sn) and t = f(t1, . . . , tn). Assume
that σsJ σt, then there exist σp, σq, σu, σv ∈ HypG(n) where p = f(p1, . . . , pn)
and q = f(q1, . . . , qn) such that

σt = σp ◦G σs ◦G σq,(9)

σs = σu ◦G σt ◦G σv.(10)

We prove by contradiction that |var(t) ∩ Xn| = |var(s) ∩ Xn|. Assume that
|var(t) ∩Xn| > |var(s) ∩Xn| such that |var(t) ∩Xn| = c and |var(s) ∩Xn| = b
where b < c. Let f(a1, . . . , an) be the term obtained from σs◦Gσq. Since |var(s)∩
Xn| = b, σs ◦Gσq(f) = f(a1, . . . , an) and |var(f(a1, . . . , an))∩Xn| ≤ b. From (9),
we get Sn(f(p1, . . . , pn), σ̂[a1], . . . , σ̂[an]) = f(t1, . . . , tn). Since c > b and σs, σt ∈
R3, then tc = xkc . So pc ∈ X. If pc /∈ Xn, then Sn(f(p1, . . . , pn), σ̂[a1], . . . , σ̂[an])
6= t which contradicts to (9). If pc /∈ Xn \ {xk1 , . . . , xkb}, then by σt ∈ R3

we have Sn(f(p1, . . . , pn), σ̂[a1], . . . , σ̂[an]) 6= t. If pc ∈ {xk1 , . . . , xkb}, we get
pc = xk1 ; i ∈ {1, . . . , b} which contradicts to (9). Hence the number of distinct
variables in Xn which occur in s and t are equal. So |var(t)∩Xn| = |var(s)∩Xn|.
Conversely, assume that the condition holds. Let t = f(t1, . . . , tn) where ti1 =
xj1 , . . . , tim = xjm and var(t) ∩ Xn = {xj1 , . . . , xjm}, s = f(s1, . . . , sn) where
sl1 = xf1 , . . . , sfm = xjm and var(s) ∩Xn = {xf1 , . . . , xfm}. We will prove that
σt = σp ◦G σs ◦G σq and σs = σu ◦G σt ◦G σv;∀σp, σq, σu, σv ∈ HypG(n). Choose
p = f(p1, . . . , pn) with the same pattern as term t and pi1 = xl1 , . . . , pim = xlm
and q = f(q1, . . . , qn) where qf1 = xj1 , . . . , qfm = xjm .

Case I. ik − most(t) = xjk ; ik ∈ {i1, . . . , im}. Since lk − most(s) = xfk
and fk − most(q) = xjk , lk − most(σ̂s[q]) = xjk . Since ik − most(p) = xlk and
lk −most(σ̂s[q]) = xjk , ik −most(t) = ik −most(σ̂p[σ̂s[q]) = xjk .

Case II. f ∈ J \ {j1, . . . , jm}. Let pf = f(u1, . . . , un). If i −most(p) = xlk ,
then we can prove similarly to Case I that i−most(t) = i−most(σ̂p[σ̂s[q]) = xjk .
If i−most(p) = xg ∈ X \Xn, then i−most(t) = i−most(σ̂p[σ̂s[q]) = xg.

For σs = σu ◦G σt ◦G σv, the proof is similar to the previous proof.

Theorem 6. Let σt, σs ∈ R3. Then σsJ σt if and only if σsDσt.

Proof. Let σt, σs ∈ R3. Then by Theorem 5, σsJ σt if and only if |var(t) ∩
Xn| = |var(s) ∩ Xn|. Let t = f(t1, . . . , tn) where ti1 = xj1 , . . . , tim = xjm and
var(t) ∩ Xn = {xj1 , . . . , xjm}, s = f(s1, . . . , sn) where sl1 = xk1 , . . . , slm = xkm
and var(s) ∩ Xn = {xk1 , . . . , xkm}. Choose r = f(r1, . . . , rn) where σr = σs ◦G

σf(xπ(k1)
,...,xπ(kn)) such that π =

(
k1 · · · km km+1 kn
j1 · · · jm km+1 kn

)
. We will prove that

σrRσs, i.e., there exist σp, σq ∈ HypG(n) such that σs = σr ◦G σp and σr =
σs ◦G σq.
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Choose p = f(xπ−1(k1), . . . , xπ−1(kn)) and q = f(xπ(k1), . . . , xπ(kn)). So σr ◦G
σp = σs ◦G σf(xπ(k1)

,...,xπ(kn)) ◦G σf(x
π−1(k1)

,...,x
π−1(kn))

= σs ◦G σid = σs and σs ◦G

σq = σs ◦G σf(xπ(k1)
,...,xπ(kn)) = σr. Next we will prove that σrLσt. Since σr =

σs ◦G σf(xπ(k1)
,...,xπ(kn)), var(t)∩Xn = var(r)∩Xn. By Theorem 4, we get σrLσt.

Hence by Lemma 1 we get, σsDσt.

Theorem 7. Every σt ∈ R3 is H-related only to itself.

Proof. Assume σsHσt and t 6= s. Then there exist σp, σq, σu, σv ∈ HypG(n) such
that

σt = σs ◦G σp,(11)

σs = σt ◦G σq,(12)

σt = σu ◦G σs,(13)

σs = σv ◦G σt.(14)

By Theorem 3, there exist σp, σq ∈ HypG(n) such that σt = σs ◦G σp and σs =
σt ◦G σq where σs = σt ◦G σf(xπ(1),...,xπ(n)), for some permutation π. Since σs =

σt◦Gσf(xπ(1),...,xπ(n)) such that π 6= (1), var(t)∩Xn 6= var(s)∩Xn. By Theorem 4,

σs is not L-related with σt which contradicts to (13), (14). By Theorem 4 again,
there exist σu, σv ∈ HypG(n) such that σt = σu ◦G σs and σs = σv ◦G σt where
var(t) ∩Xn = var(s) ∩Xn. Let t = f(t1, . . . , tn) where ti1 = xj1 , . . . , tim = xjm
and s = f(s1, . . . , sn) where sl1 = xj1 , . . . , slm = xjm. Moreover σs 6= σt ◦G
σf(xπ(1),...,xπ(n)). By Theorem 3, σt is not R-relate with σs which contradicts to

(11), (12). So t = s.
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