Discussiones Mathematicae General Algebra and Applications 41 (2021) 395–409 <https://doi.org/10.7151/dmgaa.1362>

ON eGE-ALGEBRAS

 $R.K.$ BANDARU¹

Department of Mathematics GITAM (*Deemed to be University*) *Hyderabad Campus, India-502 329*

e-mail: ravimaths83@gmail.com

N. RAFI

Department of Mathematics Bapatla Engineering College Bapatla, Andhra Pradesh, India-522 101

e-mail: rafimaths@gmail.com

AND

A. Rezaei

Department of Mathematics Payame Noor University P.O. Box 19395-3697, Tehran, Iran

e-mail: rezaei@pnu.ac.ir

Abstract

A new algebraic structure was introduced, called an eGE-algebra, which is a generalisation of a GE-algebra and investigated its properties. We explore the definition of filters and the quotient algebra associated with such filters.

Keywords: BE-algebra, GE-algebra, eGE-algebra, transitive, filter.

2010 Mathematics Subject Classification: 06D20, 06F35, 03G25.

¹Corresponding author.

1. Introduction and preliminaries

L. Henkin and T. Skolem developed the idea of Hilbert algebra in the early 50-ties for some investigations of implication in intuitionistic and other nonclassical logics. In 60-ties, these algebras were particularly studied by Horn and Diego [6] from algebraic point of view. Hilbert algebras are a valuable tool for some algebraic logic investigations as they can be regarded as fragments of any propositional logic that contains a logical connective implication (\rightarrow) and the constant 1 that is assumed to be the logical meaning "true". Many researchers have done a significant amount of work on Hilbert algebras [3–5,7–9,13–16]. As a generalization of Hilbert algebras, Bandaru *et al.* [1] introduce the notion of GE-algebras. They studied the various properties and filter theory of GE-algebras. BCK-algebras and BCI-algebras were introduced by Imai and Iseki [10, 11]. H.S. Kim and Y.H. Kim [12] developed the concept of BE-algebra as a generalization of dual BCKalgebra. Many researchers developed theory of BE-algebras [2,17–19]. Rezaei [20] has introduced the notion of eBE-algebra as a generalization of BE-algebra and has studied some of its properties. It is important to make clear the corresponding algebraic structures for the creation of many-valued logical system. As a generalization of GE-algebra, we are inspired to concentrate on a new algebraic structure, called eGE-algebra, and thus to investigate some properties.

Definition 1.1 [1]. Let X be a non-empty set with a constant 1 and $*$ a binary operation on X. Then an algebraic structure $(X,*,1)$ of type $(2,0)$ is said to be a GE-algebra if it satisfies the following axioms:

(GE1) $u * u = 1$, (GE2) $1 * u = u$, (GE3) $u * (v * w) = u * (v * (u * w))$ for all $u, v, w \in X$.

In a GE-algebra X, a binary relation " \leq " is defined by

(1)
$$
(\forall u, v \in X) (u \le v \Leftrightarrow u * v = 1).
$$

Proposition 1.2 [1]. Every GE-algebra X satisfies the following items.

$$
(2) \qquad (\forall u \in X) (u * 1 = 1).
$$

(3)
$$
(\forall u, v \in X) (u * (u * v) = u * v).
$$

(4) $(\forall u, v \in X) (u \le v * u).$

Definition 1.3 [1]. A GE-algebra X is said to be transitive, if it satisfies:

(5)
$$
(\forall x, y, z \in X) (x * y \le (z * x) * (z * y)).
$$

On eGE-algebras 397

Proposition 1.4 [1]. Every transitive GE-algebra X satisfies the following assertions.

- (6) $(\forall x, y, z \in X) (x * y \le (y * z) * (x * z)).$
- (7) $(\forall x, y, z \in X)$ $(x \leq y \Rightarrow z * x \leq z * y, y * z \leq x * z).$

Definition 1.5 [1]. A subset F of a GE-algebra X is called a *filter* of X if it satisfies:

$$
(8) \t 1 \in F,
$$

(9)
$$
(\forall x, y \in X)(x * y \in F, x \in F \Rightarrow y \in F).
$$

Lemma 1.6 [1]. *In a GE-algebra* X*, every filter* F *of* X *satisfies:*

(10)
$$
(\forall x, y \in X) (x \le y, x \in F \Rightarrow y \in F).
$$

Definition 1.7 [20]. Let X be a non-empty set. By an eBE-algebra we shall mean an algebra (X, \ast, A) such that "*" is a binary operation on X and A is a non-empty subset of X satisfying the following axioms:

 $(eBE1)$ $x * x \in A$, $(eBE2)$ $x * A \subseteq A$, $(eBE3) A * x = \{x\},\$ (eBE4) $x * (y * z) = y * (x * z)$ for all $x, y, z \in X$.

Definition 1.8 [20]. An eBE-algebra X is said to be self distributive if it satisfies:

(11)
$$
(\forall x, y, z \in X) x * (y * z) = (x * y) * (x * z).
$$

2. On eGE-algebras

In this section, we present the notion of eGE-algebra as a generalization of GEalgebra and study its properties.

Definition 2.1. An algebraic structure (X, \ast, E) , where \ast is a binary operation on a non-empty set X and E is a non-empty subset of X, is said to be an extended GE-algebra (eGE-algebra for short) if it satisfies the following axioms:

 $(eGE1) u * u \in E,$ $(eGE2) u * E \subseteq E$, $(eGE3) E * u = \{u\},\$ (eGE4) $u * (v * w) = u * (v * (u * w))$ for all $u, v, w \in X$.

Throughout the paper, $E * u = \{e * u \mid e \in E\}$ and $u * E = \{u * e \mid e \in E\}$. If $a, b \in E$ then, by (eGE3), we have $a * b = b \in E$ and $b * a = a \in E$. Hence E is a closed subset of X.

We introduce a relation \leq on X by $u \leq v$ if and only if $u * v \in E$. By (eGE1) the relation \leq is reflexive.

Theorem 2.2. *Every GE-algebra is an eGE-algebra.*

Proof. Put $E = \{1\}$. Then (X, \ast, E) is an eGE-algebra.

 \blacksquare

Every eGE-algebra need not be a GE-algebra which is shown in the following example.

Example 2.3. Let $X = \{a, b, c, d, e\}$ be a set and $*$ a binary operation given in the table:

Then (X, \ast, E) , where $E = \{c, d\}$, is an eGE-algebra, but not a GE-algebra. Since $b * b = d$ and $c * c = c$ and there is no $1 \in X$, such that $u * u = 1$, for all $u \in X$.

Note that the relation \leq need not be transitive in an eGE-algebra. From Example 2.3, we can observe that $e * b = c \in E$, $b * a = d \in E$, but $e * a = a \notin E$.

In the following example, we show that the axioms (eGE1) to (eGE4) are independent.

Example 2.4. (i) Let $X = \{a, b, c, d\}$ be a set and $*$ a binary operation on X given in the following table:

\ast	a	b	C	$\mathbf d$
\mathbf{a}	b	b	$\mathbf d$	d
$\mathbf b$	a	$\mathbf b$	$\mathbf c$	$\mathbf c$
\overline{c}	\mathbf{a}	b	b	b
d	\mathbf{a}	b	b	b

Then (X, \ast, E) , where $E = \{a, b\}$, satisfies (eGE2), (eGE3) and (eGE4), but it does not satisfy (eGE1), since $E * u \neq \{u\}$ i.e., $a * c \neq c$ and $a \in E$.

(ii) Let $X = \{a, b, c, d\}$ be a set and $*$ a binary operation on X in the following table:

Then (X, \ast, E) , where $E = \{b, c\}$, satisfies (eGE1), (eGE3) ansd (eGE4), but it does not satisfy (eGE2), since $u * E \nsubseteq E$, i.e., $d * b = a \notin E$ and $b \in E$.

(iii) Let $X = \{a, b, c, d\}$ be a set and $*$ a binary operation on X given in the following table:

Then (X, \ast, E) , where $E = \{b, c\}$ satisfies (eGE1), (eGE2) and (eGE4), but it does not satisfy (eGE3), since $d * d = a \notin E$.

(iv) Let $X = \{a, b, c, d\}$ be a set and $*$ a binary operation on X given in the following table:

Then (X, \ast, E) , where $E = \{c, d\}$, satisfies (eGE1), (eGE2) and (eGE3), but it does not satisfy (eGE4), since

 $a * (b * a) = a * b = b \neq c = a * c = a * (b * c) = a * (b * (a * a)).$

Theorem 2.5. *Let* $(X, *, E)$ *be an eGE-algebra. If* E *is a singleton set, then* (X, ∗, E) *is a GE-algebra.*

Proof. Let $E = \{a\}$ be a singleton set. If we put $1 = a$, then $(X, *, 1)$ is a GE-algebra.

Theorem 2.6. *Let* $(X, *, E_i)$ *, for* $i = 1, 2$ *, be two eGE-algebras. Then* $(X, *, E_1 \cap$ E2) *is also an eGE-algebra.*

Proof. Let $u \in X$. Since $u * u \in E_1$ and $u * u \in E_2$, we have $u * u \in E_1 \cap E_2$, and so (eGE1) holds. Let $a \in u * (E_1 \cap E_2)$. Then, we can find $b \in E_1 \cap E_2$ such that $a = u * b$. Since $b \in E_1$, $u * b \in E_1$ and $b \in E_2$, $u * b \in E_2$, we have $a = u * b \in E_1 \cap E_2$ and so $u * (E_1 \cap E_2) \subseteq E_1 \cap E_2$. Hence (eGE2) holds. Let $a \in (E_1 \cap E_2) * u$. Then, we can find $b \in E_1 \cap E_2$ such that $a = b * u$. Since $b * u = u$, we have $a = u$, and so $(E1 \cap E_2) * u = \{u\}$. Hence (eGE3) holds. (eGE4) is obvious. Thus $(X, *, E_1 \cap E_2)$ is also an eGE-algebra.

Corollary 2.7. *If* $(X, *, E_i)$, *for* $i \in \Lambda$, *is a family of eGE-algebras, then* $(X, *, \bigcap_{i \in \Lambda} E_i)$ is an eGE-algebra.

Theorem 2.8. *Let* (X, \ast, E_i) *, for* $i = 1, 2$ *, be two eGE-algebras. Then* $(X, \ast, E_i \cup$ E2) *is also an eGE-algebra.*

Proof. Let $u \in X$. Since $u * u \in E_1$ and $u * u \in E_2$, we have $u * u \in E_1 \cup E_2$ and so (eGE1) holds. For (eGE2), let $a \in u * (E_1 \cup E_2)$. Then, we can find $b \in E_1 \cup E_2$ such that $a = u * b$. If $b \in E_1$, then $a \in E_1$. Also, if $b \in E_2$, then $a \in E_2$. Thus $a \in E_1 \cup E_2$ and so $u * (E_1 \cup E_2) \subseteq E_1 \cup E_2$. Let $a \in (E_1 \cup E_2) * u$. Then, we can find $b \in E_1 \cup E_2$ such that $a = b * u$. Since $b * u = u$, we have $a = u$ and so $(E_1 \cup E_2) * u = \{u\}$. Therefore (eGE3) holds. (eGE4) is obvious. Thus $(X, *, E_1 \cup E_2)$ is an eGE-algebra.

Corollary 2.9. *If* $(X, *, E_i)$, *for* $i \in \Lambda$, *is a family of eGE-algebras, then* $(X, *, \bigcup_{i \in \Lambda} E_i)$ is also an eGE-algebra.

Lemma 2.10. *Let* $(X,*,E)$ *be an eGE-algebra and* $u, v \in X$ *. Then* $u * (u * v) =$ u ∗ v*.*

Proof. Let $u, v \in X$. Using $(eGE1), (eGE3)$ and $(eGE4),$ we get

$$
u * (u * v) = u * ((u * u) * (u * v)) = u * ((u * u) * v) = u * v.
$$

Theorem 2.11. *Every self-distributive eBE-algebra is an eGE-algebra.*

Proof. Let (X, \ast, E) be a self-distributive eBE-algebra and $u, v, w \in X$. Then, by (eBE1), (eBE3), (eBE4), and self-distributivity,

$$
u * (v * w) = (u * u) * (u * (v * w)) = u * (u * (v * w)) = u * (v * (u * w)).
$$

Hence X is an eGE-algebra.

The converse of the Theorem 2.11 does not have to be true. From Example 2.3, we can observe that X is an eGE-algebra, but not a self-distributive eBEalgebra.

Theorem 2.12. *Let* $(X, * , E)$ *be an eBE-algebra having the property* $u * (u * v) =$ $u * v$, for all $u, v \in X$. Then X is an eGE-algebra.

Proof. Let $u, v, w \in X$ and $u*(u*v) = u*v$. Then $u*(v*w) = u*(u*(v*w)) = u$ $u * (v * (u * w))$. Hence X is an eGE-algebra.

Proposition 2.13. *Let* (X, ∗, E) *be an eGE-algebra. Then*

- (i) $(X;*, X \setminus E)$ *is not an eGE-algebra,*
- (ii) $v * w \in E$ *implies* $u * (v * w) \in E$,
- (iii) $u * (v * u) \in E$,
- (iv) $u \leq v * w$ *implies* $v \leq u * w$,
- (v) $u \leq (u * v) * u$,
- (vi) $u * (v * w) \in E$ *implies* $v * (u * w) \in E$ *and* $v * (u * (v * w)) \in E$ *,*
- (vii) $u * (v * w) \leq v * (u * w)$,
- (viii) $u * (v * w) \notin E$ *implies* $u * w \notin E$ *for all* $u, v, w \in X$.

Proof. (i) (eGE2) does not hold, since $u * E \nsubseteq X \setminus E$ and $u * E \subseteq E$.

- (ii) By $(eGE2)$, (ii) is obvious.
- (iii) Using (eGE4), (eGE1) and (eGE2), we have

$$
u * (v * u) = u * (v * (u * u)) \in u * E \subseteq E.
$$

(iv) Let $u \le v * w$. Hence $u * (v * w) \in E$. Then, by (eGE4) and (eGE2), we have $v * (u * w) = v * (u * (v * w)) \in v * E \subseteq E$. Therefore $v \le u * w$.

(v) From (eGE4), (eGE1) and (eGE2) we have

$$
u * ((u * v) * u) = u * ((u * v) * (u * u)) \in u * E \subseteq E.
$$

Therefore $u \leq (u * v) * u$.

(vi) Applying (iv) and (eGE4), we can prove (vi).

(vii) By routine calculation we can see that

$$
(u * (v * w)) * (v * (u * w))
$$

= (u * (v * w)) * (v * ((u * (v * w))))
= (u * (v * w)) * (v * ((u * (v * w)) * (u * (v * w)))) ∈ E.

Thus $u * (v * w) \leq v * (u * w)$.

(viii) It is obvious by (ii).

Theorem 2.14. *Let* (X, \ast, E) *be an eGE-algebra. The following are equivalent.*

- (i) $u * v \leq (w * u) * (w * v),$
- (ii) $u * v \leq (v * w) * (u * w)$

for all $u, v, w \in X$.

Proof. (i)⇒(ii) Let $u, v, w \in X$ and assume (i). Then

$$
(u * v) * ((w * u) * (w * v)) \in E.
$$

Hence, by (eGE4) and (eGE2), we get

$$
(u * v) * ((v * w) * (u * w)) = (u * v) * ((v * w) * ((u * v) * (u * w))) \in E.
$$

Therefore $u * v \leq (v * w) * (u * w)$.

(ii)⇒(i) Let $u, v, w \in X$ and assume (ii). Then $(u * v) * ((v * w) * (u * w)) \in E$. Hence, by (eGE4) and (eGE2), we get

$$
(u * v) * ((w * u) * (w * v)) = (u * v) * ((w * u) * ((u * v) * (w * v))) \in E.
$$

Therefore $u * v \leq (w * u) * (w * v)$.

Definition 2.15. An eGE-algebra (X, \ast, E) is said to be transitive if it satisfies:

(12)
$$
(\forall u, v, w \in X) (u * v \le (w * u) * (w * v)).
$$

Example 2.16. Let $X = \{a, b, c, d\}$ be a set and $*$ a binary operation given in the following table:

Then (X, \ast, E) , where $E = \{c, d\}$, is a transitive eGE-algebra but not an eBEalgebra, since $a * (b * c) = a * c = d \neq c = b * d = b * (a * c)$.

The following theorem can be proved easily.

Theorem 2.17. *Let* (X, ∗, E) *be a transitive eGE-algebra. The following hold:*

(1)
$$
u \le v
$$
 implies $w * u \le w * v$,

$$
(2) u * v \le (v * w) * (u * w),
$$

- (3) $u \leq v$ *implies* $v * w \leq u * w$,
- (4) $((u * v) * v) * w \leq u * w,$
- (5) $u \leq v$ *and* $v \leq w$ *imply* $u \leq w$,
- (6) $u * (v * w) \leq (u * v) * (u * w)$

for all $u, v, w \in X$.

 \blacksquare

Theorem 2.18. *Let* (X, \ast, E) *be an eGE-algebra. Consider* $Y := (X \setminus E) \cup \{1\}$ *and define the operation* ⊳ *on* Y *as follows:*

$$
u \triangleright v = \begin{cases} u * v & \text{if } u, v \neq 1 \text{ and } u * v \notin E, \\ 1 & \text{if } u, v \neq 1 \text{ and } u * v \in E, \\ v & \text{if } u = 1, \\ 1 & \text{if } v = 1. \end{cases}
$$

Then $(Y, \triangleright, 1)$ *is a GE-algebra.*

Proof. By (eGE1), $u * u \in E$, for all $u \in X$. Thus $u \triangleright u = 1$, for all $u \in Y$, and so (GE1) holds. By definition of \triangleright , (GE2) hold. To prove $(Y; \triangleright, 1)$ is a GE-algebra it is sufficient to prove that $u \triangleright (v \triangleright w) = u \triangleright (v \triangleright (u \triangleright w))$, for all $u, v, w \in Y$. If $u = 1$ or $v = 1$ or $w = 1$, then we have $u \triangleright (v \triangleright w) = u \triangleright (v \triangleright (u \triangleright w))$. Now, let $u, v, w \neq 1$. If $v * w \in E$, then $v \triangleright w = 1$, and so $u \triangleright (v \triangleright w) = 1$. On the other hand, if $u*w \in E$, then $u ⊳ w = 1$ and $u ⊵ (v ⊳(u ⊗ w)) = u ⊵ (v ⊳ 1) = u ⊳ 1 = 1 = u ⊵ (v ⊵ w)$. If $u * w \notin E$, then $u * w = u \triangleright w$. By Proposition 2.13(ii), and $v * w \in E$, we have $v*(u*w) \in E$. Hence $u \triangleright (v \triangleright (u \triangleright w)) = u \triangleright 1 = 1 = u \triangleright (v \triangleright w)$. If $v*w \notin E$, then $v \triangleright w = v * w$. We have two cases: $u * (v * w) \in E$ or $u * (v * w) \notin E$. If $u * (v \triangleright w) = u * (v * w) \in E$, then $u \triangleright (v \triangleright w) = 1$. By Proposition 2.13(vi), $v * (u * w) \in E$, and so $u \triangleright (v \triangleright (u \triangleright w)) = u \triangleright (v \triangleright (u * w)) = u \triangleright 1 = 1$. Thus $u \triangleright (v \triangleright w) = u \triangleright (v \triangleright (u \triangleright w))$, in this case. If $u * (v * w) \notin E$ then, by Proposition 2.13(ii & viii), $u * w \notin E$, $v * w \notin E$ and $v * (u * w) \notin E$. So that $u \triangleright w = u * w, v \triangleright w = v * w$ and $v \triangleright (u * w) = v * (u * w)$. Hence $u \triangleright (v \triangleright w) = u * (v * w)$. Also, by (eGE4), $u * (v * (u * w)) = u * (v * w) \notin E$. Hence $u \triangleright (v \triangleright (u \triangleright w)) = u * (v \triangleright (u \triangleright w)) = u * (v * (u * w)) = u * (v * w) = u \triangleright (v \triangleright w).$ Thus $u \triangleright (v \triangleright w) = u \triangleright (v \triangleright (u \triangleright w))$. Therefore $(Y, \triangleright, 1)$ is a GE-algebra.

Example 2.19. Let $X = \{a, b, c, d\}$ and $E = \{c, d\}$. A binary operation $*$ on X is given in the following table:

Then (X, \ast, E) is an eGE-algebra which is not an eBE-algebra. Now, $Y = (X \setminus E) \cup \{1\} = \{1, a, b\}$. Define ⊳ on Y with the following table:

Then $(Y, \triangleright, 1)$ is a GE-algebra.

We conclude this section with the following theorem whose proof is straightforward.

Theorem 2.20. *Let* $(X, * , 1)$ *be a GE-algebra and* E_0 *be a set such that* $E_0 \cap X$ $= \emptyset$. *If we define* $Y = X \cup E_0$, $E = E_0 \cup \{1\}$ *and define the operation* \triangleleft *on* Y *as follows:*

$$
x \triangleleft y = \begin{cases} x * y & \text{if } x, y \notin A_0, \\ y & \text{otherwise.} \end{cases}
$$

Then (Y, \triangleleft, E) *is an eGE-algebra.*

3. Quotient eGE-algebras

In this section, we introduce the notion of a filter in an eGE-algebra and study its properties. We construct a quotient eGE-algebra via a filter of an eGE-algebra. Throughout this section, X means (X, \ast, E) is an eGE-algebra, unless specified otherwise.

Definition 3.1. A subset F of X is called a filter of X if it satisfies:

 $(eGEF1) E \subseteq F$, (eGEF2) $u \in F$ and $u * v \in F$ imply $v \in F$.

The set of all filters of X will be denoted by $\mathcal{F}(X)$. Clearly, $\mathcal{F}(X) \neq \emptyset$, since $X \in \mathcal{F}(X)$.

Example 3.2. Let $X = \{a, b, c, d, e\}$ be a set and $*$ a binary operation on X given in the following table:

Then (X, \ast, E) , where $E = \{c, d\}$, is an eGE-algebra. Let $F = \{c, d, e\}$. Then $F \in \mathcal{F}(X)$.

Proposition 3.3. *Let* $F \in \mathcal{F}(X)$ *. If* $u \in F$ *and* $u \leq v$ *, then* $v \in F$ *.*

Proof. Let $u \in F$ and $u \leq v$. Then $u * v \in E$ and $E \subseteq F$. So that $u * v \in F$. Hence $v \in F$, since $u \in F$ and F is a filter of X. \blacksquare On eGE-algebras 405

Theorem 3.4. *In* $X, E \in \mathcal{F}(X)$.

Proof. Clearly (eGEF1) holds, since $E \subseteq E$. Now we prove (eGEF2). Let $u, u *$ $v \in E$. Now, by (eGE3), we have $v = u * v \in E$. Therefore $E \in \mathcal{F}(X)$.

Proposition 3.5. *If* $F_i \in \mathcal{F}(X)$ *, for* $i \in \Lambda$ *, then* $\bigcap_{i \in \Lambda} F_i \in \mathcal{F}(X)$ *.*

Theorem 3.6. *Let* $F \in \mathcal{F}(X)$. *Then* $F_1 = (F \setminus E) \cup \{1\}$ *is a filter of* $(Y, \triangleright, 1)$, *which is defined in Theorem* 2.18.

Proof. Clearly $1 \in F_1$. Let $u \in F_1$ and $u \triangleright v \in F_1$. If $u = 1$, then $v = 1 \triangleright v \in F_1$. Let $u \neq 1$. If $v = 1$, then $v \in F_1$. If $v \neq 1$. Then $u \in F \setminus E$ and $v \in X \setminus E$. If $u \triangleright v = 1$ by definition of \triangleright we get $u * v \in E$. Then $u * v \in F$, since F is a filter of X. Hence $v \in F$. Thus $v \in F_1$. If $u \triangleright v \neq 1$, then by definition of $\triangleright, u * v \notin E$ and $u \triangleright v = u * v \in F_1$. Thus $u * v \in F$. Since $F \in \mathcal{F}(X)$, we have $v \in F$. Hence $v \in F_1$. Therefore $F_1 \in \mathcal{F}(Y)$. ۲

Example 3.7. From Theorem 2.18 and Example 2.19, we get $Y = \{1, a, b\}$ with the following table:

which is a GE-algebra. We can observe that $F = \{a, c, d\}$ is a filter of (X, \ast, E) and $F_1 = (F \setminus E) \cup \{1\} = \{1, a\}$ is a filter of $(Y, \triangleright, 1)$.

The following theorem can be proved easily.

Theorem 3.8. Let $(X,*,1)$ be a GE-algebra, $F \in \mathcal{F}(X)$ and E_0 be a set such *that* $X \cap E_0 = \emptyset$. *Then* $F_0 = F \cup E_0$ *is a filter of an eGE-algebra* (Y, \triangleleft, E) *, which is defined in Theorem* 2.20.

The following example decribes the above theorem

Example 3.9. Let $X = \{1, a, b\}$ and $E_0 = \{c, d\}$. According to Example 2.19, $(X, \triangleright, 1)$ is a GE-algebra. We can observe that $F = \{1, a\}$ is a filter of X. By Theorem 2.20, we get $Y = \{1, a, b, c, d\}$, $E = \{1, c, d\}$ and (Y, \triangleleft, E) is an eGEalgebra with the following table:

We can observe that $F_0 = F \cup E_0 = \{1, a, c, d\}$ is a filter of Y.

Proposition 3.10. *A non-empty subset* F *of an eGE-algebra* X *is a filter of* X *if and only if it satisfies:*

- (i) $E \subset F$,
- (ii) $u * (v * w) \in F, v \in F$ *implies* $u * w \in F$

for all $u, v, w \in X$.

Proof. Suppose $F \in \mathcal{F}(X)$. Then $E \subseteq F$. Let $u, v, w \in X$ be such that $u * (v *$ $w \in F$ and $v \in F$. Then, by Theorem 2.13(vii) and Proposition 3.3, we have $v * (u * w) \in F$. Then $u * w \in F$. Conversely, assume that the conditions hold. It is sufficient to prove (eGEF2). Let $x \in F$ and $x * y \in F$. Then $x * x \in E \subseteq F$ and $(x * x) * (x * y) = x * y \in F$. Hence $(x * x) * y = y \in F$. Thus $F \in \mathcal{F}(X)$.

Theorem 3.11. *Let* F *be a subset of* X *satisfying the following conditions:*

 $(eGEF1) E \subseteq F$, $(eGEF3)$ $u \in X$ *and* $r \in F$ *imply* $u * r \in F$, $(eGEF4)$ $u \in X, r, s \in F$ *imply* $(r * (s * u)) * u \in F$. *Then* $F \in \mathcal{F}(X)$.

Proof. It is sufficient to prove (eGEF2). Let $u \in F$ and $u * v \in F$. Then, by (eGE1), (eGE3) and (eGEF4), $v = [(u * v) * (u * v)] * v \in F$ and hence (eGEF2) holds. Therefore $F \in \mathcal{F}(X)$.

Theorem 3.12. *If* X *is an eGE-algebra and* F *is a filter of* X*, then* F *satisfies* (eGEF1), (eGEF3) *and* (eGEF4).

Proof. It is sufficient to prove (eGEF3) and (eGEF4). Let $F \in \mathcal{F}(X)$ and $r \in \mathcal{F}(X)$ $F, u \in X$. Then $r*(u*r) \in E \subseteq F$ and hence, by (GEF2), $u*r \in F$. Let $r, s \in F$. Since $r*(r*(s*u)*(s*u)) \in E \subseteq F$ and $r \in F$, we have $(r*(s*u)*(s*u) \in F$. Hence, by (eGE4) and (eGEF3), $s*(r*(s*u))*u) = s*(r*(s*u)*(s*u)) \in F$. Thus, by (eGEF2), $(r*(s*u))*u \in F$.

Theorem 3.13. Let $F \in \mathcal{F}(X)$. Then $(r * u) * u \in F$ for all $r \in F$ and $u \in X$.

For a non-empty subset I of X, we define the binary relation \sim_I in the following way:

 $u \sim_l v$ if and only if $u * v \in I$ and $v * u \in I$.

The set $\{s \mid r \sim_I s\}$ will be denoted by $[r]_I$.

Lemma 3.14. *In the above relation* $∼_I$, *if* $E ⊆ I$ *and* $r ∈ E$, *then* $[r]_I = I$.

Proof. Let $u \in I$ and $r \in E$. By (eGE3), we have $r * u \in E * u = \{u\} \subseteq I$ and so $r * u \in I$. From (eGE2), we have $u * r \in u * E \subseteq E \subseteq I$, then $u * r \in I$. Hence $r \sim_I u$. Therefore $I \subseteq [r]_I$. Conversely, let $r \in E$ and $u \in [r]_I$. Then $u \sim_I r$ and so $u * r \in I$ and $r * u = u \in I$. Hence $[r]_I \subseteq I$. Therefore $[r]_I = I$.

Theorem 3.15. *Let* (X, \ast, E) *be a transitive eGE-algebra and* $F \in \mathcal{F}(X)$ *. Then* ∼^F *is a congruence relation on* X.

Proof. Since $u * u \in E \subseteq F$, we have $u * u \in F$, and so $u \sim_F u$. If $u \sim_F v$, then clearly $v \sim_F u$. Now, let $u \sim_F v$ and $v \sim_F w$. Then $u * v, v * u \in F$ and $v * w, w * v \in F$. By Proposition 2.17(1), we have $v * w \leq (u * v) * (u * w)$, and so by Proposition 3.3, we have $(u * v) * (u * w) \in F$. Since F is a filter and $u * v \in F$, we have $u * w \in F$. Similarly, we can prove that $w * u \in F$. Thus $u \sim_F w$. Therefore $~\sim_F$ is an equivalent relation on X. If $r \sim_F s$ and $u \sim_F v$, then $r*s, s*r \in F$ and $u * v, v * u \in F$. By Proposition 2.17(1), we have $u * v \le (r * u) * (r * v)$ and $v * u \leq (r * v) * (r * u)$, and so by Proposition 3.3, we have $(r * u) * (r * v) \in F$ and $(r*v)*(r*u) \in F$. Thus $r*u \sim_F r*v$. Similarly, we can prove that $r*v \sim_F s*v$. Since the relation ∼F is transitive, we have $r * u \sim_F s * v$ which proves that \sim_F is a congruence relation on X.

Proposition 3.16. *Let* \sim_G *be a congruence relation on* X, $E \subseteq G$ *and* $r \in E$. *Then* $[r]_G \in \mathcal{F}(X)$.

Proof. By Lemma 3.14, we have $[r]_G = G$. Let $u, u * v \in [r]_G$. Thus $u \sim_G r$ and $u * v \sim_G r$. Since $v \sim_G v$ and \sim_G is a congruence relation, we can observe that $r \sim_G u * v \sim_G r * v = v$ (by (eGE3)). Thus $v \in [r]_G$. Therefore $[r]_G \in \mathcal{F}(X)$. ■

Denote $\frac{X}{\sim_G} = \{ [u]_G \mid u \in X \}$. Define a binary operation • on $\frac{X}{\sim_G}$ by $[u]_G$ • $[v]_G := [u * v]_G$. Then by above theorem, \bullet is well defined. The following theorem shows that for a transitive eGE-algebra $(X, \ast, E), r \in E$ and $F \in \mathcal{F}(X)$, the quotient algebra $\left(\frac{X}{\sim_{[r]_F}}, \bullet, [r]_F\right)$ is a GE-algebra.

Theorem 3.17. *Let* $(X, *, E)$ *be a transitive eGE-algebra,* $F \in F(X)$ *and* $r \in E$. *Then* $\left(\frac{X}{\sim_{[r]_F}}; \bullet, [r]_F\right)$ *is a GE-algebra.*

Proof. Since $E \subseteq F$, we can observe that $E \subseteq [r]_F$, for all $r \in E$. Hence $[r]_F$ is a filter by Proposition 3.16 and so $\sim_{[r]_F}$ is a congruence relation on X by Theorem 3.15. Now, we have

(GE1) $[u]_F \bullet [u]_F = [u * u]_F = [r]_F$, since $u * u \in E \subseteq [r]_F$, (GE2) $[r]_F \bullet [u]_F = [r * u]_F = [u]_F$, since $E * u = \{u\}$ and so $r * u = u$, $(GE3) [u]_F \bullet ([v]_F \bullet [w]_F) = [u]_F \bullet [v*w]_F = [u * (v * w)]_F = [u * (v * (u * w))]_F =$ $[u]_f \bullet [(v*(u*w))]_F = [u]_F \bullet ([v]_F \bullet [u*v]_F) = [u]_F \bullet ([v]_F \bullet ([u]_F \bullet [w]_F))$ Thus $\left(\frac{X}{\sim_{[r]_F}}, \bullet, [r]_F\right)$ is a GE-algebra. Е

REFERENCES

- [1] R.K. Bandaru, A. Borumand Saeid and Y.B. Jun, *On GE-algebras*, Bulletin of the Section of Logic, (2020), in press. <https://doi.org/10.18778/0138-0680.2020.20>
- [2] A. Borumand Saeid, A. Rezaei and R.A. Borzooei, *Some types of filters in BEalgebras*, Math. Comput. Sci. 7 (2013) 341–352. <https://doi.org/10.1007/s11786-013-0157-6>
- [3] S. Celani, *A note on homomorphisms of Hilbert algebras*, Internat. J. Math. and Math. Sci. 29 (2002) 55–61. <https://doi.org/10.1155/S0161171202011134>
- [4] I. Chajda and R. Halas, *Congruences and ideals in Hilbert algebras*, Kyungpook Math. J. 39 (1999) 429–432.
- [5] I. Chajda, R. Halas and Y.B. Jun, *Annihilators and deductive systems in commutative Hilbert algebras*, Comment. Math. Univ. Carolinae 43 (2002) 407–417.
- [6] A. Diego, *Sur les algebres de Hilbert*, Collection de Logique Mathematique, Edition Hermann, Ser. A, XXI, 1966.
- [7] Y.B. Jun, *Commutative Hilbert algebras*, Soochow J. Math. 22 (1996) 477–484.
- [8] Y.B. Jun and K.H. Kim, *H-filters of Hilbert algebras*, Sci. Math. Jpn. e-2005, 231–236.
- [9] S.M. Hong and Y.B. Jun, *On deductive systems of Hilbert algebras*, Comm. Korean Math. Soc. 11 (1996) 595–600.
- [10] I. Is´eki and S. Tanaka, *An introduction to the theory of BCK-algebras*, Math. Jpn. 23 (1978) 1–26.
- [11] K. Iseki, On BCI-algebras, Mathematics Seminar Notes (Kobe University) 8 (1980) 125–130.
- [12] H.S. Kim and Y.H. Kim, *On BE-algebras*, Sci. Math. Jpn. 66 (2007) 113–116.
- [13] A.S. Nasab and A. Borumand Saeid, *Semi maximal filter in Hilbert algebras*, J. Intelligent & Fuzzy Systems 30 (2016) 7–15. <https://doi.org/10.3233/IFS-151706>
- [14] A.S. Nasab and A. Boruman Saeid, *Stonean Hilbert algebra*, J. Intelligent & Fuzzy Systems 30 (2016) 485–492. <https://doi.org/10.3233/IFS-151773>
- [15] A.S. Nasab and A. Borumand Saeid, *Study of Hilbert algebras in point of filters*, An St. Univ. Ovidius Constanta 24 (2016) 221–251. <https://doi.org/10.1515/auom-2016-0039>
- [16] A. Rezaei, A. Borumand Saeid and R.A. Borzooei, *Relation between Hilbert algebras and BE-algebras*, Appl. Math. 8 (2013) 573–584.
- [17] A. Rezaei and A. Borumand Saeid, *Relation between Dual S-algebras and BEalgebras*, Le Matematiche 70 (2015) 71–79. <https://doi.org/10.4418/2015.70.1.5>
- [18] A. Rezaei and A. Borumand Saeid, *Relation between BE-algebras and g-Hilbert algebras*, Discuss. Math. Gen. Alg. Appl. 38 (2018) 33–45. <https://doi.org/10.7151/dmgaa.1285>
- [19] A. Rezaei and A. Borumand Saeid, *Some results in BE-algebras*, An. Univ. Oradea, Fasc. Math. 19 (2012) 33–44.
- [20] A. Rezaei, A. Borumand Saeid and A. Radfar, *On eBE-algebra*, TWMS J. Pure Appl. Math. 7 (2016) 200–210.

Received 15 September 2020 Revised 24 October 2020 Accepted 24 October 2020