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1. Introduction

The theory of rough sets (see [17–19] and [20]) is a new mathematical tool to deal
with uncertain, vague and inexact knowledge. It has been applied to many areas
such as data and conflict analysis, approximate classification, machine learning,
knowledge discovery, etc. (see [9, 12, 14, 15, 21, 22, 34, 35, 38]). Rough sets are
applied to several algebraic structures such as semigroup [10,25,32], hypergroup
[11], ring [1, 16], BCI-algebra [4], etc. by using a congruence relation.

Recently, one of the main research aspects/directions in rough set theory
is to consider the generalization of the Pawlak’s rough set approximations (see
[3, 23,29,30,36,37,39–43]).

The initiation and majority of studies on rough sets for algebraic structures
such as semigroups, groups, rings, and modules etc. have been concentrated on
a congruence relation. However, the congruence relation seems to be restrict the
application of the generalized rough set model for algebraic sets. To solve this
problem, Davvaz [2] introduced the concept of a set-valued homomorphism for
groups. From this point of view, Yamak et al. [33] considered the concept of a
set-valued homomorphism for rings. They introduced the concepts of set-valued
homomorphism and strong set-valued homomorphism of a ring, and investigated
related properties.

The primary goal of this paper is to consider the (strong) set-valued mapping
in other algebraic structure so called BCK/BCI-algebras. In this paper, we in-
troduce the concept of a (strong) set-valued BCK/BCI-morphism in BCK/BCI-
algebras, and investigate several properties. We provide conditions for a set-
valued mapping to be a set-valued BCK/BCI-morphism. Using the concept
of generalized approximation space, we introduce generalized rough subalgebra
(ideal) in BCK/BCI-algebras, and investigate their properties. Using the concept
of generalized approximation space and ideal of BCK/BCI-algebra, we consider
another type of generalized lower and upper approximations based on the ideal,
and then several properties are investigated.

Rough set theory is intended to deal with uncertainty in addition to fuzzy set
theory, which is based on concepts such as approximation, dependence and reduc-
tion of attributes, decision tables, decision rules, etc. Rough set theory is applied
in hybrid ways in many areas, such as pattern recognition, information processing,
business and finance, industry and environmental engineering, medical diagnosis
and medical data analysis, and system defects and monitoring. Therefore, there
is a limit to dealing with uncertain issues in a segmentation environment that
requires accurate harm. Fuzzy set theory and Rough set theory are emerging as
alternatives to overcoming this limitation. Since most real-world problems pose
uncertainty, the Rough Set theory can be used in many applications of the real
world. The Rough Set theory solves the problem in an integrated way with the
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various areas of the computer, so it is expected that there will be many advances
along with the development of fuzzy theory, neural circuit network theory and
decision theory. So, as a secondary goal, we hope that many (applied) scientists
dealing with uncertainty can use the results of this paper in their research.

2. Preliminaries

A BCK/BCI-algebra, which is an important class of logical algebras, is intro-
duced by K. Iséki (see [6] and [7]).

A BCI-algebra is defined to be the structure (X, ∗, 0) which satisfies the
following conditions (see [13]):

(I) (∀x, y, z ∈ X) ((x ∗ y) ∗ (x ∗ z) ≤ z ∗ y),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y) ≤ y),

(III) (∀x ∈ X) (x ≤ x),

(IV) (∀x, y ∈ X) (x ≤ y, y ≤ x ⇒ x = y)

where x ≤ y means x ∗ y = 0 for all x, y ∈ X. If a BCI-algebra X has the
following identity:

(V) (∀x ∈ X) (0 ≤ x),

then X is called a BCK-algebra. In any BCK/BCI-algebra X, the following
conditions are valid (see [13]).

(∀x ∈ X) (x ∗ 0 = x) ,(2.1)

(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) ,(2.2)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) ,(2.3)

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) .(2.4)

We say that a non-empty subset S of a BCK/BCI-algebra X is a subalgebra
of X (see [13]) if x∗y ∈ S for all x, y ∈ S. We say that a subset I of a BCK/BCI-
algebra X is an ideal of X (see [13]) if it satisfies

0 ∈ I,(2.5)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) .(2.6)

Let A be an ideal of a BCK/BCI-algebra X. Define a binary relation θ on
X as follows

(∀x, y ∈ X) ((x, y) ∈ θ ⇔ x ∗ y ∈ A, y ∗ x ∈ A) .(2.7)
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Then θ is a congruence on X, and the quotient structure (X/A, ∗, A0) is a
BCK/BCI-algebra (see [5, 13]).

We now display basic definitions on generalized rough sets (see [24, 26–28]
and [33]).

Let X and Y be non-empty universes and consider the mapping t : X →
2Y which is called a set-valued mapping. Then the triple (X,Y, t) is called a
generalized approximation space.

Any set-valued mapping t : X → 2Y define a binary relation from X to Y by
setting

ρt := {(x, y) ∈ X × Y | y ∈ t(x)}.(2.8)

Obviously, if ρ is an arbitrary relation from X to Y , then the mapping

tρ : X → 2Y , x 7→ {y ∈ Y | (x, y) ∈ ρ}(2.9)

is a set-valued mapping. For any subset A of Y , the generalized lower and upper
approximations, t(A) and t(A), are defined by

t(A) = {x ∈ X | t(x) ⊆ A} and t(A) = {x ∈ X | t(x) ∩A 6= ∅}.

We say that the pair
(

t(A), t(A)
)

is a generalized rough set.

3. Set-valued morphisms in BCK/BCI-algebras

In classical approximation spaces, a set is approximated by its lower and upper
approximations that are made by classes of elements that are indistinguishable.
In this section, in order to make generalized approximation space on BCK/BCI-
algebras, we define (strong) set-valued morphism.

In what follows, let X and Y denote BCK/BCI-algebras unless otherwise
specified.

For any non-empty subsets A and B of X, we define

A ∗B := {a ∗ b | a ∈ A, b ∈ B}.(3.1)

Definition 3.1. A set-valued mapping t : X → 2Y is called a set-valued BCK/
BCI-morphism if it satisfies

(∀x, y ∈ X) (t(x) ∗ t(y) ⊆ t(x ∗ y)) .(3.2)

A set-valued mapping t : X → 2Y is called a strong set-valued BCK/BCI-
morphism if it satisfies:

(∀x, y ∈ X) (t(x) ∗ t(y) = t(x ∗ y)) .(3.3)
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Example 3.2. Consider a set X = {0, a, b, c, d} with the binary operation ∗
which is given in Table 1.

Table 1. Cayley table for the binary operation “∗”.

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0

Then (X; ∗, 0) is a BCK-algebra (see [13]). Define a mapping t as follows

t : X → 2X , x 7→















{0, a} if x ∈ {0, a},
{b} if x = b,
{c} if x = c,
{d} if x = d.

Then (X,X, t) is a generalized approximation space. It is routine to verify
that t is a set-valued BCK-morphism. But it is not strong since

t(b) ∗ t(c) = {b} ∗ {c} = {0} 6= {0, a} = t(b ∗ c).

Example 3.3. Let X = {0, a, b, c} be set the binary operations ∗ which are given
in Table 2.

Table 2. Cayley table for the binary operation “∗”.

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

Define a mapping t as follows

t : X → 2X , x 7→

{

{0, c} if x ∈ {0, c},
{a, b} if x ∈ {a, b}.

Then (X,X, t) is a generalized approximation space. It is easy to check that t is
a strong set-valued BCK/BCI-morphism.
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Note that if ρ is an arbitrary relation from X to Y , then the mapping

tρ : X → 2Y , x 7→ {y ∈ Y | (x, y) ∈ ρ}(3.4)

is a set-valued mapping. But it is not a set-valued BCK/BCI-morphism as seen
in the following example.

Example 3.4. Let X = {0, a, b, c} and Y = {0, 1, 2, 3} be sets with the binary
operations ∗X and ∗Y which are given in Table 3 and Table 4, respectively.

Table 3. Cayley table for the binary operation “∗X”.

∗X 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Table 4. Cayley table for the binary operation “∗Y ”.

∗Y 0 1 2 3

0 0 0 3 2
1 1 0 3 2
2 2 2 0 3
3 3 3 2 0

Let ρ := {(0, 1), (0, 3), (a, 1), (b, 2), (b, 3), (c, 1), (c, 2)} be a relation from X to
Y . Then (X,Y, t) is a generalized approximation space in which the mapping t
defined by

t : X → 2Y , x 7→















{1, 3} if x = 0,
{1} if x = a,
{2, 3} if x = b,
{1, 2} if x = c.

is a set-valued mapping which is not a set-valued BCK/BCI-morphism since

t(a) ∗ t(b) = {1} ∗ {2, 3} = {2, 3} * {1} = t(a ∗ b).

We provide conditions for a set-valued mapping to be a set-valued BCK/
BCI-morphism.
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Theorem 3.5. Let θ be a congruence relation on X. Then the mapping

tθ : X → 2X , x 7→ [x]θ(3.5)

is a set-valued BCK/BCI-morphism.

Proof. For any x, y ∈ X, we have

t(x) ∗ t(y) = [x]θ ∗ [y]θ ⊆ [x ∗ y]θ = t(x ∗ y).

Hence tθ is a set-valued BCK/BCI-morphism.

Theorem 3.6. Given a generalized approximation space (X,Y, t) in which t is
a set-valued BCK/BCI-morphism, if A is an ideal of Y , then the set-valued
mapping

tA : X → 2Y/A, x 7→ {Aa | a ∈ t(x)}(3.6)

is a set-valued BCK/BCI-morphism.

Proof. Assume that t is a set-valued BCK/BCI-morphism. For any x, y ∈ X,
we have

tA(x) ∗ tA(y) = {Aa | a ∈ t(x)} ∗ {Ab | b ∈ t(y)}

= {Ac | c = a ∗ b, a ∈ t(x), b ∈ t(y)}

= {Ac | c ∈ t(x) ∗ t(y)}

⊆ {Ac | c ∈ t(x ∗ y)} = tA(x ∗ y).

Therefore tA is a set-valued BCK/BCI-morphism.

The following example illustrates Theorem 3.6.

Example 3.7. In Example 3.2, we know that t : X → 2X is a set-valued BCK-
morphism. Let A := {0, a, b}. Then A is an ideal of X [13] and

X/A = {A0 = Aa = Ab = {0, a, b}, Ac = {c}, Ad = {d}}.

If follows that

tA : X → 2X/A, x 7→







{A0} if x ∈ A,
{Ac} if x = c,
{Ad} if x = d

which is a set-valued BCK-morphism.
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Question 3.8. Given a strong set-valued BCK/BCI-morphism t and an ideal
A of Y , is the set-valued mapping tA in (3.6) a strong set-valued BCK/BCI-
morphism?

The following example shows that the answer to Question 3.8 is negative.

Example 3.9. In Example 3.3, we know that t : X → 2X is a strong set-valued
BCK-morphism. Let A := {0, a, b}. Then A is an ideal of X [13] and

X/A = {A0 = Aa = Ab = {0, a, b}, Ac = {c}}.

It follows that

tA : X → 2X/A, x 7→

{

{A0, Ac} if x ∈ {0, c},
{A0} if x ∈ {a, b}

and it is not a strong set-valued BCK-morphism since

tA(a) ∗ tA(a) = {A0} ∗ {A0} = {A0} 6= {A0, Ac} = tA(0) = tA(a ∗ a).

Proposition 3.10. Let (X,Y, t) be a generalized approximation space in which t
is a set-valued BCK/BCI-morphism. Then

(1) 0 ∈ t(0).

(2) If A and B are non-empty subsets of Y , then t(A) ∗ t(B) ⊆ t(A ∗B).

(3) If A and B are non-empty subsets of Y and t is strong, then t(A) ∗ t(B) ⊆
t(A ∗B).

Proof. (1) We have 0 ∈ t(x) ∗ t(x) ⊆ t(x ∗ x) = t(0) for all x ∈ X.

(2) Let a ∈ t(A) ∗ t(B). Then a = b ∗ c for some b ∈ t(A) and c ∈ t(B).
It follows that t(b) ∩ A 6= ∅ and t(c) ∩ B 6= ∅, which imply that there exist
u, v ∈ Y such that u ∈ t(b) ∩ A and v ∈ t(c) ∩ B. Hence u ∗ v ∈ A ∗ B and
u∗v ∈ t(b)∗t(c) ⊆ t(b∗c) = t(a). Thus a ∈ t(A∗B), and so t(A)∗t(B) ⊆ t(A∗B).

(3) Let a ∈ t(A) ∗ t(B). Then a = b ∗ c for some b ∈ t(A) and c ∈ t(B). It
follows that t(b) ⊆ A and t(c) ⊆ B. Since t is strong, we have t(a) = t(b ∗ c) =
t(b) ∗ t(c) ⊆ A ∗B, and so a ∈ t(A ∗B). Thus t(A) ∗ t(B) ⊆ t(A ∗B).

If we omit the condition “t is strong” in Proposition 3.10(3), then the inclu-
sion

t(A) ∗ t(B) ⊆ t(A ∗B)

does not hold as seen in the following example.
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Example 3.11. In Example 3.2, the set-valued BCK/BCI-morphism is not
strong. Let A := {b, c} and B := {a, b}. Then we have

t(A) ∗ t(B) = {b, c} ∗ {b} = {0, c} * {b, c} = t(A ∗B)

Question 3.12. Let (X,Y, t) be a generalized approximation space in which t
is a set-valued BCK/BCI-morphism and A be a subset of Y . Then are the
generalized lower and upper approximations t(A) and t(A) subalgebras (resp.,
ideals) of X?

The answer to the question above is negative as seen in the following example.

Example 3.13. In Example 3.2, (X,X, t) is a generalized approximation space
in which t is a set-valued BCK/BCI-morphism. If A := {b, c}, then t(A) =
{b, c} = t(A) which is neither a subalgebra nor an ideal of X.

Definition 3.14. Let (X,Y, t) be a generalized approximation space. Then a
subset A of Y is called

• a generalized lower rough subalgebra (resp., ideal) if the generalized lower
approximation t(A) is a subalgebra (resp., ideal) of X.

• a generalized upper rough subalgebra (resp., ideal) if the generalized upper
approximation t(A) is a subalgebra (resp., ideal) of X.

If A is both a generalized lower rough subalgebra (resp., ideal) and a generalized
upper rough subalgebra (resp., ideal) of X, we say that A is a generalized rough
subalgebra (resp., ideal) of Y .

Example 3.15. Consider two sets X = {0, 1, 2, 3, 4} and Y = {0, 1, 2, a, b} with
binary operations ∗X and ∗Y given by Table 5 and Table 6, respectively.

Table 5. Cayley table for the binary operation “∗X”.

∗X 0 1 2 3 4

0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 0
3 3 1 1 0 1
4 4 4 4 4 0

Then (X, ∗X , 0) is a BCK-algebra and (Y, ∗Y , 0) is a BCI-algebra (see [5]). Define
a mapping t1 as follows

t1 : X → 2Y , x 7→







{0, a} if x ∈ {0, 2},
{b} if x ∈ {1, 4},
{2} if x = 3.
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Table 6. Cayley table for the binary operation “∗Y ”.

∗Y 0 1 2 a b

0 0 0 0 a a
1 1 0 1 a a
2 2 2 0 a a
a a a a 0 0
b b a b 1 0

Then (X,Y, t1) is a generalized approximation space. For a subset A = {0, 1, 2, a}
of Y , we have t1(A) = {0, 2, 3} = t1(A) which is neither a subalgebra nor an ideal
of X. Hence A is neither a generalized lower rough subalgebra nor a generalized
lower rough ideal, and A is neither a generalized upper rough subalgebra nor a
generalized upper rough ideal.

Consider a generalized approximation space (X,Y, t2) in which t2 is given as
follows

t2 : X → 2Y , x 7→























{0, 2, a} if x = 0,
{1, 2} if x = 1,
{b} if x = 2,
{1, a} if x = 3,
{2, b} if x = 4.

For a subset A = {0, 1, 2, a} of Y , we have t2(A) = {0, 1, 3} which is both a
subalgebra and an ideal of X. Hence A is a generalized lower rough subalgebra
and a generalized lower rough ideal. But t2(A) = {0, 1, 3, 4} which is neither
a subalgebra nor an ideal of X. Thus A is neither a generalized upper rough
subalgebra nor a generalized upper rough ideal.

Consider a generalized approximation space (X,Y, t3) in which t3 is given as
follows

t3 : X → 2Y , x 7→























{0, a} if x = 0,
{a, b} if x = 1,
{1} if x = 2,
{2, b} if x = 3,
{1, a} if x = 4.

For a subset B = {0, 2, b} of Y , we have t3(B) = {3} which is neither a subalgebra
nor an ideal of X. Hence B is neither a generalized lower rough subalgebra nor a
generalized lower rough ideal. But t3(B) = {0, 1, 3} which is a subalgebra and an
ideal of X. Hence B is a generalized upper rough subalgebra and a generalized
upper rough ideal.
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Consider a generalized approximation space (X,Y, t4) in which t4 is given as
follows

t4 : X → 2Y , x 7→























{0, 2} if x = 0,
{1, 2} if x = 1,
{2, a, b} if x = 2,
{0, 1} if x = 3,
{a, b} if x = 4.

For a subset C = {0, 1, 2} of Y , we have t4(C) = {0, 1, 3} which is a subalgebra
and an ideal of X. Hence C is a generalized lower rough subalgebra and a
generalized lower rough ideal. Also t4(C) = {0, 1, 2, 3} which is a subalgebra and
an ideal of X. Hence C is a generalized upper rough subalgebra and a generalized
upper rough ideal. Therefore C is a generalized rough subalgebra and ideal.

Theorem 3.16. Let (X,Y, t) be a generalized approximation space in which t is
a set-valued BCK/BCI-morphism. Then

(1) If A is a subalgebra of Y , then the generalized upper approximation t(A) is
a subalgebra of X whenever it is non-empty, that is, every subalgebra is a
generalized lower rough subalgebra.

(2) If A is a subalgebra of Y and t is strong, then the generalized lower approx-
imation t(A) is a subalgebra of X whenever it is non-empty, that is, every
subalgebra is a generalized upper rough subalgebra.

Proof. (1) Let A be a subalgebra of Y such that t(A) is non-empty. Let x, y ∈
t(A). Then t(x) ∩ A 6= ∅ and t(y) ∩ A 6= ∅. Hence there exist a ∈ t(x) ∩ A and
b ∈ t(y) ∩ A, which imply that a ∗ b ∈ A and a ∗ b ∈ t(x) ∗ t(y) ⊆ t(x ∗ y). Thus
a∗b ∈ t(x∗y)∩A, i.e., t(x∗y)∩A is non-empty. Hence x∗y ∈ t(A), and therefore
t(A) is a subalgebra of X.

(2) Suppose that A is a subalgebra of Y and t is strong. Let x, y ∈ t(A).
Then t(x) ⊆ A and t(y) ⊆ A. Hence t(x ∗ y) = t(x) ∗ t(y) ⊆ A ∗ A = A, and so
x ∗ y ∈ t(A). Therefore t(A) is a subalgebra of X.

Corollary 3.17. If (X,Y, t) is a generalized approximation space in which t
is a strong set-valued BCK/BCI-morphism, then every subalgebra of Y is a
generalized rough subalgebra of Y .

Theorem 3.18. Let (X,Y, t) be a generalized approximation space in which t is
a set-valued BCK/BCI-morphism. If A is an ideal of Y , then the generalized
lower approximation t(A) is an ideal of X.

Proof. Let A be an ideal of Y . Since 0 ∈ t(0) ⊆ t(A), we get 0 ∈ t(A). Let
x, y ∈ X be such that x ∗ y ∈ t(A) and y ∈ t(A). Then t(x) ∗ t(y) ⊆ t(x ∗ y) ⊆ A
and t(y) ⊆ A. Since A is an ideal of Y , it follows that t(x) ⊆ A. Hence x ∈ t(A)
and therefore t(A) is an ideal of X.
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Theorem 3.19. Let (X,Y, t) be a generalized approximation space in which t is
a (strong) set-valued BCK/BCI-morphism. Then

(1) If f : Z → X is a homomorphism of BCK/BCI-algebras, then the compo-
sition t ◦ f is a (strong) set-valued BCK/BCI-morphism, and

(

∀A ∈ 2Y
) (

t ◦ f(A) = f−1(t(A)), t ◦ f(A) = f−1(t(A))
)

.(3.7)

(2) Given a homomorphism g : Y → Z of BCK/BCI-algebras, define a mapping

tg : X → 2Z , x 7→ g(t(x)).(3.8)

Then tg is a set-valued BCK/BCI-morphism and

(

∀B ∈ 2Z
)

(

tg(B) = t(g−1(B)), tg(B) = t(g−1(B))
)

.(3.9)

Proof. (1) For any a, b ∈ Z, we have

(t ◦ f)(a) ∗ (t ◦ f)(b) = t(f(a)) ∗ t(f(b)) ⊆ t(f(a) ∗ f(b))

= t(f(a ∗ b)) = (t ◦ f)(a ∗ b),

and so t ◦ f is a set-valued BCK/BCI-morphism. Similarly, t ◦ f is a strong
set-valued BCK/BCI-morphism. Let a ∈ f−1(t(A)). Then f(a) = x for some
x ∈ X with t(x) ∩A 6= ∅. It follows that

(t ◦ f)(a) ∩A = t(f(a)) ∩A 6= ∅,

which implies that a ∈ t ◦ f(A), that is, f−1(t(A)) ⊆ t ◦ f(A). Similarly, we show
that t ◦ f(A) ⊆ f−1(t(A)). If a ∈ t ◦ f(A), then t(f(a)) = (t ◦ f)(a) ⊆ A. Hence
f(a) ∈ t(A), and so a ∈ f−1(t(A)). Similarly, we can prove that f−1(t(A)) ⊆
t ◦ f(A).

(2) For any x, y ∈ X, we get

tg(x) ∗ tg(y) = g(t(x)) ∗ g(t(y)) = g(t(x) ∗ t(y)) ⊆ g(t(x ∗ y)) = tg(x ∗ y).

Thus tg is a set-valued BCK/BCI-morphism. If x ∈ tg(B), then g(t(x)) ∩ B =
tg(x) ∩B 6= ∅. It follows that

t(x) ∩ g−1(B) = g−1(g(t(x)) ∩B) 6= ∅,

that is, x ∈ t(g−1(B)). Similarly, we can check t(g−1(B)) ⊆ tg(B). If x ∈
tg(B), then g(t(x)) = tg(x) ⊆ B, which implies that t(x) ∈ g−1(B). Hence

x ∈ t(g−1(B)). Similarly, we have t(g−1(B)) ⊆ tg(B).
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Definition 3.20. Let (X,Y, t) be a generalized approximation space. Let A be
an ideal of Y and S be a non-empty subset of Y . Then the sets

(3.10)
tA(S) := {x ∈ X | t(x) ∗A ⊆ S} and

tA(S) := {x ∈ X | (t(x) ∗ A) ∩ S 6= ∅}

are called generalized lower and upper approximations of S, respectively, based
on the ideal A.

Definition 3.20 is illustrated in the following example.

Example 3.21. Consider the generalized approximation space (X,Y, t) in Ex-
ample 3.4. Let A = {0, 1} be an ideal of Y . Given a subset S = {0, 1, 3} of Y ,
we have tA(S) = {0, a} and tA(S) = X. If S = {2, 3}, then tA(S) = {b} and
tA(S) = {0, b, c}.

Proposition 3.22. Let (X,Y, t) be a generalized approximation space. If A and
B are ideals of Y and S is a non-empty subset of Y , then

A ⊆ B ⇒ tA(S) ⊇ tB(S) and tA(S) ⊆ tB(S),(3.11)

tA(S) ∩ tB(S) ⊆ tA∩B(S),(3.12)

tA∩B(S) ⊆ tA(S) ∩ tB(S).(3.13)

Proof. Assume that A ⊆ B. If x ∈ tB(S), then t(x) ∗ A ⊆ t(x) ∗B ⊆ S, and so
x ∈ tA(S). If x ∈ tA(S), then ∅ 6= (t(x)∗A)∩S ⊆ (t(x)∗B)∩S. Thus x ∈ tB(S).
If x ∈ tA(S) ∩ tB(S), then t(x) ∗ (A ∩ B) ⊆ t(x) ∗ A ⊆ S and thus x ∈ tA∩B(S).
If x ∈ tA∩B(S), then (t(x) ∗ (A ∩ B)) ∩ S 6= ∅. Since A and B are super sets of
A ∩B, it follows that (t(x) ∗A) ∩ S 6= ∅ and (t(x) ∗B) ∩ S 6= ∅. Thus x ∈ tA(S)
and x ∈ tB(S), which implies that x ∈ tA(S) ∩ tB(S).

Theorem 3.23. Let (X,Y, t) be a generalized approximation space in which t is
a set-valued BCK/BCI-morphism and 2Y satisfies the right self-distributive law.
Let S be a non-empty subset of Y and let A be an ideal of Y .

(1) If S is a subalgebra of Y , then tA(S) is a subalgebra of X whenever it is
non-empty.

(2) If t is strong and S is a subalgebra of Y , then tA(S) is a subalgebra of X
whenever it is non-empty.

(3) If B is an ideal of Y and 2Y satisfies the right ∩-distributive law, that is,
(P ∗Q)∩R = (P ∩R) ∗ (Q∩R) for all P,Q,R ∈ 2Y , then tA(B) is an ideal
of X whenever it is non-empty.

Proof. (1) Assume that tA(S) is non-empty and let x, y ∈ tA(S). Then there
exist a ∈ (t(x) ∗ A) ∩ S and b ∈ (t(y) ∗ A) ∩ S, which imply that a ∈ t(x) ∗ A,
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b ∈ t(y) ∗ A and a ∗ b ∈ S. Since Y satisfies the right self-distributive law and t
is a set-valued BCK/BCI-morphism, it follows that

a ∗ b ∈ (t(x) ∗A) ∗ (t(y) ∗A) = (t(x) ∗ t(y)) ∗A ⊆ t(x ∗ y) ∗ A.

Thus (t(x ∗ y) ∗A)∩S 6= ∅, and so x ∗ y ∈ tA(S). Therefore tA(S) is a subalgebra
of X.

(2) Let x, y ∈ tA(S). Then t(x) ∗ A ⊆ S and t(y) ∗ A ⊆ S. Since t is strong
and Y satisfies the right self-distributive law, we have

t(x ∗ y) ∗ A = (t(x) ∗ t(y)) ∗ A = (t(x) ∗ A) ∗ (t(y) ∗ A) ⊆ S.

Hence x ∗ y ∈ tA(S), and therefore tA(S) is a subalgebra of X.

(3) It is clear that 0 ∈ tA(B). Let x ∗ y ∈ tA(B) and y ∈ tA(B). Then
(t(y) ∗ A) ∩B 6= ∅ and

((t(x) ∗A) ∩B) ∗ ((t(y) ∗ A) ∩B) = ((t(x) ∗A) ∗ (t(y) ∗A)) ∩B

= ((t(x) ∗ t(y)) ∗ A) ∩B 6= ∅.

Since (t(y) ∗A)∩B 6= ∅, it follows that (t(x) ∗A)∩B 6= ∅. Hence x ∈ tA(B), and
therefore tA(B) is an ideal of X.

Let I be an ideal of a BCK/BCI-algebra Y and let ρ(I) be a relation on Y
related to I defined by

(x, y) ∈ ρ(I) ⇔ x ∗ y ∈ I and y ∗ x ∈ I.(3.14)

Then ρ(I) is an equivalence relation on Y . Denote by [x]ρ(I) the equivalence class
of x with respect to ρ(I). Let (X,Y, t) be a generalized approximation space.
Define a mapping

tρ(I) : X → 2Y , x 7→ {b ∈ [a]ρ(I) | a ∈ t(x)}.(3.15)

Then tρ(I) is a set-valued mapping and t(x) ⊆ tρ(I)(x) for all x ∈ X.

Theorem 3.24. If (X,Y, t) is a generalized approximation space in which t is a
set-valued BCK/BCI-morphism, then the mapping tρ(I) in (3.15) is a set-valued
BCK/BCI-morphism and

(∀S, T ∈ 2Y )
(

tρ(I)(S) ∗ tρ(I)(T ) ⊆ tρ(I)(S ∗ T )
)

.(3.16)

If tρ(I) is strong, then

(∀S, T ∈ 2Y )
(

tρ(I)(S) ∗ tρ(I)(T ) ⊆ tρ(I)(S ∗ T )
)

.(3.17)
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Proof. Let x, y ∈ X and z ∈ tρ(I)(x) ∗ tρ(I)(y). Then there exist zx ∈ tρ(I)(x)
and zy ∈ tρ(I)(y) such that z = zx ∗ zy. It follows that zx ∈ [a]ρ(I) and zy ∈ [b]ρ(I)
for some a ∈ t(x) and b ∈ t(y). Hence

zx ∗ zy ∈ [a]ρ(I) ∗ [b]ρ(I) ⊆ [a ∗ b]ρ(I).

Since t is a set-valued BCK/BCI-morphism, we have a ∗ b ∈ t(x) ∗ t(y) ⊆
t(x ∗ y). Thus z = zx ∗ zy ∈ tρ(I)(x ∗ y), which shows that tρ(I)(x) ∗ tρ(I)(y) ⊆
tρ(I)(x ∗ y). Therefore tρ(I) in (3.15) is a set-valued BCK/BCI-morphism. Let
z ∈ tρ(I)(S) ∗ tρ(I)(T ). Then z = x ∗ y for some x ∈ tρ(I)(S) and y ∈ tρ(I)(T ).
Hence tρ(I)(x) ∩ S 6= ∅ and tρ(I)(y) ∩ T 6= ∅. Taking zx ∈ tρ(I)(x) ∩ S and
zy ∈ tρ(I)(y) ∩ T imply that zx ∗ zy ∈ S ∗ T , zx ∈ [a]ρ(I) and zy ∈ [b]ρ(I) for some
a ∈ t(x) and b ∈ t(y). It follows that zx ∗ zy ∈ [a]ρ(I) ∗ [b]ρ(I) ⊆ [a ∗ b]ρ(I) and
a ∗ b ∈ t(x) ∗ t(y) ⊆ t(x ∗ y). Hence z = x ∗ y ∈ tρ(I)(S ∗ T ). Therefore (3.16) is
valid. Assume that tρ(I) is strong and let z ∈ tρ(I)(S) ∗ tρ(I)(T ). Then z = x ∗ y
for some x ∈ tρ(I)(S) and y ∈ tρ(I)(T ). Hence tρ(I)(x) ⊆ S and tρ(I)(y) ⊆ T , and
so

tρ(I)(x ∗ y) = tρ(I)(x) ∗ tρ(I)(y) ⊆ S ∗ T.

Thus z = x ∗ y ∈ tρ(I)(S ∗ T ).

Theorem 3.25. Let (X,Y, t) be a generalized approximation space in which Y
is a BCK-algebra and t(x) 6= ∅ for all x ∈ X. If I is an ideal of Y , then

(∀x ∈ X)
(

x ∈ t(I) ⇐⇒ tρ(I)(x) = I
)

.(3.18)

Proof. Let x ∈ X be such that x ∈ t(I). If z ∈ tρ(I)(x), then z ∈ [a]ρ(I) for some
a ∈ t(x) ⊆ I. It follows that z ∗ a ∈ I. Since I is an ideal of Y , we have z ∈ I
and so tρ(I)(x) ⊆ I. Let y ∈ I. Since t(x) 6= ∅, there exists a ∈ t(x) ⊆ I. Since I
is an ideal and hence a subalgebra of X, we have y ∗ a ∈ I and a ∗ y ∈ I, and so
y ∈ [a]ρ(I). Hence y ∈ tρ(I)(x). Conversely, let y ∈ t(x). Since (y, y) ∈ ρ(I), we
get y ∈ tρ(I)(x) = I. Hence t(x) ⊆ I, that is, x ∈ t(I).

Before ending this article, we pose a question.

Question 3.26. Let (X,Y, t) be a generalized approximation space in which t is
a set-valued BCK/BCI-morphism. If A is an ideal of Y , then is the generalized
upper approximation t(A) an ideal of X?
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