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1. INTRODUCTION AND PRELIMINARIES

L. Henkin and T. Skolem developed the idea of Hilbert algebra in the early 50-ties
for some investigations of implication in intuitionistic and other nonclassical log-
ics. In 60-ties, these algebras were particularly studied by Horn and Diego [6] from
algebraic point of view. Hilbert algebras are a valuable tool for some algebraic
logic investigations as they can be regarded as fragments of any propositional
logic that contains a logical connective implication (—) and the constant 1 that
is assumed to be the logical meaning “true”. Many researchers have done a sig-
nificant amount of work on Hilbert algebras [3-5,7-9,13-16]. As a generalization
of Hilbert algebras, Bandaru et al. [1] introduce the notion of GE-algebras. They
studied the various properties and filter theory of GE-algebras. BCK-algebras
and BCl-algebras were introduced by Imai and Iseki [10,11]. H.S. Kim and Y.H.
Kim [12] developed the concept of BE-algebra as a generalization of dual BCK-
algebra. Many researchers developed theory of BE-algebras [2,17-19]. Rezaei [20]
has introduced the notion of eBE-algebra as a generalization of BE-algebra and
has studied some of its properties. It is important to make clear the correspond-
ing algebraic structures for the creation of many-valued logical system. As a
generalization of GE-algebra, we are inspired to concentrate on a new algebraic
structure, called eGE-algebra, and thus to investigate some properties.

Definition 1.1 [1]. Let X be a non-empty set with a constant 1 and % a binary
operation on X. Then an algebraic structure (X, *, 1) of type (2,0) is said to be
a GE-algebra if it satisfies the following axioms:

(GE1) u*xu=1,

(GE2) 1% u = u,

(GE3) u* (v*w) =ux* (v (ux*xw))
for all u,v,w € X.

In a GE-algebra X, a binary relation “<” is defined by
(1) Vu,veX)(u<v & uxv=1).

Proposition 1.2 [1]. Every GE-algebra X satisfies the following items.

(2) VueX)(uxl=1).
(3) (Vu,v € X) (ux* (uxv) =ux*v).
(4) (Vu,v € X) (u <vxku).

Definition 1.3 [1]. A GE-algebra X is said to be transitive, if it satisfies:

(5) (Vo,y,z € X)(xxy < (z%xx)* (2 %y)).
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Proposition 1.4 [1]. Every transitive GE-algebra X satisfies the following as-
sertions.

(6) (Vo,y,z € X)(xxy < (y*x2) % (xx2)).
(7) (Ve,y,z€ X)(x <y = zxx<zxy, yxz<T*xz).

Definition 1.5 [1]. A subset F' of a GE-algebra X is called a filter of X if it
satisfies:

(8) leF,
9) (Ve,ye X)(zxyeF, zeF = yeF).

Lemma 1.6 [1]. In a GE-algebra X, every filter F' of X satisfies:
(10) Vz,ye X)(z <y, ze€F = yeF).

Definition 1.7 [20]. Let X be a non-empty set. By an eBE-algebra we shall
mean an algebra (X, *, A) such that “«” is a binary operation on X and A is a
non-empty subset of X satisfying the following axioms:

(eBEl) z*xz € A,

(eBE2) x x« A C A,

(eBE3) A xx = {z},

(eBE4) =% (y x2) = y* (v * 2)
for all z,y,z € X.

Definition 1.8 [20]. An eBE-algebra X is said to be self distributive if it satisfies:

(11) (Vo,y,z € X)x * (y*2) = (zxy) * (x x 2).

2. ON eGE-ALGEBRAS

In this section, we present the notion of eGE-algebra as a generalization of GE-
algebra and study its properties.

Definition 2.1. An algebraic structure (X, *, E), where % is a binary operation
on a non-empty set X and F is a non-empty subset of X, is said to be an extended
GE-algebra (eGE-algebra for short) if it satisfies the following axioms:

(eGEl) uxu € E,

(eGE2) ux E C E,

(eGE3) E xu = {u},

(eGE4) ux (vxw) = ux* (v* (u*xw)
for all u,v,w € X.
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Throughout the paper, Exu={exu|e€ E} and uxE ={uxe|e€ E}.
If a,b € E then, by (eGE3), we have axb=>b¢€ E and bxa = a € E. Hence F is
a closed subset of X.

We introduce a relation < on X by u < v if and only if uxv € E. By (eGE1)
the relation < is reflexive.

Theorem 2.2. FEvery GE-algebra is an eGE-algebra.

Proof. Put E = {1}. Then (X, x, E) is an eGE-algebra. ]

Every eGE-algebra need not be a GE-algebra which is shown in the following
example.

Example 2.3. Let X = {a,b,c,d,e} be a set and * a binary operation given in
the table:

o|&|lo|T|o | *
ol o |
o|T|o|a|lo| o
olo|lo|&|lalo
[oNpeN JoN Noll Nl Joi
o|lo|lo|&~|T|o

Then (X, *, E), where E = {¢,d}, is an eGE-algebra, but not a GE-algebra. Since
bxb=d and c* c = c and there is no 1 € X, such that uxu =1, for all u € X.

Note that the relation < need not be transitive in an eGE-algebra. From
Example 2.3, we can observe that exb=c€ E,bxa=d € E,butexa=a ¢ E.

In the following example, we show that the axioms (eGE1) to (eGE4) are
independent.

Example 2.4. (i) Let X = {a,b,c,d} be a set and * a binary operation on X
given in the following table:

*

o|oT|o|T|T

T|IT|o | &l
T|T| o | & &

Qlo|T|w
vl || O

Then (X, *, E), where E = {a, b}, satisfies (eGE2), (eGE3) and (eGE4), but it
does not satisfy (eGE1), since E xu # {u} i.e., axc# cand a € E.
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(ii) Let X = {a,b,c,d} be a set and * a binary operation on X in the follow-
ing table:

*la|blc|d
al/b|b|c|ec
bla|b|c|d
cla|blc|d
dla|a|c]|c

Then (X, *, E), where E = {b, c}, satisfies (eGE1), (eGE3) ansd (eGE4), but it
does not satisfy (eGE2), since ux E ¢ E,ie.,d*b=a¢ E and b € E.

(iii) Let X = {a,b,c,d} be a set and * a binary operation on X given in the
following table:

Qo |T|o| *
||| T
o|T|T|T|T

olo|lo|T|o

oAl AT &

Then (X, , E), where E = {b,c} satisfies (eGE1l), (eGE2) and (eGE4), but it
does not satisfy (eGE3), since dxd =a ¢ E.

(iv) Let X = {a,b,c,d} be a set and * a binary operation on X given in the
following table:

x|al|b|c|d
alc|lb|c|ec
blb|c|c]|ec
cla|b|lc|d
dla|b|c|d

Then (X, *, E), where E = {c,d}, satisfies (eGE1), (eGE2) and (eGE3), but it
does not satisfy (eGE4), since

ax(bxa)=axb=bF#c=axc=ax(bxc)=ax*(bx(axa)).

Theorem 2.5. Let (X,x, E) be an eGE-algebra. If E is a singleton set, then
(X,*, E) is a GE-algebra.

Proof. Let E = {a} be a singleton set. If we put 1 = a, then (X,*,1) is a
GE-algebra. [

Theorem 2.6. Let (X, *, E;), fori=1,2, be two eGE-algebras. Then (X, *, E1N
Es) is also an eGE-algebra.



400 R.K. BANDARU, N. RAFI AND A. REZAEI

Proof. Let u € X. Since uxu € Fy and uxu € Fy, we have uxu € Ey N Ey,
and so (eGE1) holds. Let a € u * (E; N E3). Then, we can find b € E; N Ey
such that a = u*b. Since b € F1, uxb € Ey and b € Ey, uxb € FEy, we have
a=uxb€& E;NEyand so ux* (E; N Ey) C FEy N Ey. Hence (eGE2) holds. Let
a € (Ey N Ey) % u. Then, we can find b € E; N Ey such that a = b * u. Since
bxu = u, we have a = u, and so (E1 N Ey) * u = {u}. Hence (eGE3) holds.
(eGE4) is obvious. Thus (X, %, E1 N Ey) is also an eGE-algebra. ]

Corollary 2.7. If (X, x, E;), fori € A, is a family of eGE-algebras, then
(X, *, (Nica EZ) is an eGFE-algebra.

Theorem 2.8. Let (X, *, E;), fori=1,2, be two eGE-algebras. Then (X, *, E1U
Es) is also an eGE-algebra.

Proof. Let u € X. Since uxu € F1 and uxu € FEo, we have uxu € F1 U Ey and
so (eGE1) holds. For (eGE2), let a € ux(EyUE,). Then, we can find b € F; U E»
such that a = ux b. If b € Eq, then a € Ey. Also, if b € Fs, then a € Ey. Thus
a € E1UEy and so u* (F1 U Ey) C E; U Ey. Let a € (Eq U E3) % u. Then,
we can find b € E; U Ey such that a = b % u. Since b *x u = u, we have a = u
and so (Ey U Ey) xu = {u}. Therefore (eGE3) holds. (eGE4) is obvious. Thus
(X, *, E1 U Es) is an eGE-algebra. [

Corollary 2.9. If (X,x, E;), fori€ A, is a family of eGE-algebras, then
(X, *, Uiea EZ) 1s also an eGE-algebra.

Lemma 2.10. Let (X,*, E) be an eGE-algebra and u,v € X. Then ux* (u*v) =
u .

Proof. Let u,v € X. Using (eGE1), (eGE3) and (eGE4), we get

ux(uxv) =ux*((uxu)* (uxv)) =u*x((uxu)*v) =uxwv.

Theorem 2.11. FEvery self-distributive eBE-algebra is an eGE-algebra.

Proof. Let (X,*, E) be a self-distributive eBE-algebra and u,v,w € X. Then,
by (eBE1), (eBE3), (eBE4), and self-distributivity,

wr (vrw) = (wru) x (wx (vrw)) = ux (s (0xw) = ux (Vs (usw).
Hence X is an eGE-algebra. [ |

The converse of the Theorem 2.11 does not have to be true. From Example
2.3, we can observe that X is an eGE-algebra, but not a self-distributive eBE-
algebra.
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Theorem 2.12. Let (X, *, E) be an eBE-algebra having the property ux (u*xv) =
u v, for allu,v € X. Then X is an eGE-algebra.

Proof. Let u,v,w € X and ux(uxv) = uxv. Then ux (vxw) = ux (u*x(vkw)) =
u* (v* (uxw)). Hence X is an eGE-algebra. ]

Proposition 2.13. Let (X, *, E) be an eGE-algebra. Then
(i) (X;%, X \ E) is not an eGE-algebra,
(ii) v+w € E implies ux (v+w) € E,
(i) ux (v*xu) € E,

(iv) u <wvs*xw implies v < u* w,

(vi
(vii

(viii

vxw) € FE implies v+ (uxw) € E and v (u* (vxw)) € F,
vikw) < v (ukw),

)
) u
)
(v) u < (uxwv)x*u,
) u
) u
) u

x (vkw) & E implies uxw ¢ E for all u,v,w € X.

*(
*(
(
Proof. (i) (eGE2) does not hold, since ux E ¢ X\ E and u*x E C E.

(ii) By (eGE2), (ii) is obvious.
(iii) Using (eGE4), (eGE1) and (eGE2), we have

ux(vku)=ux(vx(uxu)) €uxE CE.

(iv) Let w < v w. Hence u * (v *w) € E. Then, by (eGE4) and (eGE2), we
have v * (uxw) =v* (ux (v*w)) € v+ E C E. Therefore v < u * w.
(v) From (eGE4), (eGE1l) and (eGE2) we have

ux((uxv)*xu)=ux*((u*xv)*(u*xu)) EuxE CE.

Therefore u < (u * v) * u.
(vi) Applying (iv) and (eGE4), we can prove (vi).
(vii) By routine calculation we can see that
(ux (v*kw)) * (v (u*w))
= (ux(vxw))* (v*((ux*(v*w))))
= (ux (vxw)) * (v ((ux (vxw))* (ux(vrw)))) € E.
Thus u * (v * w) < v* (uxw).
(viii) It is obvious by (ii). ]
Theorem 2.14. Let (X,*, E) be an eGE-algebra. The following are equivalent.
(i) usxv < (wxu)* (wxv),
(i) uxv < (vkw)* (uxw)
for all u,v,w € X.
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Proof. (i)=(ii) Let u,v,w € X and assume (i). Then
(w*v) % ((w ) * (w*v)) € B.
Hence, by (eGE4) and (eGE2), we get
(wv) % (0% w) * (wxw)) = (wkv) * ((vxw) = ((ukv) * (u*w))) € E.

Therefore u v < (v * w) * (u * w).

(ii)=(i) Let u,v,w € X and assume (ii). Then (u*xv)*((vkw)*(uxw)) € E.
Hence, by (eGE4) and (eGE2), we get

(uxv)* ((wxu)*x (w*v)) = (u*xv)* ((w=*u)* ((u*xv)*(w*v))) € E.
Therefore u v < (w * u) * (w * v). |
Definition 2.15. An eGE-algebra (X, %, F') is said to be transitive if it satisfies:
(12) Vu,v,w e X) (u*xv < (w=*u)* (w*v)).

Example 2.16. Let X = {a,b,c,d} be a set and * a binary operation given in
the following table:

Al |T| | *
S I VI [V @ T eV
T|T|o | &|T
ojlojo|&lo
Ao | &ala

Then (X, *, E), where E = {c,d}, is a transitive eGE-algebra but not an eBE-
algebra, since ax (bxc) =axc=d#c=bxd=0bx (ax*c).

The following theorem can be proved easily.

Theorem 2.17. Let (X,*, E) be a transitive eGE-algebra. The following hold:
(1) u<v implies w*u < wx*v,
(2) uxv < (vxw)*(ux*xw),

(3)

(4) (uxv)*xv)*xw < uxw,
(5)

(6) ux(v*w) < (u*xv)* (uxw)

u <v implies vxw < u*xw,

u<vandv < wimplyu < w,

for all u,v,w € X.
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Theorem 2.18. Let (X, %, E) be an eGE-algebra. Consider Y := (X \ E) U {1}
and define the operation > on 'Y as follows:

uxv if uy,v#1anduxv ¢ E,

1 if w,v#1anduxv € FE,
u>v =

v if u=1,

1 if v=1.

Then (Y,>,1) is a GE-algebra.

Proof. By (eGEl), uxu € E, for all u € X. Thus ubu =1, for all uw € Y, and so
(GE1) holds. By definition of >, (GE2) hold. To prove (Y;>,1) is a GE-algebra
it is sufficient to prove that u> (v>w) = u> (v> (u>w)), for all u,v,w € Y. If
u=1orv=1o0rw=1, then we have u> (v>w) = u> (v> (u>w)). Now, let
u,v,w # 1. ff vxw € E, then v>w = 1, and so u>(v>w) = 1. On the other hand,
if uxw € E, then ubw = 1 and ub(v>(ubw)) = u>(v>l) =u>rl =1 = ur(vow).
If uxw ¢ E, then uxw = u>w. By Proposition 2.13(ii), and v *w € E, we have
v (u*xw) € E. Hence u (v (ubw)) =url=1=up (vow). fovxw ¢ E,
then v>w = v * w. We have two cases: ux (v*w) € E or ux (v*xw) ¢ E. If
ukx (v>w) =ux*(vxw) € E, then u> (v>w) = 1. By Proposition 2.13(vi),
v (uxw) € E, and so u> (v (udbw)) = ub(v>(uxw)) =u>l = 1.
Thus u> (v>w) = ud (v> (ub>w), in this case. If u* (v * w) ¢ E then,
by Proposition 2.13(ii & viii), uxw ¢ E,v*w ¢ E and v * (uxw) ¢ E.
So that ubw = uxw,v>w = v*xw and v> (u* w) = v * (u* w). Hence
ub (v>w) = ux(vxw). Also, by (eGE4), ux* (v (uxw)) = ux*(v+xw) ¢ E. Hence
ub (v (ubw)) =ux*x(ve(ubw)) =ux* (v (urxw)) =ux*(vrw)=ud(v>w).
Thus u> (v>w) =u> (v (u>w)). Therefore (Y,>,1) is a GE-algebra. ]

Example 2.19. Let X = {a,b,¢,d} and E = {c¢,d}. A binary operation * on X
is given in the following table:

*x|a|b|c|d
alc|b|c]|ec
bld|d|d|d
cla|b|lc|d
d|la|b|c|d

Then (X, %, F) is an eGE-algebra which is not an eBE-algebra.
Now, Y = (X \ E)U{1} = {1,a,b}. Define > on Y with the following table:

b

>

[l el BV eV

1
1|1 b
all b
b|1 1
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Then (Y,>, 1) is a GE-algebra.

We conclude this section with the following theorem whose proof is straight-
forward.

Theorem 2.20. Let (X, x,1) be a GE-algebra and Ey be a set such that Ey N X
= 0. If we defineY = X U Ey, E = EqU {1} and define the operation < on'Y as
follows:
' A
ray = { rxy if v,y ¢ Ao,

Y otherwise.

Then (Y,<, E) is an eGE-algebra.

3. QUOTIENT EGE-ALGEBRAS

In this section, we introduce the notion of a filter in an eGE-algebra and study its
properties. We construct a quotient eGE-algebra via a filter of an eGE-algebra.
Throughout this section, X means (X, *, E) is an eGE-algebra, unless specified
otherwise.

Definition 3.1. A subset I of X is called a filter of X if it satisfies:
(eGEF1) E C F,
(eGEF2) u € F and u*v € F imply v € F.

The set of all filters of X will be denoted by F(X). Clearly, F(X) # 0, since
X € F(X).

Example 3.2. Let X = {a,b,c,d,e} be a set and % a binary operation on X
given in the following table:

oo |T| | *
ollT|T |l |T
ololo|l&lolo
Al alo | &
Alo|lo|lo|lo|o

S I N N e

Then (X, x, E), where E = {c,d}, is an eGE-algebra. Let F' = {c,d,e}. Then
F e F(X).

Proposition 3.3. Let F' € F(X). Ifu € F and u < v, then v € F.

Proof. Let u € F and u < v. Thenuxv € E and E C F. So that uxv € F.
Hence v € F, since u € F and F is a filter of X. [ |
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Theorem 3.4. In X, E € F(X).

Proof. Clearly (eGEF1) holds, since E C E. Now we prove (eGEF2). Let u, u *
v € E. Now, by (eGE3), we have v = u x v € E. Therefore E € F(X). |

Proposition 3.5. If I; € F(X), fori € A, then (;cp F; € F(X).

Theorem 3.6. Let F € F(X). Then Fy = (F'\ E)U {1} is a filter of (Y,>,1),
which is defined in Theorem 2.18.

Proof. Clearly 1 € Fy. Let u € Fy andu>v € Fi. If u =1, thenv =1>v € F}.
Let w # 1. If v =1,thenv € F;. If v # 1. Thenu € F\ E and v € X \ E. If
u>v = 1 by definition of > we get uxv € E. Then u*xv € F, since F is a filter
of X. Hence v € F. Thus v € Fy. If u>v # 1, then by definition of >, uxv ¢ E
and ubv =uxv € F. Thus uxv € F. Since F' € F(X), we have v € F. Hence
v € Fy. Therefore F; € F(Y). |

Example 3.7. From Theorem 2.18 and Example 2.19, we get Y = {1, a,b} with
the following table:

Q| =V

—|T|o| T

=]

1
1
1
1

b

which is a GE-algebra. We can observe that F' = {a,c,d} is a filter of (X, x*, E)
and F} = (F\ E)U{1} = {1,a} is a filter of (Y,>,1).

The following theorem can be proved easily.

Theorem 3.8. Let (X,*,1) be a GE-algebra, F' € F(X) and Ey be a set such
that X N Eg = 0. Then Fy = FU Ey is a filter of an eGE-algebra (Y, <, E), which
is defined in Theorem 2.20.

The following example decribes the above theorem

Example 3.9. Let X = {1,a,b} and Ey = {¢,d}. According to Example 2.19,
(X,>,1) is a GE-algebra. We can observe that F = {1,a} is a filter of X. By
Theorem 2.20, we get Y = {1,a,b,¢,d}, E = {1,¢,d} and (Y,<, E) is an eGE-
algebra with the following table:

=== =] =] =
oo —|T|T| T
ololo|lololo
o ol ol ol Jo¥ JoW

SN I el Bl SV e

Qo |T || A
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We can observe that Fy = F'U Ey = {1,a,c,d} is a filter of Y.

Proposition 3.10. A non-empty subset F' of an eGE-algebra X is a filter of X
if and only if it satisfies:

(i) ECF,

(ii)) ux (vxw) € F,v € F impliesuxw € F

for all u,v,w € X.

Proof. Suppose F' € F(X). Then E C F. Let u,v,w € X be such that u * (v %
w) € F and v € F. Then, by Theorem 2.13(vii) and Proposition 3.3, we have
v* (usxw) € F. Then uxw € F. Conversely, assume that the conditions hold.
It is sufficient to prove (eGEF2). Let z € F and xxy € F. Thenxxz € EC F
and (x*z)x (x*xy) =x+y € F. Hence (zxx)*xy=y € F. Thus F € F(X). m

Theorem 3.11. Let F' be a subset of X satisfying the following conditions:
(eGEF1) ECF,
(eGEF3) u € X and r € F imply u*r € F,
(eGEF4) u € X,r,s € F imply (r* (s*u)) xu € F.

Then F € F(X).

Proof. Tt is sufficient to prove (eGEF2). Let u € F and u v € F. Then, by
(eGE1), (eGE3) and (eGEF4), v = [(u * v) * (u*v)] xv € F and hence (eGEF2)
holds. Therefore F € F(X). |

Theorem 3.12. If X is an eGE-algebra and F is a filter of X, then F satisfies
(eGEF1), (eGEF3) and (eGEF4).

Proof. 1t is sufficient to prove (eGEF3) and (eGEF4). Let F' € F(X) and r €
F,u € X. Then r*(uxr) € E C F and hence, by (GEF2), uxr € F. Let r,s € F.
Since r#* ((r*(s*u))*(sxu)) € EC Fandr € F, we have (r*(sxu))*(s*u) € F.
Hence, by (eGE4) and (eGEF3), sx ((r*(s*u))xu) = s*((rx(s*u))*(sxu)) € F.
Thus, by (eGEF2), (r* (s*xu))*xu € F. ]

Theorem 3.13. Let ' € F(X). Then (r*u)xu € F forallr € F and u € X.

For a non-empty subset I of X, we define the binary relation ~; in the
following way:

u~yvifandonly ifuxv el and v*xu € I.

The set {s |  ~1 s} will be denoted by [r].

Lemma 3.14. In the above relation ~p, if E C I and r € E, then [r]; = I.
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Proof. Let u € I and r € E. By (eGE3), we have r xu € Exu = {u} C I and
sorxu € I. From (eGE2), we have uxr € ux E C E C I, then u*r € I. Hence
r ~1 u. Therefore I C [r|;. Conversely, let r € E and u € [r];. Then u ~ r and
souxr €l and r*u=u € I. Hence [r|; C I. Therefore [r]; = I. ]

Theorem 3.15. Let (X, x, E) be a transitive eGE-algebra and F € F(X). Then
~p 1S a congruence relation on X.

Proof. Since uxu € E C F, we have uxu € F, and so u ~p u. If u ~p v,
then clearly v ~p u. Now, let v ~p v and v ~p w. Then v * v,v *u € F and
vkw,w*v € F. By Proposition 2.17(1), we have vxw < (uxv)*(u*w), and so by
Proposition 3.3, we have (u*v) % (uxw) € F. Since F is a filter and uxv € F, we
have u x w € F. Similarly, we can prove that w *u € F. Thus u ~p w. Therefore
~p is an equivalent relation on X. If r ~p s and u ~p v, then r x s,sxr € F
and u *v,v * u € F. By Proposition 2.17(1), we have uxv < (r xu) % (r *v) and
vku < (rxv)x(r=u), and so by Proposition 3.3, we have (r*u)*(r*v) € F and
(r+v)«(r*u) € F. Thus r*u ~p r+v. Similarly, we can prove that r*v ~p sx*v.
Since the relation ~p is transitive, we have r x u ~p s * v which proves that ~pg
is a congruence relation on X. [ |

Proposition 3.16. Let ~q be a congruence relation on X, E C G andr € E.
Then [r]q € F(X).

Proof. By Lemma 3.14, we have [r]g¢ = G. Let u,u*v € [r]g. Thus u ~¢ r and
u*v ~g 1. Since v ~g v and ~¢g is a congruence relation, we can observe that
r~guxv~grxv=uov (by (eGE3)). Thus v € [r]g. Therefore [r]c € F(X). =

Denote LG = {[u]lg | v € X}. Define a binary operation e on NLG by [u]a

~

[v]g := [u*v]g. Then by above theorem, e is well defined. The following theorem
shows that for a transitive eGE-algebra (X,*, FE),r € E and F € F(X), the

quotient algebra <%, o [r] F) is a GE-algebra.
™F

Theorem 3.17. Let (X, *, E) be a transitive eGE-algebra, F € F(X) andr € E.
Then <%;o, [T]F) is a GE-algebra.
™F

Proof. Since E C F, we can observe that E C [r]p, for all » € E. Hence [r|p is a
filter by Proposition 3.16 and so ~,],. is a congruence relation on X by Theorem
3.15. Now, we have

(GE1) [u]lp o [u]lp = [u*u|p = [r]F, since uxu € E C [r]p,

(GE2) [r]p o [ulp = [r*u]p = [u]F, since E xu = {u} and so r *x u = u,

(GE3) [u]re([v]relw]r) = [ulrelvxw]r = [ux(viw)]r = [ux (vx(uxw))]r =
[ul @ [(v* (uxw))]r = [u]r o ([v]F o [uxv]r) = [ur e ([v]r & ([u]F o [w]F)).

Thus < SR o r F> is a GE-algebra. [ |
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