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Abstract

In this paper, as a further generalization of ideals, we introduce the notion
of tri-quasi ideal as a generalization of ideal, left ideal, right ideal, bi-ideal,
quasi ideal, interior ideal, bi-interior ideal,weak interior ideal, bi-quasi ideal,
tri-ideal,quasi-interior ideal and bi-quasi-interior ideal of Γ-semiring. Some
charecterizations of Γ-semiring,regular Γ-semiring and simple Γ-semiring us-
ing tri-quasi ideals are given and study the properties of tri-quasi ideals of
Γ-semiring.
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1. Introduction

The algebraic structures play a prominent role in mathematics with wide range
of applications. Generalization of ideals of algebraic structures and ordered al-
gebraic structure plays a very remarkable role and also necessary for further
advance studies and applications of various algebraic structures. Many mathe-
maticians proved important results and charecterized the algebraic structures by
using the concept and the properties of generalization of ideals. During 1950–
1980, the concepts of bi-ideals, quasi ideals and interior ideals were studied by
many mathematicians.Then the author [8–13] introduced and studied weak in-
terior ideals,bi-interior ideals, bi quasi ideals,quasi interior ideals and bi quasi
interior ideals as a generalization of bi-ideal, quasi ideal and interior ideal of alge-
braic structures and charecterized regular algebraic structures as well as simple
algebraic structures using these ideals.
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In 1995, Rao [6, 7] introduced the notion of Γ-semiring as a generalization of
Γ- ring, ternary semiring and semiring. As a generalization of ring, the notion of
a Γ-ring was introduced by Nobusawa [14] in 1964. In 1981, Sen [15] introduced
the notion of a Γ-semigroup as a generalization of semigroup. The notion of a
semiring was introduced by Vandiver [17] in 1934, but semirings had appeared
in earlier studies on the theory of ideals of rings. We know that the notion of
a one sided ideal of any algebraic structure is a generalization of an ideal. The
quasi ideals are generalization of left ideal and right ideal whereas the bi-ideals
are generalization of quasi ideals.

In 1952, the concept of bi-ideals was introduced by Good and Hughes [1]
for semigroups. The notion of bi-ideals in rings and semigroups were introduced
by Lajos and Szasz [4]. The concept of interior ideals was introduced by Lajos
[5] for semigroups. Steinfeld [16] first introduced the notion of quasi ideals for
semigroups and then for rings. Iseki [3], Henriksen [2] studied ideals for semir-
ings.In this paper, as a further generalization of ideals, we introduce the notion of
tri-quasi ideal as a generalization of bi-ideal, quasi ideal, interior ideal,bi-interior
ideal, tri-ideal, bi-quasi-interior ideal and bi-quasi ideal of Γ-semiring and study
some of the properties of tri-quasi ideals of Γ-semirings.

2. Preliminaries

In this section, we will recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1 [6]. Let (M,+) and (Γ,+) be commutative semigroups. Then
we call M a Γ-semiring, if there exists a mapping M × Γ ×M → M (images
of (x, α, y) will be denoted by xαy, x, y ∈ M,α ∈ Γ) such that it satisfies the
following axioms for all x, y, z ∈M and α, β ∈ Γ

(i) xα(y + z) = xαy + xαz

(ii) (x+ y)αz = xαz + yαz

(iii) x(α+ β)y = xαy + xβy

(iv) xα(yβz) = (xαy)βz.

Definition 2.2 [6]. A Γ-semiring M is said to have zero element if there exists
an element 0 ∈M such that 0 + x = x and 0αx = xα0 = 0, for all x ∈M,α ∈ Γ.

Definition 2.3 [6]. A Γ-semiring M is said to be commutative Γ-semiring if
xαy = yαx, for all x, y ∈M and α ∈ Γ.

Definition 2.4 [7]. Let M be a Γ-semiring. An element 1 ∈ M is said to be
unity if for each x ∈M there exists α ∈ Γ such that xα1 = 1αx = x.
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Definition 2.5 [7]. An element a ∈ M is said to be invertible if there exist
b ∈M,α ∈ Γ such that aαb = bαa = 1.

Definition 2.6 [6]. An element a in a Γ-semiring M is said to be idempotent if
there exists α ∈ Γ such that a = aαa.

Definition 2.7 [6]. Let M be a Γ−semiring. An element a ∈ M, is said to be
regular element of M if there exist x ∈M,α, β ∈ Γ such that a = aαxβa.

Definition 2.8 [6]. Let M be a Γ−semiring. Every element of M, is a regular
element of M , then M is said to be regular Γ-semiring M.

Definition 2.9 [6]. Every element of M is an idempotent of M , then M is said
to be idempotent Γ-semiring M.

Definition 2.10 [8]. A Γ-semiring M is called a division Γ-semiring if for each
non-zero element of M has multiplicative inverse.

Definition 2.11 [9, 10, 11, 12, 13]. A non-empty subset A of a Γ-semiring M is
called.

(i) A bi-interior ideal of M if A is a Γ-subsemiring of M and MΓAΓM ∩
AΓMΓA ⊆ A.

(ii) A left (right) bi-quasi ideal of M if A is a subsemigroup of (M,+) and
MΓA ∩AΓMΓA ⊆ A (AΓM ∩AΓMΓA ⊆ A).

(iii) A left (right) weak-interior ideal of M if A is a Γ-subsemiring of M and
MΓAΓA ⊆ A( AΓAΓM ⊆ A).

(iv) A left (right) quasi-interior ideal) of M if A is a Γ-subsemiring of M and
MΓAΓMΓA ⊆ A (AΓMΓAΓM ⊆ A).

(v) A left (right) tri- ideal of M if A is a Γ-subsemiring of M and AΓMΓAΓA ⊆
A (AΓAΓMΓA ⊆ A).

(vi) A bi-quasi-interior ideal of M if A is a Γ-subsemiring of M and AΓMΓAΓM
ΓA ⊆ A.

3. Tri-quasi ideals of Γ-semirings

In this section, we introduce the notion of tri-quasi ideal as a generalization of
bi-ideal, quasi-ideal and interior ideal of Γ-semiring and study the properties of
tri-quasi ideal of Γ-semiring.

Definition 3.1. A non-empty subset B of a Γ-semiring M is said to be tri-quasi
ideal of M if B is a Γ-subsemiring of M and BΓBΓMΓBΓB ⊆ B.

Every tri-quasi ideal of a Γ-semiring M need not be bi-ideal, quasi-ideal,
interior ideal, bi-interior ideal and bi-quasi ideals of M.
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Example 3.2. If M =

{(
a b
0 c

)
| a, b, c ∈ Q

}
and Γ = M then M is a Γ-

semiring with respect to usual addition of matrices and ternary operation is

defined as usual matrix multiplication and A =

{(
a 0
0 b

)
| 0 6= a, 0 6= b ∈ Q

}
.

Then A is neither a bi-ideal nor an interior ideal of the Γ-semiring M.

Example 3.3. Let M = {0, 1, 2, 3, 4} and Γ = M be sets. Define the binary
operation as (x, y)→ x+ y, tennary operation is defined as (x, α, y)→ x+α+ y,
and x+y = x+y, if x+y ∈M and x+y = 4, if x+y /∈M , for all x, y ∈M,α ∈ Γ,
where + is the usual addition.Then M is a Γ-semiring. A subset I = {0, 2, 4} of
M is a tri-quasi-interior ideal of M but not bi-ideal, quasi-ideal, interior ideal,
bi-interior ideal of the Γ-semiring M .

In the following theorem, we mention some important properties and we omit
the proofs since proofs are straight forward.

Theorem 3.4. Let M be a Γ-semring. Then the following are hold.

(1) Every left ideal is a tri-quasi ideal of M.

(2) Every right ideal is a tri-quasi ideal of M.

(3) Every quasi ideal is a tri-quasi ideal of M.

(4) Every ideal is a tri-quasi ideal of M.

(5) Intersection of a right ideal and a left ideal of M is a tri-quasi ideal of M.

(6) If L is a left ideal and R is a right ideal of M then B = RΓL is a tri-quasi
ideal of M.

(7) Every bi-ideal of M is a tri-quasi ideal of M.

(8) Every interior ideal of M is a tri-quasi ideal of M.

(9) Let B be bi-ideal ofM and I be interior ideal ofM. Then B∩I is a tri-quasi
ideal of M.

(10) If B is a bi-interior ideal of M, then B is a tri-quasi ideal of M.

(11) If B is a left bi-quasi ideal of M, then B is a tri-quasi ideal of M.

(12) If B is a right bi-quasi ideal of M, then B is a tri-quasi ideal of M.

(13) If B is a bi-quasi ideal of M, then B is a tri-quasi ideal of M.

(14) Let A and C be Γ-subsemirings of M and B = AΓC. If A is the left ideal
then B is a tri-quasi-interior ideal of M.

Theorem 3.5. The intersection of {Bλ | λ ∈ A} tri-quasi ideals of a Γ-semiring
M is a tri-quasi-interior ideal of M.

Proof. Let B =
⋂
λ∈ABλ. Then B is a Γ-subsemiring of M. Since Bλ is a tri-

quasi ideal of M, we have
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BλΓBλΓMΓBλΓBλ ⊆ Bλ, for all λ ∈ A
⇒BΓBΓMΓBΓB ⊆ B.

Hence B is a tri-quasi ideal of M.

Theorem 3.6. LetM be a Γ-semiring. B is a tri-quasi ideal ofM and BΓB = B
if and only if there exist a left ideal L and a right ideal R such that RΓL ⊆ B ⊆
R ∩ L.

Proof. Suppose B is a tri-quasi ideal of the Γ-semiringM . Then BΓBΓMΓBΓB
⊆ B. Let R = BΓM and L = MΓB. Then L and R are left and right ideals of M ,
respectively.Therefore RΓL ⊆ B ⊆ R∩L. Conversely suppose that there exist L
and R are left and right ideals of M respectively such that RΓL ⊆ B ⊆ R ∩ L.
Then BΓBΓMΓBΓB ⊆ (R ∩ L)Γ(R ∩ L)ΓMΓ(R ∩ L)Γ(R ∩ L)

⊆ (R)ΓRΓMΓLΓ(L)
⊆ RΓL ⊆ B.

Hence B is a tri-quasi ideal of the Γ-semiring M.

Theorem 3.7. LetM be a Γ-semiring.Then B is a tri-quasi ideal of a Γ-semiring
M if and only if B is a left ideal of some right ideal of a Γ-semiring M .

Proof. Let B be a tri-quasi ideal of the Γ-semiring M. Then BΓBΓMΓBΓB ⊆
B. Therefore BΓB is a left ideal of right ideal BΓBΓM of a Γ-semiringM .

Conversely suppose that B is a left ideal of some right ideal R of the Γ-
semiringM . Then RΓB ⊆ B,RΓM ⊆ R. Hence BΓBΓMΓBΓB ⊆ BΓMΓB ⊆
RΓMΓB ⊆ RΓB ⊆ B. Therefore B is a tri-quasi ideal of the Γ-semiring M .

Corollary 3.8. B is a tri-quasi ideal of a Γ-semiring M if and only if B is a
right ideal of some left ideal of a Γ-semiring M .

Theorem 3.9. Let M be a Γ-semiring. If M = MΓ < a >, for all a ∈M where
< a > is the smallest tri-quasi ideal generated by a. Then B is a tri-quasi ideal
of M if and only if B is a quasi ideal of M.

Proof. Let B be a tri-quasi ideal of a Γ-semiring M and a ∈ B. Then

BΓBΓMΓBΓB ⊆ B
⇒MΓ < a >⊆MΓB

⇒M ⊆MΓB ⊆M
⇒MΓB = M

⇒BΓM = BΓMΓB ⊆ BΓBΓMΓBΓB ⊆ B
⇒MΓB ∩BΓM ⊆MΓM ∩BΓM ⊆ B.

Therefore B is a quasi ideal of M. Converse is obvious.
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4. Tri-quasi simple Γ-semiring and Regular Γ-semiring

In this section, we introduce the notion of a tri-quasi simple Γ-semiring and char-
acterize the tri-quasi simple Γ-semiring using tri-quasi ideals of Γ-semiring and
study the properties of minimal tri-quasi ideals of Γ-semiring. We also charac-
terize regular Γ-semiring using tri-quasi ideals of Γ-semiring.

Definition 4.1. A Γ-semiring M is a left (right) simple Γ-semiring if M has no
proper left (right) ideals of M .

Definition 4.2. A Γ-semiring M is said to be simple Γ-semring if M has no
proper ideals of M .

Example 4.3. LetN be the set of all natural numbers, M=

{(
a b
0 0

)
| a, b ∈N

}
.

If M = Γwith respect to usual matrix addition and matrix multiplication then
M is a right simple Γ-semiring.

Example 4.4. Let M = {0, 1, 2, 3, 4} and Γ = M be the sets. Define the binary
operation as (x, y)→ x+ y, tennary operation is defined as (x, α, y)→ x+α+ y,
where + is the usual addition of integers and x + y = x + y, if x + y ∈ M and
x+ y = 4, if x+ y /∈M , for all x, y ∈M, where + is the usual addition. Then M
is a simple Γ-semiring.

Definition 4.5. A Γ-semiring M is said to be tri-quasi simple Γ-semiring M if
M has no tri-quasi ideals other than M itself.

Theorem 4.6. If M is a division Γ-semiring then M is a tri-quasi simple Γ-
semiring.

Proof. Let B be a proper tri-quasi ideal of the division Γ-semring M and 0 6= a ∈
B. Since M is a division Γ-semiring, there exist b ∈M,α ∈ Γ such that aαb = 1.
Then there exist β ∈ Γ, x ∈ M such that aαbβx = x = xβaαb. Then x ∈ BΓM.
Therefore M ⊆ BΓM. We have BΓM ⊆M. Hence M = BΓM. Similarly we can
prove MΓB = M.

M = MΓB

= BΓBΓMΓBΓB ⊆ B
M ⊆ B

Therefore M = B.

Hence division Γ-semiring M has no proper tri-quasi-interior ideals.

Theorem 4.7. Let M be a left and a right simple Γ-semiring.Then M is a tri-
quasi simple Γ-semiring.
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Proof. Let M be a simple Γ-semring and B be a tri-quasi ideal of M. Then
BΓBΓMΓBΓB ⊆ B and MΓB and BΓM are left and right ideals of M. Since
M is a left and right simple Γ-semiring, we have MΓB = M. BΓM = M. Hence

BΓBΓMΓBΓB ⊆ B
⇒BΓMΓB ⊆ B.⇒M ⊆ B.

Hence the theorem.

Theorem 4.8. Let M be a Γ-semiring. M is a tri-quasi simple Γ-semiring if
and only if < a >= M, for all a ∈ M and where < a > is the smallest tri-quasi
ideal generated by a.

Proof. Let M be a Γ-semiring. Suppose M is a tri-quasi simple Γ-semiring,
a ∈M and B = MΓa. Then B is a left ideal of M. Therefore, by Theorem[3.4 ],
B is a tri-quasi ideal of M. Therefore B = M. Hence MΓa = M, for all a ∈M.

MΓa ⊆< a >⊆M
⇒M ⊆< a >⊆M.

Therefore M =< a > .

Suppose < a > is the smallest tri-quasi ideal of M generated by a and < a >= M
and A is the tri-quasi ideal and a ∈ A. Then

< a >⊆ A ⊆M
⇒M ⊆ A ⊆M.

Therefore A = M. Hence M is a tri-quasi simple Γ-semiring.

Theorem 4.9. LetM be a Γ-semiring. ThenM is a tri-quasi simple Γ-semriring
if and only if aΓaΓMΓaΓa = M, for all a ∈M.

Proof. Suppose M is left bi-quasi simple Γ-semiring and a ∈ M. Therefore
aΓaΓMΓaΓa = M is a tri-quasi ideal of M. Hence aΓMΓaΓMΓa = M, for all
a ∈ M. Conversely suppose that aΓaΓMΓaΓa = M, for all a ∈ M. Let B be a
tri-quasi ideal of the Γ-semiring M and a ∈ B.

M = aΓaΓMΓaΓa

M = aΓaΓMΓaΓa

⊆ BΓBΓMΓBΓB ⊆ B
ThereforeM = B.

Hence M is a tri-quasi simple Γ-semiring.



40 M.M.K. Rao

Theorem 4.10. If B is a minimal tri-quasi ideal of a Γ-semiring M then any
two non-zero elements of B generated the same right ideal of M.

Proof. Let B be a minimal tri-quasi ideal of M and x ∈ B. Then (x)R ∩ B is
a tri-quasi ideal of M. Therefore (x)R ∩ B ⊆ B. Since B is a minimal tri-quasi
ideal of M, we have (x)R ∩B = B ⇒ B ⊆ (x)R. Suppose y ∈ B. Then y ∈ (x)R,
(y)R ⊆ (x)R. Therefore (x)R = (y)R. Hence the theorem.

Corollary 4.11. If B is a minimal tri-quasi ideal of a Γ-semiring M then any
two non-zero elements of B generates the same left ideal of M.

Theorem 4.12. Let M be a Γ-semiring and B be a tri-quasi ideal of M. Then
B is minimal tri-quasi ideal of M if and only if B is a tri-quasi simple Γ-
subsemiring.

Proof. Let B be a minimal tri-quasi ideal of the Γ-semiring M and C be a
tri-quasi ideal of B. Then CΓCΓBΓCΓC ⊆ C. Therefore CΓCΓBΓCΓC is a
tri-quasi ideal of M. Since C is a tri-quasi ideal of B,

CΓCΓBΓCΓC = B

⇒B = CΓCΓBΓCΓC ⊆ C
⇒B = C.

Conversely suppose that B is a tri-quasi simple Γ-subsemiring of M. Let C be a
tri-quasi ideal of M and C ⊆ B.

CΓCΓBΓCΓC = C

⇒CΓCΓBΓCΓC ⊆ CΓCΓBΓCΓC ⊆ BΓBΓMΓBΓB ⊆ B,
⇒C is a tri-quasi ideal of B ,

⇒B = C, since B is a tri-quasi simple Γ-subsemiring.

Hence B is a minimal tri-quasi ideal of M.

Theorem 4.13. Let M be a Γ-semiring and B = RΓL, where L and R are
minimal left and right ideals of M repectively. Then B is a minimal tri-quasi
ideal of M.

Proof. Obviously B = RΓL is a tri-quasi ideal of M. Let A be a tri-quasi ideal
of M such that A ⊆ B. Then MΓAΓA is a left ideal of M.

⇒MΓAΓA ⊆MΓBΓB

= MΓRΓLΓRΓL

⊆ L, since L is a left ideal of M.
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Similarly, we can prove AΓAΓM ⊆ R
Therefore MΓAΓA = L, AΓAΓM = R

Hence B = AΓAΓMΓMΓAΓA

⊆ AΓAΓMΓAΓA.

⊆ A.

Therefore A = B. Hence B is a minimal tri-quasi ideal of M.

Theorem 4.14. Let M be a regular idempotent Γ-semiring. Then B is a tri-
quasi ideal of M if and only if BΓBΓMΓBΓB = B, for all tri-quasi ideals B
of M.

Proof. Suppose M is a regular Γ-semiring, B is a tri-quasi ideal of M and
x ∈ B. Then BΓBΓMΓBΓB ⊆ B and there exist y ∈ M, α, β, δ ∈ Γ, such
that x = xδxαyβxδx ∈ BΓBΓMΓBΓB. Therefore x ∈ BΓBΓMΓBΓB. Hence
BΓBΓMΓBΓB = B.

Conversely suppose that BΓBΓMΓBΓB = B, for all tri-quasi ideals B of M.
Let B = R ∩ L, where R is a right ideal and L is a left ideal of M. Then B is a
tri-quasi ideal of M. Therefore (R ∩ L)ΓMΓ(R ∩ L)ΓMΓ(R ∩ L) = R ∩ L

R ∩ L = (R ∩ L)Γ(R ∩ L)MΓMΓ(R ∩ L)Γ(R ∩ L)

⊆ RΓMΓLΓMΓL

⊆ RΓL

⊆ R ∩ L (since RΓL ⊆ L and RΓL ⊆ R).

Therefore R ∩ L = RΓL. Hence M is a regular Γ-semiring.

Theorem 4.15. Let M be a regular commutative Γ-semiring. Then every tri-
quasi ideal of M is an ideal of M.

Proof. Let B be a tri-quasi ideal of M and C = BΓBΓMΓBΓB.

Then C = BΓBΓMΓBΓB = B

⇒ BΓM = CΓM ⊆ CΓMΓC, since M is regular

⇒ BΓM ⊆ BΓBΓMΓBΓBΓMΓBΓBΓMΓBΓB ⊆ B. Hence the theorem.

Theorem 4.16. M is regular Γ-semiring if and only if AΓB = A ∩ B for any
right ideal A and left ideal B of Γ-semiring M .

Theorem 4.17. Let B be Γ-subsemiring of a regular idempotent Γ-semiring M.
B can be represented as B = RΓL, where R is a right ideal and L is a left ideal
of M if and only if B is a tri-quasi ideal of M.
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Proof. Suppose B = RΓL, where R is right ideal of M and L is a left ideal of M.

BΓBΓMΓBΓB = RΓLΓRΓLΓMΓRΓLΓRΓL

⊆ RΓL = B.

Hence B is a tri-quasi ideal of the Γ-semiring M. Conversely suppose that B is a
tri-quasi ideal of the regular idempotent Γ-semiring M. Then BΓBΓMΓBΓB =
B. Let R = BΓM and L = MΓB. Then R = BΓM is a right ideal of M and
L = MΓB is a left ideal of M.

BΓM ∩MΓB ⊆ BΓBΓMΓBΓB = B

⇒BΓM ∩MΓB ⊆ B
⇒R ∩ L ⊆ B.

We have B ⊆ BΓM = R and B ⊆MΓB = L

⇒B ⊆ R ∩ L
⇒B = R ∩ L = RΓL, since M is a regular Γ-semiring.

Hence B can be represented as RΓL, where R is the right ideal and L is the left
ideal of M. Hence the theorem.

The following theorem is a necessary and sufficient condition for Γ-semiring
M to be regular using tri-quasi ideal.

Theorem 4.18. M is a regular Γ-semriring if and only if B ∩ I ∩ L ⊆ BΓIΓL,
for any tri-quasi ideal B, ideal I and left ideal L of M .

Proof. Suppose M be a regular Γ-semiring, B, I and L are tri-quasi ideal, ideal
and left ideal of M respectively.

Let a ∈ B ∩ I ∩ L. Then a ∈ aΓMΓa, since M is regular.

a ∈ aΓMΓa ⊆ aΓMΓaΓMΓa

⊆ BΓIΓL.

Hence B ∩ I ∩ L ⊆ BΓIΓL.

Conversely suppose that B ∩ I ∩ L ⊆ BΓIΓL, for any tri-quasi ideal B,
ideal I and left ideal L of M . Let R be a right ideal and L be left ideal of
M. Then by assumption, R ∩ L = R ∩ M ∩ L ⊆ RΓMΓL ⊆ RΓL. We have
RΓL ⊆ R, RΓL ⊆ L. Therefore RΓL ⊆ R ∩ L. Hence R ∩ L = RΓL.

Thus M is a regular Γ-semiring.
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5. Conclusion

As a further generalization of ideals, we introduced the notion of tri-quasi ideal
of Γ-semiring as a generalization of ideal ,left ideal, right ideal, bi-ideal, quasi
ideal and interior ideal of Γ-semiring and studied some of their properties. We
introduced the notion of tri-quasi simple Γ-semiring and characterized the tri-
quasi simple Γ-semiring, regular Γ-semiring using tri-quasi ideals of Γ-semiring.
We proved every bi-quasi ideal and bi-interior ideal of Γ-semiring are tri-quasi
ideals and studied some of the properties of tri-quasi ideals of Γ-semirings. In
continuity of this paper, we study prime tri-quasi ideals, maximal and minimal
tri-quasi ideals of ordered Γ-semirings.

The following figure helps us for visualising the relations between various
ideals.
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