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1. Introduction

The notion of BE-algebras was introduced and extensively studied by H.S. Kim
and Y.H. Kim in [7]. These classes of BE-algebras were introduced as a general-
ization of the class of BCK-algebras of Iseki and Tanaka [6]. Some properties of
filters of BE-algebras were studied by Ahn and Kim in [1] and by Meng in [8].
In [14], Walendziak discussed some properties of commutative BE-algebras. He
also investigated the relationship between BE-algebras, implicative algebras and
J-algebras. In 2012, Rezaei, and Borumand Saeid [9], stated and proved the first,
second and third isomorphism theorems in self distributive BE-algebras. Later,
these authors [10] introduced the notion of commutative ideals in a BE-algebra.
In 2013, Borumand Saeid, Rezaei and Borzooei [2] extensively studied the prop-
erties of some types of filters in BE-algebras. In [3], Chajda et al., Characterized
the complements and relative complements of the set of all deductive systems
as the so-called annihilators of Hilbert algebras. Later, Hala~s[5] introduced the
concepts of an annihilator and a relative annihilator of a given subset of a BCK-
algebra. Cornish [4] introduced the concept of quasi-complements in distributive
lattices. In [12], some properties of dual annihilator filters of commutative BE-
algebras are studied. It is proved that the class of all dual annihilator filters of
a BE-algebra is a complete Boolean algebra. A set of equivalent conditions is
derived for every prime filter of a commutative BE-algebra to become a maximal
filter.

In this paper, the notion of O-filters is introduced in commutative BE-
algebras. Some properties of prime O-filters are studied. A relation between
the O-filters and minimal prime filters of a commutative BE-algebra is observed.
An equivalent condition is derived for every strong regular filter of a BE-algebra
to become an O-filter. The notion of quasi-complemented BE-algebras is in-
troduced and also characterized these classes of BE-algebras in terms of dual
annihilators. The concept of strong regular filter is introduced and then quasi-
complemented BE-algebras and strong BE-algebras are characterized in terms
of strong regular filters and O-filters.

2. Preliminaries

In this section, we present certain definitions and results which are taken mostly
from the papers [1, 7, 8, 11, 12], and [13] for the ready reference of the reader.

Definition [7]. An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra if it
satisfies the following properties:

(1) x ∗ x = 1,

(2) x ∗ 1 = 1,
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(3) 1 ∗ x = x,

(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for
all x, y, z ∈ X. A BE-algebra X is called commutative if (x ∗ y) ∗ y = (y ∗ x) ∗ x
for all x, y ∈ X. Every commutative BE-algebra is transitive. For any x, y ∈ X,
define x ∨ y = (y ∗ x) ∗ x. If X is commutative then (X,∨) is a semilattice [14].
We introduce a relation ≤ on a BE-algebra X by x ≤ y if and only if x ∗ y = 1
for all x, y ∈ X. Clearly ≤ is reflexive. If X is commutative, then ≤ is transitive,
anti-symmetric and hence a partial order on X.

Theorem 1 [8]. Let X be a transitive BE-algebra and x, y, z ∈ X. Then

(1) 1 ≤ x implies x = 1,

(2) y ≤ z implies x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x.

Definition [1]. A non-empty subset F of a BE-algebra X is called a filter of X
if, for all x, y ∈ X, it satisfies the following properties:

(1) 1 ∈ F ,

(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

Let F(X) denote the set of all filters of a self-distributive BE-algebraX, then
F(X) forms a complete lattice with respect to the operations F ∧G = F ∩G and
F ∨ G = {x ∈ X | a ∗ (b ∗ x) = 1 for some a ∈ F, b ∈ G}. For any non-empty
subset A of a transitive BE-algebra X, the set 〈A〉 = {x ∈ X | a1 ∗ (a2 ∗ (· · · ∗
(an ∗ x) · · ·)) = 1 for some a1, a2, . . . an ∈ A} is the smallest filter containing A.
For any a ∈ X, 〈a〉 = {x ∈ X | an ∗ x = 1 for some n ∈ N}, where an ∗ x =
a ∗ (a ∗ (· · · ∗ (a ∗x) · · ·)) with the repetition of a is n times, is called the principal
filter generated by a. If X is self-distributive, then 〈a〉 = {x ∈ X | a ∗ x = 1}. A
proper filter P of a BE-algebra is called prime [11] if F ∩G ⊆ P then F ⊆ P or
G ⊆ P for any two filters F and G of X.

Theorem 2 [11]. Let X be a self-distributive and commutative BE-algebra and

P be a proper filter of X. Then the following conditions are equivalent:

(1) P is prime;

(2) For any x, y ∈ X, 〈x〉 ∩ 〈y〉 ⊆ P implies x ∈ P or y ∈ P ;

(3) For any x, y ∈ X,x ∨ y ∈ P implies x ∈ P or y ∈ P .

For any non-empty subset A of a commutative BE-algebra X, the dual an-
nihilator [12] of A is defined as A+ = {x ∈ X | x ∨ a = 1 for all a ∈ A}. Clearly
A+ is a filter of X. Obviously X+ = {1} and {1}+ = X. For A = {a}, we simply
denote {a}+ by (a)+.
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Proposition 3 [12]. For any two filters F,G of a commutative BE-algebra X,

we have

(1) F ∩ F+ = ∅,

(2) F ⊆ F++,

(3) F+++ = F+,

(4) F ⊆ G implies G+ ⊆ F+,

(5) (F ∨G)+ = F+ ∩G+,

(6) (F ∩G)++ = F++ ∩G++.

Lemma 4 [12]. For any two elements a, b of a commutative BE-algebra X, we

have

(1) (〈a〉)+ = (a)+,

(2) 〈a〉 ⊆ (a)++,

(3) a ≤ b implies (a)+ ⊆ (b)+,

(4) (a ∨ b)++ = (a)++ ∩ (b)++.

Definition [12]. A filter F of a commutative BE-algebra X is called a dual

annihilator filter if F = F++.

Proposition 5 [13]. For any prime filter P of a commutative BE-algebra X,

the set O(P ) = {x ∈ X | x ∨ s = 1 for some s /∈ P} is a filter of X.

A prime filter P of a commutative BE-algebra X is called minimal [13] if
there exists no prime filter Q of X such that Q ⊆ P .

Theorem 6 [13]. A prime filter P of a self-distributive and commutative BE-

algebra X is minimal if and only if for each x ∈ P there exists y /∈ P such that

x ∨ y = 1.

Definition [13]. A filter F of a commutative BE-algebra X is called a regular

filter if (x)++ ⊆ F for all x ∈ F .

Theorem 7 [13]. Let X be a self-distributive and commutative BE-algebra X.

Then the following conditions are equivalent:

(1) every filter is a regular filter;

(2) every principal filter is a regular filter;

(3) every prime filter is a regular filter;

(4) for a, b ∈ X, (a)+ = (b)+ implies 〈a〉 = 〈b〉.

Every minimal prime filter of a commutative BE-algebra is a regular filter
and every dual annihilator filter of a commutative BE-algebra is a regular filter.



Quasi-complemented BE-algebras 269

3. O-filters of BE-algebras

In this section, the notion of O-filters is introduced in commutative BE-algebras.
Some properties of prime O-filters are studied. A relation between the O-filters
and minimal prime filters of a commutative BE-algebra is observed.

Definition. Let X be a commutative BE-algebra. A subset A of X is called a
∨-closed subset of X if a, b ∈ A implies a ∨ b ∈ A.

Example 8. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as
follows:

∗ 1 a b c

1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 a b 1

∨ 1 a b c

1 1 1 1 1
a 1 a 1 1
b 1 1 b 1
c 1 1 1 c

Then clearly (X, ∗,∨, 1) is a commutative BE-algebra. Consider the subset A =
{1, a, b} of X. It can be easily verified that A is a ∨-closed subset of X.

Clearly {1} is a ∨-closed subset of a commutative BE-algebra X and in fact
every single-ton subset of a commutative BE-algebra is ∨-closed. It can be easily
observed the class of all ∨-closed subsets of a commutative BE-algebra is closed
under set-intersection. For any commutative BE-algebra X, in what follows,
J (X) denote the set of all ∨-closed subsets of a commutative BE-algebra unless
otherwise mentioned.

Proposition 9. Let X and Y be two commutative BE-algebras and f : X → Y
be a homomorphism. If S ∈ J (Y ), then f−1(S) ∈ J (X).

Proposition 10. Let X and Y be two commutative BE-algebras. If R and S
are subsets of X and Y respectively such that R ∈ J (X) and S ∈ J (Y ), then
R× S ∈ J (X × Y ).

Proposition 11. If P is a prime filter of a self-distributive and commutative

BE-algebra X, then X − P ∈ J (X).

Proof. Let P be a prime filter of X. Suppose a, b ∈ X − P . Then a /∈ P and
b /∈ P . Since P is prime, we get a ∨ b /∈ P . Hence a ∨ b ∈ X − P . Therefore
X − P ∈ J (X).

Definition. An element x of a BE-algebra X is called dual-dense if (x)+ = {1}.
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Example 12. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as
follows:

∗ 1 a b c

1 1 a b c
a 1 1 1 1
b 1 b 1 1
c 1 c c 1

∨ 1 a b c

1 1 1 1 1
a 1 a b c
b 1 b b c
c 1 c c c

Then (X, ∗,∨, 1) is a commutative BE-algebra. Clearly (c)+ = {1}.

Let us denote the class of all dual-dense elements of a BE-algebra X by D̄X .

Proposition 13. If X is a self-distributive and commutative BE-algebra, then

D̄X ∈ J (X).

Proof. Let a, b ∈ D̄X . Then (a)+ = {1} and (b)+ = {1}. By Lemma 4, we get
(a ∨ b)++ = (a)++ ∩ (b)++ = {1}+ ∩ {1}+ = X ∩ X = X. Hence (a ∨ b)+ =
(a∨ b)+++ = X+ = {1}. Thus a∨ b ∈ D̄X . Therefore D̄X is a ∨-closed subset of
X.

Definition. Let X be a commutative BE-algebra. For any A ∈ J (X), define
the set O(A) as O(A) = {x ∈ X | x ∨ a = 1 for some a ∈ A}.

Proposition 14. Let X be a commutative BE-algebra such that ∨ is right dis-

tributive over ∗. Then for any A ∈ J (X), the set O(A) is a filter of X.

Lemma 15. The following conditions hold in a commutative BE-algebra X:

(a) for A ∈ J (X), O(A) =
⋃

x∈A(x)
+,

(b) for x ∈ X, O({x}) = (x)+,

(c) for A ∈ J (X), A ∩O(A) 6= ∅ implies 1 ∈ A and O(A) = X,

(d) for A,B ∈ J (X), A ⊆ B implies O(A) ⊆ O(B),

(e) for A,B ∈ J (X), O(A ∩B) ⊆ O(A) ∩O(B),

(f) for F,G ∈ F(X), O(F ∩ G) = O(F ) ∩ O(G) where F(X) is the set of all

filters of X.

Proof. (a) and (b) are obvious.

(c) Suppose A∩O(A) 6= ∅. Choose x ∈ A∩O(A). Then x ∈ A and x∨ a = 1
for some a ∈ A. Hence it yields 1 = x ∨ x = x ∈ A. Since (1)+ = X, we get
O(A) =

⋃
x∈A(x)

+ = X.
(d) Suppose A ⊆ B. Let x ∈ O(A). Then x ∨ a = 1 for some a ∈ A ⊆ B.

Hence it concludes that x ∈ O(B). Therefore we get O(A) ⊆ O(B).

(e) Since A∩B ⊆ A,B, we get O(A∩B) ⊆ O(A), O(B) and hence O(A∩B) ⊆
O(A) ∩O(B).
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(f) Since F ∩ G ⊆ F,G, we get O(F ∩ G) ⊆ O(F ) ∩ O(G). Conversely, let
x ∈ O(F ) ∩ O(G). Then x ∨ a = 1 and x ∨ b = 1 for some a ∈ F and b ∈ G.
Clearly a∨b ∈ F ∩G. Hence x∨(a∨b) = (x∨a)∨(x∨b) = 1. Thus x ∈ O(F ∩G).
Therefore O(F ) ∩O(G) ⊆ O(F ∩G).

Since O(A) is a filter for all A ∈ J (X), the following is clear.

Proposition 16. Let A,B ∈ J (X) be such that A∩O(B) = ∅, then there exists

a prime filter P containing O(B) and disjoint from A.

The concept of O-filters is introduced in commutative BE-algebras.

Definition. A filter F of a commutative BE-algebra X is called an O-filter if
F = O(A) for some A ∈ J (X).

Example 17. Let X = {1, a, b, c, d} and define a binary operation ∗ on X as
follows:

∗ 1 a b c d

1 1 a b c d
a 1 1 b c b
b 1 a 1 b a
c 1 a 1 1 a
d 1 1 1 b 1

∨ 1 a b c d

1 1 1 1 1 1
a 1 a 1 1 a
b 1 1 b d b
c 1 1 d c b
d 1 a b b d

Clearly (X, ∗,∨, 1) is a commutative BE-algebra. It is easy to check that F =
{b, c, 1} is a filter of X. Now, consider A = {a, d}. Clearly A is ∨-closed and
observe that O(A) = F . Therefore F is an O-filter of X. It can also be observed
that A ∩O(A) = ∅.

Since O(X) = X, it is clear that X is an O-filter. Since {x} ∈ J (X),
from Lemma 15(b), it is observed that each (x)+ is an O-filter. It is still to
be observed that the filter {1} is an O-filter or not. However, in the following
theorem, a necessary and sufficient condition is derived for {1} of a commutative
BE-algebra to become an O-filter.

Theorem 18. Let X be a self-distributive and commutative BE-algebra. Then

the smallest filter {1} of X is an O-filter of X if and only if X has a dual-dense

element.

Proof. Assume that {1} is an O-filter of X. Then {1} = O(A) for some A ∈
J (X). Hence {1} =

⋃
x∈A(x)

+, which implies that (x)+ = {1} for all x ∈ A.
Thus, it yields ∅ 6= A = D̄X . Conversely, assume that X has an element x of the
form (x)+ = {1}. Then D̄X 6= ∅. By Proposition 13, we get D̄X ∈ J (X). Thus
O(D̄X) =

⋃
x∈D̄X

(x)+ = {1}. Therefore {1} is an O-filter of X.
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Proposition 19. Let X be a commutative BE-algebra. A proper O-filter of X
contains no dual-dense element.

Proof. Let F be an O-filter and d ∈ X such that (d)+ = {1}. Since F is an
O-filter, we get that F = O(A) for some A ∈ J (X). Suppose d ∈ F = O(A).
Then d ∨ a = 1 for some 1 6= a ∈ A. Thus a ∈ (d)+, which is a contradiction to
that (d)+ = {1}.

Proposition 20. Every O-filter of a commutative BE-algebra is a regular filter.

Proof. Let F be an O-filter of a commutative BE-algebra X. Then F = O(A)
for some A ∈ J (X). Let x ∈ F = O(A). Then we get s ∨ x = 1 for some s ∈ A.
Hence x ∈ (s)+. Thus it yields (x)++ ⊆ (s)+. Suppose t ∈ (x)++ ⊆ (s)+. Then,
we get s ∨ t = 1 and s ∈ A. Hence t ∈ O(A) = F . Thus (x)++ ⊆ F . Therefore
F is a regular filter of X.

Theorem 21. Let X be a self-distributive and commutative BE-algebra. Then

every minimal prime filter of X is an O-filter.

Proof. Let P be a minimal prime filter of X. Let x ∈ P . Since P is minimal,
by Theorem 6, there exists y ∈ X−P such that x∨ y = 1. Since X −P ∈ J (X),
we get x ∈ O(X − P ). Therefore P ⊆ O(X − P ). Conversely, let x ∈ O(X − P ).
Then x ∨ a = 1 ∈ P for some a ∈ X − P . Since P is prime and a /∈ P , we must
have x ∈ P . Hence P = O(X − P ). Therefore P is an O-filter of X.

We now turn our intension towards the converse of above theorem. In general,
every O-filter of a commutative BE-algebra need not be a minimal prime filter.
In fact it need not even be a prime filter. Though every O-filter need not be
a prime filter, we derive a necessary and sufficient condition for an O-filter of a
commutative BE-algebra to become a prime filter of X.

Theorem 22. Let F be a proper O-filter of a self-distributive and commutative

BE-algebra X. Then F is prime if and only if F contains a prime filter.

Proof. The necessary part is clear. For sufficiency, assume that F contains a
prime filter, say P . Since F is an O-filter, we get F = O(A) for some A ∈ J (X).
Choose a, b ∈ X such that a /∈ F and b /∈ F . Then a /∈ P and b /∈ P . Since
P is prime, we get a ∨ b /∈ P . Thus (a ∨ b)+ ⊆ P ⊆ F = O(A). Suppose
a∨ b ∈ F = O(A). Then a∨ b∨ t = 1 for some t ∈ A. Hence t ∈ (a∨ b)+ ⊆ O(A).
Thus t ∈ A∩O(A). Therefore A∩O(A) 6= ∅. By Lemma 15(c), we get 1 ∈ A and
F = O(A) = X, which is a contradiction. Therefore F is a prime filter of X.

It is observed in Theorem 21 that every minimal prime filter of a commutative
BE-algebra is a prime O-filter. Now, in the following theorem, the equivalency
between prime O-filters and minimal prime filters of BE-algebras is derived.
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Theorem 23. Every prime O-filter of a commutative BE-algebra is a minimal

prime filter.

Proof. Let P be a prime O-filter of a commutative BE-algebra X. Then P =
O(A) for some A ∈ J (X). Let x ∈ P = O(A). Then x ∨ y = 1 for some y ∈ A.
Suppose y ∈ P . Then y ∈ A ∩ P = A ∩O(A). Hence A ∩O(A) 6= ∅. By Lemma
15(c), we get P = O(A) = X, which is a contradiction. Hence y /∈ P . Therefore
P is minimal.

Proposition 24. Every proper O-filter of a commutative BE-algebra is contained

in a minimal prime filter.

Proof. Let F be a proper O-filter of a commutative BE-algebra X. Then F =
O(A) for some A ∈ J (X). Clearly F∩A = O(A)∩A = ∅. Otherwise F = O(A) =
X, which is a contradiction. Let ℑ = {B ∈ J (X) | A ⊆ B and F ∩ B = ∅}.
Clearly A ∈ ℑ and ℑ satisfies the Zorn’s lemma. Let M be a maximal element
of ℑ. Hence M ∈ J (X) is maximal with respect to the properties A ⊆ M and
F ∩M = ∅. Since F ∩M = ∅, we get F ⊆ X −M . We claim that X −M is a
minimal prime filter of X. Suppose P is a prime filter of X such that P ⊂ X−M .
Then X − P ∈ J (X) with A ⊆ M ⊂ X − P . By the maximality of M , we get
F ∩ (X − P ) 6= ∅. Choose x ∈ F ∩ (X − P ). Then x ∈ F = O(A) and x /∈ P .
Hence x ∨ a = 1 for some a ∈ A ⊂ X − P . Thus x ∨ a = 1 ∈ P , which is a
contradiction to a /∈ P and x /∈ P . Therefore X −M is a minimal prime filter
such that F ⊆ X −M .

4. Quasi-complemented BE-algebras

In this section, the concept of quasi-complemented BE-algebras is introduced
and also characterized these classes of BE-algebras in terms of dual annihilators.
The concept of strong regular filters is introduced and then quasi-complemented
BE-algebras and strong BE-algebras are characterized in terms of strong regular
filters and O-filters.

Definition. A commutative BE-algebra X is called a quasi-complemented BE-

algebra if for each x ∈ X, there exists y ∈ X such that x∨ y = 1 and (x)+ ∩ (y)+

= {1}.

In this case, the element y is called the quasi-complement of x and vice versa.

Example 25. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as
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follows:
∗ 1 a b c

1 1 a b c
a 1 1 b b
b 1 a 1 a
c 1 1 1 1

∨ 1 a b c

1 1 1 1 1
a 1 a 1 a
b 1 1 b b
c 1 a b c

Then (X, ∗,∨, 1) is a commutative BE-algebra. Clearly 1 and c are quasi-comple-
ments are each other. Also a and b are quasi-complements are each other. Hence
X is a quasi-complemented BE-algebra.

Proposition 26. A quasi-complemented BE-algebra possesses a dual-dense ele-

ment.

Proof. Let X be a quasi-complemented BE-algebra. Let 1 6= x ∈ X. Since X is
quasi-complemented, there exists y ∈ X such that x∨y = 1 and (x)+∩(y)+ = {1}.
Since x∨y = 1, we get y ∈ (x)+. Hence (y)+ ⊆ (x)+. Thus (y)+ = (x)+∩ (y)+ =
{1}. Therefore y is a dual-dense element.

In the following theorem, quasi-complemented BE-algebras are characterized
with the help of dual annihilators.

Theorem 27. A commutative BE-algebra X is quasi-complemented if and only

if for each x ∈ X, there exists y ∈ X such that (x)++ = (y)+.

Proof. Assume that X is quasi-complemented. Let x ∈ X. Then there exists
y ∈ X such that x∨y = 1 and (x)+∩(y)+ = {1}. Since x∨y = 1, we get y ∈ (x)+

and hence (x)++ ⊆ (y)+. Again, since (x)+ ∩ (y)+ = {1}, we get (y)+ ⊆ (x)++.
Hence (x)++ = (y)+.

Conversely, assume the condition. Let x ∈ X. Then there exists y ∈ X such
that (x)++ = (y)+. Hence x ∈ (x)++ = (y)+. Thus x ∨ y = 1. For x, y ∈ X, we
have (x)+ ∩ (y)+ = (x)+ ∩ (x)++ = {1}. Therefore X is a quasi-complemented
BE-algebra.

For any self-distributive and commutative BE-algebra X, define X++ =
{(x)++ | x ∈ X}. We can observe that X++ is closed under set-intersection but
it need not be a sublattice of the lattice 〈F(X),∨,∩〉 of all filters of the BE-
algebra X. However, in the following theorem, a set of equivalent conditions is
derived for X++ of a quasi-complemented BE-algebra X to become a sublattice
of the lattice F(X) of all filters of X.

Theorem 28. The following are equivalent in a quasi-complemented BE-algebra.

(1) For each x ∈ X, (x)+ ∨ (x)++ = X;

(2) for all x, y ∈ X, (x)+ ∨ (y)+ = (x ∨ y)+;
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(3) X++ is a sublattice of F(X).

Proof. (1)⇒(2) Assume the condition (1). Let x, y ∈ X. It is clear that (x)+ ∨
(y)+ ⊆ (x ∨ y)+. Let a ∈ (x ∨ y)+. Then a ∨ x ∨ y = 1. Then we have

a ∨ x ∨ y = 1 ⇒ 〈a ∨ x ∨ y〉 = {1}

⇒ 〈x〉 ∩ 〈a ∨ y〉 = {1}

⇒ 〈a ∨ y〉 ⊆ (x)+

⇒ (x)++ ⊆ (a ∨ y)+

⇒ (x)++ ∩ 〈a ∨ y〉 = {1}

⇒ (x)++ ∩ {〈a〉 ∩ 〈y〉} = {1}

⇒ {(x)++ ∩ 〈a〉} ∩ 〈y〉 = {1}

⇒ (x)++ ∩ 〈a〉 ⊆ (y)+.

It is clear that (x)+ ∩ 〈a〉 ⊆ (x)+. By the condition (1), we get a ∈ 〈a〉 =
X ∩ 〈a〉 = {(x)+ ∨ (x)++} ∩ 〈a〉 = {(x)+ ∩ 〈a〉} ∨ {(x)++ ∩ 〈a〉} ⊆ (x)+ ∨ (y)+.
Hence (x∨ y)+ ⊆ (x)+ ∨ (y)+. Therefore (x∨ y)+ = (x)+ ∨ (y)+ for all x, y ∈ X.

(2)⇒(3) Assume that the condition (2) holds. Let x, y ∈ X. Clearly (x)++∩
(y)++ = (x ∨ y)++. Since X is quasi-complemented, there exists x0, y0 ∈ X
such that (x)++ = (x0)

+ and (y)++ = (y0)
+. Since x0 ∨ y0 ∈ X, there exists

c ∈ X such that (x0 ∨ y0)
++ = (c)+. Hence (x)++ ∨ (y)++ = (x0)

+ ∨ (y0)
+ =

(x0 ∨ y0)
+ = (c)++. Therefore X++ is a sublattice of F(X).

(3)⇒(1) Assume that X++ is a sublattice of F(X). Let x ∈ X. Since X is
quasi-complemented, there exists x0 ∈ X such that (x)++ = (x0)

+. Since X++

is a sublattice of F(X), we get (x)++ ∨ (x0)
++ = (t)++ for some t ∈ X. Hence

(t)+ = (t)+++ = {(x0)
++ ∨ (x)++}+

= (x0)
+++ ∩ (x)+++

= (x0)
+ ∩ (x)+

= {1}

which concludes that (t)+ = {1}. Suppose (x)+∨(x)++ 6= X. Then there exists a
prime filter P such that (x)+∨ (x)++ ⊆ P . Hence X = {1}+ = (t)++ = (x0)

++∨
(x)++ = (x)+∨(x)++ ⊆ P , which is a contradiction. Therefore (x)+∨(x)++ = X.

Theorem 29. Let X be a quasi-complemented BE-algebra such that {1} is a

prime filter. Then the following conditions are equivalent:

(1) every filter is a regular filter;

(2) for every proper filter F of X,F ∩ D̄X = ∅;

(3) for every prime filter P of X,P ∩ D̄X = ∅;
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(4) every prime filter is a minimal prime filter;

(5) every prime filter is a regular filter;

(6) for any x, y ∈ X, (x)+ = (y)+ implies 〈x〉 = 〈y〉.

Proof. (1)⇒(2) LetX be a quasi-complemented BE-algebra. Assume that every
proper filter of X is a regular filter. Let F be a proper filter of X. Suppose
x ∈ F ∩ D̄X . Then (x)+ = {1} and (x)++ ⊆ F . Hence X = {1}+ = (x)++ ⊆ F ,
which is a contradiction. Therefore F ∩ D̄X = ∅.

(2)⇒(3) It is obvious.

(3)⇒(4) Assume that the condition (3) holds. Let P be a prime filter of
X. Let x ∈ P . Since X is quasi-complemented, there exists y ∈ X such that
x∨ y = 1 ∈ P and (x)+∩ (y)+ = {1}. Since {1} is prime and P ∩ D̄X = ∅, we get

(x)+ ∩ (y)+ = {1} ⇒ (x)+ = {1} or (y)+ = {1}

⇒ x ∈ D̄X or y ∈ D̄X

⇒ y ∈ D̄X since x ∈ P

⇒ y /∈ P since P ∩ D̄X = ∅

Thus to each x ∈ P , there exists y /∈ P such that x ∨ y = 1. Therefore P is
minimal.

(4)⇒(5) Assume that every prime filter is a minimal prime filter. Since every
minimal prime filter is a regular filter, it is clear.

The equivalence of the conditions (5), (6) and (1) is proved in Theorem 7.

The notion of strong regular filters is now introduced in BE-algebras.

Definition. A filter F of a commutative BE-algebra X is called a strong regular
filter if for all a, b, c ∈ X, (a)+ ∩ (b)+ = (c)+ and a, b ∈ F imply that c ∈ F .

Example 30. Let X = {1, a, b, c, d} be a set. Define a binary operation ∗ on X
as follows:

∗ 1 a b c d

1 1 a b c d
a 1 1 a c d
b 1 1 1 c d
c 1 a b 1 d
d 1 1 1 c 1

∨ 1 a b c d

1 1 1 1 1 1
a 1 a a 1 a
b 1 a b 1 b
c 1 1 1 c 1
d 1 a b 1 d

Then clearly (X, ∗,∨, 1) is a commutative BE-algebra. Consider the subset F =
{1, a, b, d} of X. It can be easily verified that F is a strong regular filter of X.

Proposition 31. Every strong regular filter of a commutative BE-algebra is a

regular filter.
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Proof. Let F be a strong regular filter of a commutative BE-algebra X. Let
x, y ∈ X be such that (x)+ = (y)+ and x ∈ F . Since y ≤ x ∨ y, we get

(x)+ ∩ (x ∨ y)+ = (y)+ ∩ (x ∨ y)+ = (y)+.

Since x, x ∨ y ∈ F and F is strong regular, we get y ∈ F . Hence F is regular.

Proposition 32. Every dual annihilator filter of a commutative BE-algebra is

a strong regular filter.

Proof. Let F be a dual annihilator filter of X. Let a, b, c ∈ X be such that
(a)+ ∩ (b)+ = (c)+ and suppose a, b ∈ F then 〈a〉,〈b〉 ⊆ F . Hence (a)++, (b)++ ⊆
F++ = F . Thus

(a)++ ⊆ F, (b)++ ⊆ F ⇒ (a)++ ∨ (b)++ ⊆ F

⇒ [(a)++ ∨ (b)++]++ ⊆ F

⇒ [(a)+++ ∩ (b)+++]+ ⊆ F

⇒ [(a)+ ∩ (b)+]+ ⊆ F.

Hence c ∈ (c)++ ⊆ F . Therefore F is a strong regular filter of X.

The converse of the above proposition is not true. For consider a proper
strong regular filter F 6= X satisfying the property F+ = {1} is not a dual
annihilator because of F++ = (F+)+ = ({1})+ = X 6= F . Hence F is not a
dual annihilator. However, in the following, we derive a sufficient condition for a
strong regular filter to become a dual annihilator filter.

Definition [13]. A filter F of a commutative BE-algebra is said to satisfy s-
condition if to each x /∈ F , there exists y ∈ F such that (x)++ = (y)+ for
x, y ∈ X.

Theorem 33 [13]. Let F be a non-dense (F+ 6= {1}) regular filter of a commu-

tative BE-algebra X. If F satisfies the s-condition, then F is a dual annihilator

filter of X.

Theorem 34. A non-dense strong regular filter of a commutative BE-algebra is

a dual annihilator filter if it satisfies the s-condition.

Proof. Let F be a non-dense strong regular filter of a commutative BE-algebra
X. Then by Proposition 31, F is a regular filter. By Theorem 33, F is a dual
annihilator filter.

Theorem 35. A non-dense regular filter of a commutative BE-algebra X is a

strong regular filter if it satisfies the s-condition.
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Proof. Let F be a non-dense regular filter of X. Then by Theorem 33, F is a
dual annihilator filter. By Proposition 32, F is a strong regular filter.

Definition. A commutative BE-algebra X is called a strong BE-algebra if for
each a, b ∈ X, there exists c ∈ X such that (a)+ ∩ (b)+ = (c)+.

Example 36. Let X = {1, a, b, c, d} be a set. Define a binary operation ∗ on X
as follows:

∗ 1 a b c d

1 1 a b c d
a 1 1 a c c
b 1 1 1 c c
c 1 a b 1 a
d 1 1 a 1 1

∨ 1 a b c d

1 1 1 1 1 1
a 1 a a 1 a
b 1 a b 1 a
c 1 1 1 c c
d 1 a a c d

Then clearly (X, ∗,∨, 1) is a commutative BE-algebra. It can be easily verified
that X is a strong BE-algebra.

Every commutative BE-algebra X satisfying the property that (x)+ = {1}
for all x ∈ X is a strong BE-algebra.

Proposition 37. Every quasi-complemented BE-algebra is a strong BE-algebra.

Proof. Assume that X is a quasi-complemented BE-algebra. Let a, b ∈ X.
Since X is quasi-complemented, there exist a0, b0 ∈ X such that (a)++ = (a0)

+

and (b)++ = (b0)
+. Since X is quasi-complemented and a0 ∨ b0 ∈ X, there exits

some c ∈ X such that (a0∨b0)
++ = (c)+. Hence (a)+∩ (b)+ = (a0)

++∩ (b0)
++ =

(a0 ∨ b0)
++ = (c)+. Therefore X is a strong BE-algebra.

In general, the converse of the above proposition is not true. In the following,
we derive a set of equivalent conditions for a strong BE-algebra to become quasi-
complemented.

Theorem 38. Let X be a commutative BE-algebra. Then the following are

equivalent:

(1) X is quasi-complemented;

(2) X is strong;

(3) every strong regular filter is an O-filter;

(4) every dual annihilator filter is an O-filter.

Proof. (1)⇒(2) By Proposition 37, it is clear.

(2)⇒(3) Assume that X is a strong BE-algebra. Let F be a strong regular
filter of X. Consider the set F 0 = { x ∈ X | (a)+ ⊆ (x)++ for some a ∈ F }.
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We first prove that F 0 ∈ J (X). Clearly ∅ 6= D̄X ⊆ F 0. Let x, y ∈ F 0. Then
we get (a)+ ⊆ (x)++ and (b)+ ⊆ (y)++ for some a, b ∈ F . Since X is strong,
there exists c ∈ X such that (a)+ ∩ (b)+ = (c)+. Now (c)+ = (a)+ ∩ (b)+ ⊆
(x)++ ∩ (y)++ = (x∨ y)++. Since a, b ∈ F and F is a strong regular filter, we get
c ∈ F . Hence x∨ y ∈ F 0. Therefore F 0 ∈ J (X). We now show that F = O(F 0).
Let x ∈ O(F 0). Then x ∨ s = 1 for some s ∈ F 0. Hence x ∈ (s)+. Now

s ∈ F 0 ⇒ (a)+ ⊆ (s)++ for some a ∈ F

⇒ (s)+ ⊆ (a)++ ⊆ F since F is a regular filter and a ∈ F

⇒ x ∈ F.

Therefore O(F 0) ⊆ F . Conversely, let x ∈ F . Since X is a quasi-complemented,
there exists y ∈ X such that (x)+ = (y)++. Since x ∈ F , we get that y ∈ F 0.
Also x ∈ (x)++ = (y)+ and y ∈ F 0. Hence x ∈ O(F 0). Thus F ⊆ O(F 0).
Therefore F is an O-filter.

(3)⇒(4) Since every dual annihilator filter is a regular filter, it is clear.

(4)⇒(1) Let x ∈ X. Since (x)++ is a dual annihilator filter, by condition
(4), we get (x)++ = O(S) for some S ∈ J (X). Now let t ∈ (x)++ = O(S). Then
we get t ∈ (y)+ for some y ∈ S. Hence (x)++ ⊆ (y)+. On the other hand, we
have (y)+ ⊆

⋃
y∈S(y)

+ = O(S) = (x)++. Hence (x)++ = (y)+. Therefore X is
quasi-complemented.

5. Conclusion

In this paper, we introduced the notion of O-filters in commutative BE-algebras
and obtained some sufficient conditions for a prime filter to become an O-filter.
The notion of quasi-complemented BE-algebras is introduced and then studied
the relations among O-filters, dual annihilator filters and strong regular filters
of BE-algebras. In addition, we established some interconnections among prime
filters, regular filters, strong regular filters, dual annihilator filters and O-filters of
a commutative BE-algebra. We think such results are very useful for the further
characterization of prime O-filters in terms of congruences of this structure.

Now, in the following diagram we summarize the results of this paper and the
past results in this field and we give the relations among prime filters, minimal
prime filters, dual annihilator filters, regular filters, strong regular filters and O-
filters. The mark A → B means that A implies B. A condition with the mark
A → B indicates that A conclude B with the condition.

For the future research, we investigate some new filters of commutative BE-
algebras with the help of dual annihilator filter and regular filters.
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