
Discussiones Mathematicae
General Algebra and Applications 41 (2021) 153–169
doi:10.7151/dmgaa.1359

APPLYING THE CZÉDLI-SCHMIDT SEQUENCES
TO CONGRUENCE PROPERTIES OF PLANAR

SEMIMODULAR LATTICES

G. Grätzer

Department of Mathematics
University of Manitoba

Winnipeg, MB R3T 2N2, Canada

e-mail: gratzer@me.com

Abstract

Following Grätzer and Knapp, 2009, a planar semimodular lattice L is
rectangular, if the left boundary chain has exactly one doubly-irreducible
element, cl, and the right boundary chain has exactly one doubly-irreducible
element, cr, and these elements are complementary.

The Czédli-Schmidt Sequences, introduced in 2012, construct rectangular
lattices. We use them to prove some structure theorems. In particular, we
prove that for a slim (no M3 sublattice) rectangular lattice L, the congruence
lattice ConL has exactly length[cl, 1] + length[cr, 1] dual atoms and a dual
atom in ConL is a congruence with exactly two classes. We also describe
the prime ideals in a slim rectangular lattice.
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1. Introduction

1.1. The Czédli-Schmidt Sequences

Czédli and Schmidt [10] proved the Structure Theorem for Slim Rectangular
Lattices, according to which every slim rectangular lattice can be constructed
from a planar distributive lattice, a grid, with the Czédli-Schmidt Sequences, see
Section 2.2 for the definitions. In this paper, we find new applications for the
Czédli-Schmidt Sequences.

http://dx.doi.org/10.7151/dmgaa.1359
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1.2. Congruence lattices of SPS lattices

The topic of this paper started in Grätzer, Lakser and Schmidt [23], where we
proved that every finite distributive lattice D can be represented as the congruence
lattice of a PS (planar semimodular) lattice L. The sublattices M3 played a crucial
role in the construction of L, so we asked ([16, Problem 1] and [14, Problems 4.7–
4.10]) what happens if we only consider SPS lattices (Slim PS, where “slim”means
that there is no M3 sublattice)?

1.3. The Two-cover Theorem

In [16, Theorem 5], I proved the Two-cover Theorem. The congruence lattice of
an SPS lattice has the property

(2C) Every join-irreducible congruence has at most two join-irreducible covers (in
the order of join-irreducible congruences).

See also [14, Theorem 25.2], Czédli [6, Theorem 1.1], and my paper [17].
Czédli [6, Theorem 1.1] proved that the converse is false by exhibiting an

eight-element distributive lattice, D8 (see Figure 1), satisfying (2C), which cannot
be represented as the congruence lattice of an SPS lattice; see also my paper [15].

Figure 1. The distributive lattice D8.

In [17], I observed that the three-element chain C3 cannot be represented either
as the congruence lattice of an SPS lattice. This paper is the start of the present
one.

1.4. The main result

Following Grätzer and Knapp [21], a planar semimodular lattice (by definition,
finite) L is rectangular, if the left boundary chain has exactly one doubly-irreducible
element, cl, and the right boundary chain has exactly one doubly-irreducible
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element, cr, and these elements are complementary. Let Bn denote the Boolean
lattice with n atoms.

In this paper, we use the Czédli-Schmidt Sequences to prove the following
result.

Theorem 1. Let L be a slim rectangular lattice L and let

t = length[cl, 1] + length[cr, 1].

Then the congruence lattice ConL has exactly t dual atoms and a dual atom in
ConL is a congruence with exactly two classes.

Since ConL is distributive, we obtain the following statement.

Corollary 2. Let L be a slim rectangular lattice. Then ConL has a filter iso-
morphic to the Boolean lattice Bt.

On the way to proving Theorem 1, we describe the prime ideals of a slim
rectangular lattice L, following up an observation in [17]. We shall also discuss
variants of Theorem 1 for rectangular lattices, PS lattices, and SPS lattices.

1.5. Notation

For the basic concepts and notation, see my books [12] and [14].

1.6. Outline

We recall some easy facts about slim rectangular lattices in Section 2 as well as
we state the Structure Theorem and the Swing Lemma.

In Section 3, we prove some preliminary results on slim rectangular lattices.
We describe the prime ideals of a slim rectangular lattice in Section 4. We
investigate in Section 5 how adjacent congruence classes interface. A prime ideal
P of a lattice L is naturally associated with a congruence π(P ), which we call
a prime congruence. In Section 6 we prove that a dual atom in ConL of a slim
rectangular lattice L is a prime congruence. The main result of this paper follows.

Acknowledgement. The author thanks the referee for many valuable comments.

2. Background

2.1. Some known results

We will use the two results in the next lemma, implicitly or explicitly.

Lemma 3. Let L be an SPS lattice. Then the following statements hold.
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(i) An element of L has at most two covers.

(ii) Let x ∈ L cover three distinct elements u, v, and w. Then the set {u, v, w}
generates an N7 sublattice (see Figure 2).

See my paper [15] and Czédli and Grätzer [8] for some proofs and references.

mal ar

t

o

bl br

p

Figure 2. The lattice N7.

As introduced in Ore [28], see also MacLane [27], a cell A in a planar lattice
consists of two chains C (with zero 0C and unit 1C) and D (with zero 0D and
unit 1D) such that the following conditions hold:

(i) 0C = 0D and 1C = 1D;

(ii) C and D are maximal in [0C , 1C ] = [0D, 1D];

(iii) every x ∈ C − {0C , 1C} is to the left of every y ∈ D − {0D, 1D};
(iv) there are no elements inside the region bounded by C and D.

A 4-cell is a cell with |C| = |D| = 3. A 4-cell lattice is a lattice in which all
cells are 4-cells.

For the following observation see Grätzer and Knapp [19, Section 4].

Lemma 4. A PS lattice is a 4-cell lattice.

The following statement, see Grätzer and Knapp [21, Lemma 4], plays an
important role.

Lemma 5. In a slim rectangular lattice, the bottom boundaries are ideals and the
upper boundaries are filters.

Corollary 6. Let L be a slim rectangular lattice. Then for every x ∈ L, the
element x ∨ cr is in the upper right boundary of L, and symmetrically.

Proof. Indeed, by Lemma 5, the upper right boundary of L is the filter generated
by cr. Since x∨cr ∈ fil (cr), it follows that x∨cr is in the upper right boundary.



Some applications of the Czédli-Schmidt Sequences 157

zr,2zl,2

m

xl,2 xr,2

yl,2

al = xl,1

yl,1 = yr,1

ar = xr,1

t

o

yr,2

bl = zl,1 br = zr,1

xl,nl

zl,nl

yl,nl

xr,nr

zr,nr

yr,nr

xl,2 ∧ xr,2

xl,2 ∧ xr,nr

xl,nl
∧ xr,nr

xl,nl
∧ xr,2

Figure 3. Notation for the fork insertion.

2.2. The Structure Theorem

Let L be a slim rectangular lattice. A Czédli-Schmidt Sequence for L is a sequence
of slim rectangular lattices and a sequence of covering squares:

(1)

D = L1, L2, . . . , Ls = L,

S1 = {o1, a1l , a1r , t1}, S2 = {o2, a2l , a2r , t2}, . . . , Ss−1

= {os−1, as−1l , as−1r , ts−1},

where Si is a covering square in Li and we obtain Li+1 from Li by inserting a
fork at Si (in formula, Li+1 = Li[S

i]) for i = 1, . . . , s− 1.
For detailed descriptions of the fork extension, see Czédli and Schmidt [10],

Grätzer [14], and other papers in the references.
We use the standard notation for fork insertions, see Figure 3 (where the

black filled elements represent the inserted elements).
The following result is Czédli and Schmidt [10, Lemma 22].
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Theorem (The Structure Theorem for Slim Rectangular Lattices). Let L be a
slim rectangular lattice. Then there is a grid D = Cp × Cq, where p, q ≥ 2, and a
Czédli-Schmidt Sequence from D to L.

Note that the integer s in (1) is an invariant.

We call D the grid of L; it is isomorphic to a sublattice of L.

2.3. The Swing Lemma

For the prime intervals p, q of an SPS lattice L, we define a binary relation: p
swings to q, if 1p = 1q, this element covers at least three elements, and 0q is
neither the left-most nor the right-most element covered by 1p = 1q, see Figure 4.

p
q pq

Figure 4. Swings, p xq.

The following result is from my paper [15].

Lemma 7 (Swing Lemma). Let L be an SPS lattice and let p and q be distinct
prime intervals in L. If q is collapsed by con(p), then there exists a prime interval
r and sequence of pairwise distinct prime intervals

(2) r = r0, r1, . . . , rn = q

such that p is up perspective to r, and ri is down perspective to or swings to ri+1

for i = 0, . . . , n− 1. In addition, the sequence (2) also satisfies

(3) 1r0 ≥ 1r1 ≥ · · · ≥ 1rn = 1q.

The Swing Lemma is easy to visualize. Perspectivity up is “climbing up”,
perspectivity down is “sliding”. So we get from p to q by climbing up once and
then alternating sliding and swinging.
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3. Some preliminary results on slim rectangular lattices

In this section, we prove some elementary results about slim rectangular lattices.
Let L be a slim rectangular lattice with the Czédli-Schmidt Sequence (1) and
with the grid D = Cp × Cq.

Let cl and cr be the corners of D, and let cil and cir be the corners of Li for
i = 1, . . . , s− 1.

We prove the next two lemmas utilizing the Czédli-Schmidt Sequences.

Lemma 8. cl = cil and cr = cir for i = 1, . . . , s.

Proof. By induction on s as in (1). By definition, cl = c1l and cr = c1r. Assume
that the statement holds for s − 1. We obtain Ls from Ls−1 by adding a fork
at Ss−1, see Figure 3, so there is only one new element on the left boundary,
and it is a meet-reducible element below cl = cs−1l . Therefore, cl is the only
doubly irreducible element on the left boundary of Ls−1, and so cl = csl . Similarly,
cr = csr.

Corollary 9. Let L be a slim rectangular lattice and let S be a covering square in
L. Then the upper left boundaries of L and L[S] are the same (and symmetrically).
Therefore, the chains Cp and Cq are isomorphic to [cl, 1] and [cr, 1], respectively.

Corollary 10. For a slim rectangular lattice L, the grid is unique up to isomor-
phism.

Lemma 11. Let L be a slim rectangular lattice. Then

length[0, csl ] = length[0, cl] + s− 1,(4)

length[0, csr] = length[0r, cr] + s− 1.(5)

Proof. Indeed, each step in (1) adds an element to the lower boundary chains.

It now follows that

(6) length[0, cl]− length[0, cr] = length[cr, 1]− length[cl, 1].

This immediately follows also from semimodularity.

4. Prime ideals

We describe the prime ideals of a slim rectangular lattice in this section.
The two lemmas of this section are proved using the Czédli-Schmidt Sequences.
Let L be a planar semimodular lattice. We call the element m ∈ L a middle

element of L if there is an N7 sublattice such that m is the middle element of the
N7 sublattice.
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Lemma 12. Let L be a slim rectangular lattice. Let a be an element of L. Then
one of the following statements holds:

(i) the element a is on the upper boundary of L;

(ii) the element a is meet-reducible;

(iii) the element a is a middle element.

Proof. By induction on s as in (1). If s = 1, then L = D, and the statement
holds for a grid. Let the statement hold for s − 1. The new elements of Ls,
see Figure 3, form the set [zl,nl

,m] ∪ [zr,nr ,m], and they consist of the element
m—satisfying (ii)—or an element in the set [zl,nl

, bl] ∪ [zr,nr , br], all of which are
meet-reducible, so satisfying (ii).

Lemma 13. Let L be a slim rectangular lattice and let p ∈ L. If p 6= 1 and p is
in the upper left boundary of L, then there exists an element q in the lower right
boundary of L, so that { id (p), fil (q)} is a partition of L.

Proof. By induction on s as in (1). If s = 1, then L = D, and the statement
holds for a grid with q = p∧cr. Let the statement hold for s−1, and therefore, for
Ls−1. So let p 6= 1, let p be on the upper left boundary of Ls (or symmetrically).
Recall that by Corollary 9, the upper left boundaries of L and Ls−1 are the same.
Let qs−1 be the element in the lower right boundary of Ls−1 that exits by the
induction hypothesis and let S = Ss−1 be the covering square of Ls−1. We use
the notation:

W = [m, zr,nr ] ∪ [m, yl,nl
].

There are three cases to distinguish.

Case 1. S ⊆ filLs−1(qs−1), as illustrated in Figure 5. Then

W ⊆ filLs(qs−1) ∪ idLs(p),

therefore, { id (p), fil (q)} is a partition of L with q = qs−1.

Case 2. S ⊆ idLs−1(p), as illustrated in Figure 5. In this case,

W ⊆ idLs(p),

so { id (p), fil (q)} is a partition of L with q = qs−1.

Case 3. S * filLs−1(qs−1), idLs−1(qs−1), also illustrated in Figure 5. In this
case, the two elements on the right upper boundary of S are in filLs−1(qs−1)
and the other two elements are in idLs−1(p). The newly inserted elements in
[m, yl,nl

] are in idLs−1(p), and the rest of them, [m, zr,nr ], are in filL(zr,nr), so
{ id (p), fil (q)} is a partition of L with q = zr,nr . Note that p ∧ cr ≺ q ≺ qn−1.
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Figure 5. Proof of Lemma 13.

Corollary 14. Let L be a slim rectangular lattice and let p ∈ L. If p 6= 1 and p
is in the upper boundary of L, then the ideal P = id (p) of L is prime.

Proof. By Lemma 13 and its symmetric counterpart.

A very special case of this result was found in Grätzer [17]. In a sense, this
paper was the starting point of the present one.
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Theorem 15. Let L be a slim rectangular lattice and let 1 6= a ∈ L. Then
P = id (a) is a prime ideal of L if and only if a is in the upper left or upper right
boundary of L.

Proof. Since id (p) is not a prime either for a meet reducible p or for a middle
element p = m (because m > al ∧ ar) as in Figure 2, Lemma 12 applies.

5. The structure of congruence classes

I have known for a long time how adjacent congruence classes interface in a lattice.
In this section, I prove two of these results, because they will be needed in Section
6. The first lemma is related to some discussions in Czédli [4] and [5].

Lemma 16. Let α be a congruence of a lattice L and let A = [0A, 1A] and
B = [0B, 1B] be congruence classes of α satisfying that A ≺ B in L/α. Then for
every x ∈ A, there is a smallest xB ∈ B with x ≤ xB and for every x ∈ B, there
is a greatest xA ∈ A with x ≥ xA. Moreover, (xB)A ≺ xB for every x ∈ A.

Proof. Define xB = x ∨ 0B for x ∈ A and yB = y ∧ 1A for y ∈ B. This sets
up a standard Galois connection, so only the last statement needs proof. Let us
assume that (xB)A < u < xB. By the definition of xB, it follows that u /∈ B and
similarly, u /∈ A. Therefore, A < u/α < B in L/α, contrary to the assumption
that A ≺ B in L/α.

A
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1A

xB

(xB)A

yA

y

A

B

a0

a1

at = 1A

b0 = 0B

b1

bt

1B

0A

SA

SB

Figure 6. Two illustrations of A ≺ B in L/α.
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Lemma 17. Let L be a slim, planar, semimodular lattice. Let α be a congruence
of L and let A,B be congruence classes of α satisfying that A ≺ B in L/α. Then
there is a maximal chain

SA = {1A ∧ 0B = a0 ≺ a1 ≺ · · · ≺ at = 1A}
on the right boundary of A and there is a maximal chain

SB = {0B = b0 ≺ b1 ≺ · · · ≺ bt = 1A ∨ 0B}
on the left boundary of B—or symmetrically. The chain SA is isomorphic to SB

by the map ϕA : x 7→ x ∨ 0B; the inverse isomophism is ϕB : x 7→ x ∧ 0B.

Proof. If the elements 1A and 0B are comparable, then 1A < 0B and the statement
is true with the singletons SA and SB. So we can assume that 1A and 0B are
incomparable. By symmetry, we can also assume that 0B is to the right of 1A.

Let a0 = 1A ∧ 0B and b0 = 0B. If a0 = 0B, then a0 ∈ A ∩B, a contradiction,
since A ≺ B in L/α, so A and B are disjoint. Hence, a0 < b0.

We claim that a0 ≺ b0. Indeed, let there be an element z of L with a0 < z < b0.
If z ∈ A, then z ≤ 1A, so z = a0, a contradiction. If z ∈ B, then 0B is not the
smallest element of B, a contradiction. Therefore, A < z/α < B in L/α,
contradicting the assumption that A ≺ B in L/α. This verifies the claim.

By Kelly and Rival [26], this implies that a0 is on the boundary of A, say, on
the right boundary. This allows us to take a maximal chain

SA = {a0 ≺ a1 ≺ · · · ≺ at = 1A}
of [a0, 1A] on the right boundary of A. Put bi = ai ∨ b0 for i = 0, . . . , t. Since
A ∨ B = B in L/α, we get that bi ∈ B for i = 0, . . . , t. So ai < bi. By
semimodularity, ai ≺ bi for i = 0, . . . , t. Again, by semimodularity, we obtain that
bi � bi+1. Since 1A = at ≺ bt, we can see that

{a0 ≺ a1 ≺ · · · ≺ at = 1A ≺ bt}
is a maximal chain in the interval [a0, bt] of length is t. The chain

{a0 ≺ b0 � b1 � · · · � bt}
is a maximal chain in the same interval, so by the Jordan-Hölder property of finite
semimodular lattices, we obtain that it is also of length t. Now it follows that

SB = {b0 ≺ b1 ≺ · · · ≺ bt}
satisfies the requirements of the lemma, since all the squares depicted on the right
of Figure 6 are covering squares.

We call SA × C2 the ladder associated with A ≺ B. Note that it has a single
rung if 1A < 0B (equivalently, if 1A ≺ 0B).
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6. Prime congruences

A congruence π of a lattice L is prime if it has exactly two blocks. Clearly, one of
its blocks is a prime ideal P . Since P determines π, we use the notation π(P ) for
π. Every prime congruence of L is a dual atom in Con(L). Also, if a congruence
has only two congruence classes, then it is prime.

Theorem 18. Let L be a slim rectangular lattice and let the congruence π of L
be a dual atom in ConL. Then the congruence π is prime.

Proof. Let π be a dual atom in ConL. Let π partition the upper left boundary
into b blocks.

Case 1. b = 1. Equivalently, cl ≡ 1 (mod π). Meeting both sides with cr,
we obtain that 0 ≡ cr (mod π). By Corollary 6, for every x ∈ L, the element
x ∨ cr is in the upper right boundary of L, so x ≡ x ∨ cr (mod π). Thus we can
choose a subchain C of [cr, 1] with the property that every congruence class of
α contains exactly one element of C. By the First Isomorphism Theorem * (see,
for instance, [12, Exercise I.3.61]), we have the isomophism L/π ∼= C, so L/π is
a chain. Since the congruence π of L is a dual atom in ConL, by the Second
Isomorphism Theorem ((see, for instance, [12, Theorem 220])) the lattice L/π is
simple. A simple distributive lattice has two elements, so π is prime, as required.

Case 2. b = 2. Equivalently, there is a prime interval p on the upper left
boundary of L, such that cl ≡ 0p (mod π), 1p ≡ 1 (mod π), and 0p 6≡ 1p (mod π),
or symmetrically.

For cl = 0p or 1p = 1 or both, define cl = 0p. Then L/π ∼= Q/π.
Otherwise, cl < 0p ≺ 1p < 1.
We use the ladder of Lemma 17, see Figure 6. Let q be the cover of 0p ∧ cr

on the lower right boundary. Note the ideal P = [0, 0p] and the filter Q = [q, 1].
The two sides of the ladder are

SA = {0p ∧ cr = a0 ≺ · · · ≺ at = 0p},
SB = {0B = q ≺ · · · ≺ bt = 1p},

using the notation of Figure 7. The chain SA is shaded black and the chain SB is
shaded gray.

We argue as in Case 1, mutatis mutandis, that for every element x ∈ P , there
is an element y ∈ SA such that x ≡ y (mod π). The same way, for every element
x ∈ [1p ∧ cr, 1], there is an element y ∈ [cr, 1] such that x ≡ y (mod π).

Since the corresponding prime intervals of SA and SB are perspective (as
illustrated by Figure 6), it follows that SA/π and SB/π are isomorphic. Therefore,
L/π can be obtained by gluing together [0, 0p]/π and [q, 1]/π over a chain SA/π ∼=
SB/π. Both lattices [0, 0p]/π and [q, 1]/π are slim rectangular lattices so their
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Figure 7. Notation for the proof of Theorem 18, Case 2; the chain SA is shaded black and
the chain SB is shaded gray.

gluing over SA/π ∼= SB/π is also a slim rectangular lattice by Grätzer and Knapp
[21, Lemma 5].

Since [0, 0p]/π and [q, 1]/π are isomorphic to the chains CA/π and CB/π,
respectively, the lattices [0, 0p]/π and [q, 1]/π are distributive. Gluing these two
lattices over SA/π ∼= SB/π, the Second Isomorphism Theorem gives again that
L/π is a simple distributive lattice and so π is prime, and the statement follows.

Case 3. b ≥ 3. Equivalently, there are prime intervals p and q on the upper
left boundary of L (or symmetrically) such that 1p < 0q, 0p 6≡ 1p (mod π), and
0q 6≡ 1q (mod π). Since π is a dual atom in ConL, it follows that

π ∨ con(p) = π ∨ con(q) = 1.

Therefore, con(p) ≤ π∨con(q). Since p is a prime interval, we get that con(p) ≤ π
or con(p) ≤ con(q). The inequality con(p) ≤ π contradicts the assumption that
0p 6≡ 1p (mod π), so we conclude that con(p) ≤ con(q) holds.

By the Swing Lemma (Lemma 7), there is a sequence of prime intervals (2)
(also satisfying (3)). Since p is on the upper boundary of L, we cannot “climb up”
from p; it follows that p = r. Therefore, 1p = 1r ≥ 1q by (3), contradicting our
assumption that 1p < 0q ≺ 1q.

Now we are ready to prove our main result. Let t = length[cl, 1]+length[cr, 1].
By Theorem 15, the lattice L has exactly t prime ideals, and each prime ideal
has an associated prime congruence, a dual atom. So ConL has at least t dual
atoms. By Theorem 18, all dual atoms of ConL are prime congruences, so ConL
has exactly t dual atoms.
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7. Meet semidistributive lattices

A lattice L is meet-semidistributive, if the following implication holds:

(SD∧) x ∧ y = x ∧ z implies that x ∧ y = x ∧ (y ∨ z) for all x, y, z ∈ L.

This implication was introduced by Whitman [29] and [30] as a property of
free lattices. It also holds for SPS lattices.

Lemma 19. Let L be an SPS lattice. Then the implication (SD∧) holds in L.

Proof. Assume that it does not hold. Then there are elements a, b, c ∈ L such
that a∧b = a∧c but a∧b 6= a∧ (b∨c). Then x 6= y ∈ {a∧ (b∨c), b, c} satisfy that
x∧y = a∧b, so we cab choose elements a′, b′, c′ ∈ L so that a∧b ≺ a′ ≤ a∧ (b∨c),
a ∧ b ≺ b′ ≤ b, a ∧ b ≺ c′ ≤ c, contradicting Lemma 3(i).

For some references about semidistributive lattices, see Adaricheva, Gorbunov,
Tumanov [1], Czédli, Ozsvárt, and Udvari [9], Avann [2], and Dilworth [11].

In the rest of this section, we outline the proof of the following variant of
Theorem 1.

Theorem 1’. If L is a finite meet-semidistributive lattice, then the meet of the
dual atoms is the least congruence δ with L/δ distributive.

This result and its proof is due to Ralph Freese, who emailed me after this
paper was completed. Prossor Freese kindly suggested to me to “feel free to use it
in your paper”.

The following sketch of the proof (slightly edited) is from his email.

Since the class D of distributive lattices is closed under subdirect products,
we get the first statement.

Lemma 20. Every lattice L has a unique minimal congruence δ such that L/δ
is distributive.

L/δ is called the reflection of L into D.

Lemma 21. For the congruence δ of Lemma 20, we have

δ =
∧

C,

where C is the set of those dual atoms of ConL, whose corresponding quotient is
C2, the two-element chain.

Lemma 22. Every meet-semidistributive lattice with 0 has C2 as a homomorphic
image.



Some applications of the Czédli-Schmidt Sequences 167

We apply these lemmas to prove Theorem 1’. Since the lattice L is finite
and meet-semidistributive, it follows that every homomorphic image of L is also
meet-semidistributive, and so every dual atom of ConL is in C.
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doi:10.1007/978-3-0348-0018-1

[13] G. Grätzer, Planar Semimimodular Lattices: Congruences, Chapter 4 in [24].
doi:10.1007/978-3-319-06413-0\ 4

http://dx.doi.org/10.1016/s0001-8708(02)00011-7
http://dx.doi.org/10.1007/bf02063217
http://dx.doi.org/10.1007/bf00053700
http://dx.doi.org/10.1007/s11083-0
http://dx.doi.org/10.1007/s00012-014-0286-z
http://dx.doi.org/10.1016/j.disc.2014.04.017
http://dx.doi.org/10.1007/978-3-319-06413-0\protect \global \let \OT1\textunderscore \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}\OT1\textunderscore 3
http://dx.doi.org/10.1016/j.disc.2012.08.003
http://dx.doi.org/10.1007/s11083-011-9215-3
http://dx.doi.org/10.1007/978-1-4899-3558-8\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}10
http://dx.doi.org/10.1007/978-3-0348-0018-1
http://dx.doi.org/10.1007/978-3-319-06413-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}4


168 G. Grätzer

[14] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach,
Second Edition (Birkhäuser, 2016).
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