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Abstract

The notion of modular and distributive posets which generalize the cor-
responding notions from the lattice theory are introduced by J. Larmerova
and J. Rachnek. Later some extended results of uniquely complemented
lattice are derived to uniquely complemented posets. Now, in this paper,
some equivalent conditions for a poset to be modular poset are given.
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1. Introduction

Modularity in lattice theory is an interesting topic. In [3], Larmerova and
Rachunek introduced concepts of modular posets and distributive posets. They
have proved that any distributive poset is a modular poset and some other results
are proved. An example of modular poset which is not a distributive poset and
not a lattice is given. An example of distributive poset which is not a lattice is
given. Some results are derived on modular posets. In [5], Waphere and Joshi
worked on uniquely complimented posets. Now, in this paper, some equivalent
conditions of poset to be modular poset are given. Some properties of modular
poset are derived. Dual of equivalent condition for a lattice to be modular lattice
is quite natural in lattices. But dual of equivalent condition for a poset to be
modular poset is not simple. Now we start with the following basic concepts.
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2. Preliminaries

In this section, we begin with necessary definitions and terminologies in a poset
P . Let A ⊆ P . The set Au = {x ∈ P/x ≥ a for every a ∈ A} is called the upper
cone of A. Dually,we have a concept of the lower cone Al of A.Aul shall mean
{Au}l and Alu shall mean {Al}u. The lower cone {a}l is simply denoted by al

and {a, b}l is it denoted by (a, b)l. Similar notations are used for upper cones.
Further, for A,B ⊆ P , { A ∪ B}u is denoted by {A,B}u and for x ∈ P the set
{A ∪ {x}}u is denoted by { A, x}u. Similar notations are used for lower cones.
Some properties of posets are given in the following

(i) Alul = Al, Aulu = Au.

(ii) {au}l = {a}l = al and {al}u = {a}u = au.

(iii) A ⊆ Aul and A ⊆ Alu.

(iv) If A ⊆ B then Bl ⊆ Al and Bu ⊆ Au.

An element y ∈ P is said to be a complement of x ∈ P , if (x, y)ul = (x, y)lu

= P . P is said to be complemented if each element of P has a complement in P
and P is said to be uniquely complemented if each element x ∈ P has a unique
complement, denoted by x

′

in P . A distributive complemented poset is called a
Boolean poset. Let P be a uniquely complemented poset and A ⊆ P . Denote
A

′

= {a
′

: a ∈ A}. We say that P satisfies De Morgan’s laws if {(x, y)u}
′

=
(x

′

, y
′

)l and {(x, y)l}
′

= (x
′

, y
′

)u for all x, y ∈ P .

3. Modular Poset and some equivalent forms

We begin this section with the definition of a Modular Poset.

Definition 3.1. A poset P is said to be Modular Poset if for all a, b, c ∈ P with
a ≤ c implies (a, (b, c)l)ul = ((a, b)u, c)l.



Equivalent forms for a poset to be modular poset 7

In the following, the examples of modular poset and distributive posets are
given. The second diagram represents modular poset which is not a distributive
poset and not a lattice where as the first diagram represents a distributive poset
which is not a lattice.

In the above Hasse diagram of the poset is a distributive poset P d but not a
lattice because it satisfies distributive law ((x, y)u, z)l = ((x, z)l, (y, z)l)ul for all
x, y, z ∈ P d. Now look the following Hasse diagram.

It is a modular poset but not a distributive poset because ((c, d)u, e)l =
{0, a, b, e} 6= {0, a, b, } = ((c, e)l, (d, e)l)ul. In the following, some results on posets
are proved which are used later.

Lemma 3.2. Let (P,≤) be poset then (a, b)u ⊆ (a, (b, c)l)u for every a, b, c ∈ P.

Proof. Let x ∈ (a, b)u. Then x ≥ a, x ≥ b. Let t ∈ (b, c)l, this mean that
t ≤ b, t ≤ c. Then we have x ≥ b ≥ t. Thus x ≥ a, x ≥ t for all t ∈ (b, c)l which
implies x ∈ (a, (b, c)l)u.Thus we have (a, b)u ⊆ (a, (b, c)l)u.

Lemma 3.3. Let (P,≤) be a poset and a,b,c ∈ P , if a ≤ c then ((a, b)u, c) ⊆
(a, (b, c)l)u.

Proof. Let z ∈ ((a, b)u, c). Then z ∈ (a, b)u ∪ {c}. This implies z ∈ (a, b)u or
z = c. If z = c, then we have to show that c ∈ (a, (b, c)l)u. Suppose t ∈ (b, c)l.
Then t ≤ b, t ≤ c. Hence c ∈ (a, (b, c)l)u. By lemma 3.2 if z∈ (a, b)u then
z∈ (a, (b, c)l)u.In either case z∈ (a, (b, c)l)u. Therefore ((a, b)u, c) ⊆ (a, (b, c)l)u.
By a property (iv) in the preliminaries,we have (a, (b, c)l)ul ⊆ ((a, b)u, c)l.

Corollary 3.4. Let(P,≤) be a poset and a,b,c ∈ P if a ≤ c, then (a, (b, c)l)ul ⊆
((a, b)u, c)l.

Proof. By Lemma 3.3, for a ≤ c we have ((a, b)u, c) ⊆ ((a, (b, c)l))u. Now, By
property(iv),we get (a, (b, c)l)ul ⊆ ((a, b)u, c)l.
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In this paper, we take P be a poset to mean that (P,≤) be a poset. It is
also given an equivalent condition of a poset to be modular poset in following
theorem.

Theorem 3.5. Let P be a poset then P is a modular poset if and only if a ≤ c
implies (a, (b, c)l)ul ⊇ ((a, b)u, c)l.

Proof. Suppose P is modular poset. Let a ≤ c, then we have (a, (b, c)l)ul =
((a, b)u, c)l. Hence ((a, b)u, c)l ⊆ (a, (b, c)l)ul. Conversely assume that, a ≤ c.
Then ((a, b)u, c)l ⊆ (a, (b, c)l)ul. Now, we have to prove that (a, b)u ⊆ (a, (b, c)l)u.
Let z ∈ (a, b)u. Then z ≥ a, z ≥ b and hence z ≥ a, z ≥ b ≥ (b, c)l. Therefore
z ≥ a, z ≥ (b, c)l. So that z ∈ (a, (b, c)l)u. Thus we have (a, b)u ⊆ (a, (b, c)l)u.
Now, prove that ((a, b)u, c) ⊆ (a, (b, c)l)u. Let z ∈ ((a, b)u, c). Then z ∈ (a, b)u

or z = c. If z = c, then c ∈ (a, (b, c)l)u since we have a ≤ c. So that c ≥ a,
c ≥ t, for any t ∈ (b, c)l. If t ∈ (b, c)l, then t ≤ b, t ≤ c and hence c ∈ (a, (b, c)l)u.
Therefore ((a, b)u, c) ⊆ (a, (b, c)l)u. By the poset property,in the prilimnaries we
have A ⊆ B implies Al ⊇ Bl. Therefore ((a, b)u, c)l ⊇ (a, (b, c)l)ul. Thus we have
(a, (b, c)l)ul = ((a, b)u, c)l. Hence P is modular poset.

Now, we define the the dual of a modular poset as follows. Let P∗ be a poset
then P∗ is a said to be a dual modular poset if, a ≤ c implies (a, (b, c)u)lu =
((a, b)l, c)u for all a, b, c ∈ P∗.

Theorem 3.6. Let P∗ be a poset then P∗ is a dual modular poset if and only if

[a ≤ c implies (a, (b, c)u)lu ⊆ ((a, b)l, c)u].

Proof. Suppose P∗ is dual modular poset. Let a ≤ c. Then (a, (b, c)u)lu =
((a, b)l, c)u and hence ((a, b)l, c)u ⊇ (a, (b, c)u)lu. Conversely, assume that a ≤
c ⇒ (a, (b, c)u)lu ⊆ ((a, b)l, c)u. First, we prove that (a, b)l ⊇ (a, (b, c)u)l. Let
z ∈ (a, b)l. Then z ≤ a, z ≤ b. Hence z ≤ a, z ≤ t where t ∈ (b, c)u. Therefore
z ∈ (a, (b, c)u)l. Thus (a, b)l ⊇ (a, (b, c)u)l. Now, we prove that ((a, b)l, c) ⊇
(a, (b, c)u)l. Let z ∈ ((a, b)l, c). Then z ∈ (a, b)l or z = c. If z = c, then
c ∈ (a, (b, c)u)l. Since we have a ≤ c, so that c ≥ a, c ≥ (b, c)u. If t ∈ (b, c)u, then
t ≥ b, t ≥ c and hence c ∈ (a, (b, c)u)l. Therefore ((a, b)l, c) ⊇ (a, (b, c)u)l. By the
poset property, we have A ⊆ B ⇒ Au ⊇ Bu. Therefore ((a, b)l, c)u ⊆ (a, (b, c)u)lu

and hence (a, (b, c)u)lu = ((a, b)l, c)u. Thus P∗ is dual modular poset.

The following results are true in posets. To proving these results modular
posets is not necessary.

Theorem 3.7. Let P is a poset, then a ≤ c implies ((a, b)u, (b, c)u, (c, a)u)l ⊇
((a, b)l, (b, c)l, (c, a)l)ul.
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Proof. Let P be a poset. It is enough to prove that ((a, b)u, (b, c)u, (c, a)u) ⊆
((a, b)l, (b, c)l, (c, a)l)u. We have ((a, b)u, c)l ⊆ (a, (b, c)l)ul by Lemma 3.3 and
let z ∈ (a, b)u ∪ (b, c)u ∪ (c, a)u. Then z ∈ (a, b)u or z ∈ (b, c)u or z ∈ (c, a)u.
Now, we have to prove that z ∈ ((a, b)l, (b, c)l, (c, a)l)u i.e., z ≥ t for any t ∈
(a, b)l ∪ (b, c)l ∪ (c, a)l. Suppose t ∈ (a, b)l ∪ (b, c)l ∪ (c, a)l. Then t ∈ (a, b)l or
t ∈ (b, c)l or t ∈ (c, a)l. Suppose z ≥ a, b and t ∈ (a, b)l. Then t ≤ a, b and hence
a ≥ t and z ≥ a. Therefore z ≥ t. If t ∈ (b, c)l. Then t ≤ b, t ≤ c and hence b ≥ t
and z ≥ b. Therefore z ≥ t. Suppose t ∈ (c, a)l. Then t ≤ c, t ≤ a and hence
z ≥ a and a ≥ t. Therefore z ≥ t. If t ∈ (a, b)u∪ (b, c)u∪ (c, a)u, then z ≥ t. Thus
z ∈ ((a, b)l ∪ (b, c)l ∪ (c, a)l)u. If z ≥ b, c. Suppose t ∈ (a, b)l, then t ≤ a, t ≤ b
and hence b ≥ t and z ≥ b. Therefore z ≥ t. Suppose t ∈ (b, c)l, then t ≤ b, t ≤ c
and hence b ≥ t and z ≥ b. Therefore z ≥ t. Suppose t ∈ (c, a)l, then t ≤ c, t ≤ a
so that z ≥ c and t ≤ c. Therefore z ≥ t. If t ∈ (a, b)l ∪ (b, c)l ∪ (c, a)l, then
z ≥ t and hence z ∈ ((a, b)l ∪ (b, c)l ∪ (c, a)l)u. If z ≥ c, a. Suppose t ∈ (a, b)l,
then t ≤ a, t ≤ b. Therefore z ≥ a and t ≤ a. Thus z ≥ t. Suppose t ∈ (b, c)l,
then t ≤ b, t ≤ c and hence z ≥ c and t ≤ c. Therefore z ≥ t. Suppose
t ∈ (c, a)l, then t ≤ c and t ≤ a. Therefore z ≥ c and t ≤ c. Thus z ≥ t. If
t ∈ (a, b)l ∪ (b, c)l ∪ (c, a)l, then z ≥ t. Therefore z ∈ ((a, b)l ∪ (b, c)l ∪ (c, a)l)u.
Thus we get, if a ≤ c, then ((a, b)u, (b, c)u, (c, a)u)l ⊇ ((a, b)l, (b, c)l, (c, a)l)ul.

Lemma 3.8. Let P be a poset. If a ≤ c, then (a, (b, c)l)ul ⊆ ((a, b)u, (b, c)u,
(c, a)u)l.

Proof. We prove that (a, (b, c)l)u ⊇ ((a, b)u, (b, c)u, (c, a)u). Let x ∈ ((a, b)u,
(b, c)u, (c, a)u). Then x ∈ (a, b)u or x ∈ (b, c)u or x ∈ (c, a)u, so that x ≥ a, b or
x ≥ b, c or x ≥ c, a.

Case (i). If x ≥ c, a. Now, we have to prove that x ∈ (a, (b, c)l)u, i.e.,
x ≥ {a} ∪ (b, c)l( ie x ≤ a or x ≥ t for any t ∈ (b, c)l). Let t ∈ (b, c)l. Then
t ≤ b, t ≤ c and hence x ≥ c ≥ t. Therefore x ≥ t and hence x ≥ a and x ≥ t.
Thus x ∈ (a, (b, c)l)u.

Case (ii). If x ≥ b, c. Now, we have to prove that x ∈ (a, (b, c)l)u, i.e.,
x ≥ {a} ∪ (b, c)l (i.e., x ≥ a and x ≥ t for any t ∈ (b, c)l). Let t ∈ (b, c)l. Then
t ≤ b, t ≤ c and hence x ≥ c ≥ t. Therefore x ≥ t. Hence x ≥ a and x ≥ t. Thus
x ∈ (a, (b, c)l)u.

Case (iii). If x ≥ a, b. Now, we have to prove that x ∈ (a, (b, c)l)u, i.e.,
x ≥ {a} ∪ (b, c)l (i.e., x ≥ a and x ≥ t for any t ∈ (b, c)l). Let t ∈ (b, c)l. Then
t ≤ b, t ≤ c and hence x ≥ b ≥ t. Therefore x ≥ t. Hence x ≥ a and x ≥ t. Thus
x ∈ (a, (b, c)l)u. Therefore (a, (b, c)l)ul ⊆ ((a, b)u ∪ (b, c)u ∪ (c, a)u)l.

Lemma 3.9. If P is a poset, and a ≤ c, then ((a, b)u, c)l ⊇ ((a, b)l, (b, c)l, (c, a)l)ul.
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Proof. Now, we have to prove that ((a, b)u, c) ⊆ ((a, b)l, (b, c)l, (c, a)l)u. Let
x ∈ ((a, b)u, c). Then x ∈ (a, b)u ∪ {c}. Thus x ∈ (a, b)u or x = c. Now,
we have to prove that x ≥ t for any t ∈ (a, b)l ∪ (b, c)l ∪ (c, a)l. If x = c.
Suppose t ∈ (a, b)l. Then t ≤ a, t ≤ b.Therefore t ≤ a ≤ c.Hence t ≤ c = x.
Thus x ≥ t. If t ∈ (b, c)l, then t ≤ b, t ≤ c. Therefore x ≥ t. If t ∈ (c, a)l,
then t ≤ c, t ≤ a. Hence t ≤ c = x. Therefore x ≥ t for all t ∈ (a, b)l ∪
(b, c)l ∪ (c, a)l. Thus x ∈ ((a, b)l ∪ (b, c)l ∪ (c, a)l)u. Suppose x ∈ (a, b)u. Then
x ≥ a, b. Now, we have to prove that x ∈ ((a, b)l, (b, c)l, (c, a)l)u, i.e., x ≥ t
for any t ∈ (a, b)l ∪ (b, c)l ∪ (c, a)l. If t ∈ (a, b)l, then t ≤ a, t ≤ b and hence
x ≥ a and a ≥ t. Therefore x ≥ t. If t ∈ (b, c)l, then t ≤ b, t ≤ c and
hence x ≥ b ≥ t. Therefore x ≥ t. If t ∈ (c, a)l, then t ≤ c, t ≤ a and hence
x ≥ a ≥ t. Therefore x ≥ t. Thus x ≥ t for any t ∈ (a, b)l ∪ (b, c)l ∪ (c, a)l. Hence
x ∈ ((a, b)l, (b, c)l, (c, a)l)u. Thus, we have ((a, b)u, c) ⊆ ((a, b)l, (b, c)l, (c, a)l)u.
Hence ((a, b)l, (b, c)l, (c, a)l)ul ⊆ ((a, b)u, c)l. Thus, we get that if P is a modular
poset and a ≤ c, then ((a, b)u, (b, c)u, (c, a)u)l ⊆ ((a, b)l, (b, c)l, (c, a)l)ul.

Note. If P is a modular Poset, then for any a ≤ c,we have from the Definition
3.1, Lemmas 3.5, 3.8, 3.9, ((a, b)u, (b, c)u, (c, a)u)l ⊇ (a, (b, c)l)ul = ((a, b)u, c)l ⊇
((a, b)l, (b, c)l, (c, a)l)ul.

Theorem 3.10. Let P be a poset. Then P is modular if and only if a ≥ c implies

(a, (b, c)u)lu = ((a, b)l, c)u for all a, b, c ∈ P .

Proof. Suppose P is a modular poset. Let a ≥ c. We have (c, (b, a)l)ul =
((c, b)u, a)l. Therefore (c, (a, b)l)ulu = (a, (b, c)u)lu. Hence (c, (a, b)l)u = (a,
(b, c)u)lu. Thus (a, (b, c)u)lu = ((a, b)l, c)u for a, b, c ∈ P . Conversely, assume
that a ≥ c implies (a, (b, c)u)lu = ((a, b)l, c)u for a, b, c ∈ P . Now, we have to
prove that x ≤ z implies (x, (y, z)l)ul = ((x, y)u, z)l for all x, y, z ∈ P . Let x ≤ z.
Then (z, (y, x)u)lu = ((z, y)l, x)ul. Therefore (z, (x, y)u)lul = ((y, z)l, x)ul and
hence (z, (x, y)u)l = ((y, z)l, x)ul. Thus,we have (x, (y, z)l)ul = ((x, y)u, z)l for all
x, y, z ∈ P .

Theorem 3.11. Let P be a poset. Then P is a modular poset if and only if

a, b, c ∈ P , a ∈ cl, cl ⊆ (a, b)u, then (a, (b, c)l)ul = cl.

Proof. Suppose P is a poset. Assume that P is a modular poset and a ≤
c. Let a ∈ cl, cl ⊆ (a, b)u. Then (a, (b, c)l)ul = ((a, b)u, c)l. Now, we have to
prove that ((a, b)u, c)l = cl. Let x ∈ ((a, b)u, c)l. Then x ≤ c, x ≤ t for any
t ∈ (a, b)u. Therefore x ∈ cl. Hence ((a, b)u, c)l ⊆ cl. suppose x ∈ cl. Then
x ≤ c, cl ⊆ (a, b)u and hence x ∈ ((a, b)u, c)l. Therefore cl ⊆ ((a, b)u, c)l. Thus
((a, b)u, c)l = cl. Conversely, assume that a ≤ c. Now, we have to prove that
(a, (b, c)l)ul = ((a, b)u, c)l. We know that a ∈ ((a, b)u, c)l, so that ((a, b)u, c)l

⊆ (a, b)u. By the above condition, we get that (a, (b, ((a, b)u, c)l))ul = ((a, b)u, c)l.
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Now, we prove that (a, (b, ((a, b)u, c)l)) = (a, (b, c)l). It is enough to prove that
(b, ((a, b)u, c)l) = (b, c)l. Let x ∈ (b, ((a, b)u, c)l). Then x ≤ b, x ≤ t for any
t ∈ ((a, b)u, c) and hence x ≤ b, x ≤ t, t ≤ c. Therefore x ≤ b, x ≤ c. Hence
x ∈ (b, c)l. Thus (b, ((a, b)u, c)l) ⊆ (b, c)l. On the other hand x ∈ (b, c)l. Then
x ≤ b, x ≤ c. Now, we have to prove that x ∈ ((a, b)u, c)l. Suppose t ∈ (a, b)u.
Then t ≥ a, t ≥ b and hence t ≥ b. Therefore x ≤ b ≤ t (since x ≤ b). Hence
x ≤ t. Thus x ≤ c and x ≤ t for any t ∈ (a, b)u. Therefore x ∈ (c, (a, b)u)l. Hence
(b, c)l ⊆ (b, ((a, b)u, c)l). Thus we get that (b, ((a, b)u, c)l) = (b, c)l. Therefore
(a, ((a, b)u, c)l) = (a, (b, c)l).

Theorem 3.12. Let P be a poset. Then P is a modular poset if and only if

a, b, c ∈ P, (a, b)l ⊆ cu, cu ⊆ au, then (a, (b, c)u)lu = cu.

Proof. Suppose P is a poset. Assume that P is a modular poset and a ≤ c. Let
(a, b)l ⊆ cu, cu ⊆ au. Then (a, (b, c)u)lu = ((a, b)l, c)u. Now, we have to prove
that ((a, b)l, c)u = cu. Let x ∈ ((a, b)l, c)u. Then x ≥ c, x ≥ t for any t ∈ (a, b)l

and hence x ∈ cu. Therefore ((a, b)l, c)u ⊆ cu. Suppose x ∈ cu. Then x ≥ c, cu ⊇
(a, b)l and hence x ∈ ((a, b)l, c)u. Therefore cu ⊇ ((a, b)l, c)u. Thus ((a, b)l, c)u =
cu. Conversely, assume that a ≤ c. Now, we have to prove that (a, (b, c)u)lu =
((a, b)l, c)u. We have (a, b)l ⊆ ((a, b)l, c)u. By the above condition we get that
(a, (b, ((a, b)l , c)u)lu = ((a, b)l, c)u. Now we prove (a, (b, ((a, b)l , c)))u = (a, (b, c)u).
It is enough to prove that (b, ((a, b)l, c))u = (b, c)u. Let x ∈ (b, ((a, b)l, c))u. Then
x ≥ b, x ≥ t for any t ∈ ((a, b)l, c) and hence x ≥ b, x ≥ t, t ≥ c. Therefore x ≥
b, x ≥ c. Hence x ∈ (b, c)u. Thus (b, ((a, b)l , c))u ⊆ (b, c)u. On the other hand,let
x ∈ (b, c)u. Then x ≥ b, x ≥ c. Now, we have to prove that x ∈ ((a, b)l, c)u

i.e., x ≥ c and x ≥ t for any t ∈ (a, b)l. Suppose t ∈ (a, b)l. Then t ≤ a, t ≤ b
and hence t ≥ b. We have x ≥ b, so that x ≥ b ≥ t. Therefore x ≥ t. Hence
x ≤ c and x ≥ t for any t ∈ (a, b)l. Thus (b, c)u ⊆ (b, ((a, b)l , c)u). Therefore
(b, ((a, b)l , c))u = (b, c)u. Thus (a, (b, ((a, b)l , c))u) = (a, (b, c)u).

Theorem 3.13. Let(P,≤) be a poset then P is modular poset if and only if a ≥ c
implies (a, (b, c)u)lu ⊆ ((a, b)l, c)u.

Proof. Suppose P is a modular poset. Let a ≥ c. Then (a, (b, c)u)lu = ((a, b)l, c)u.
Therefore (a, (b, c)u)lu ⊆ ((a, b)l, c)u. Conversely, assume that a ≥ c implies
(a, (b, c)u)lu ⊆ ((a, b)l, c)u. Now, we have to prove that (a, (b, c)u)l ⊇ ((a, b)l, c).
Let z ∈ (a, b)l. Then z ≤ a, z ≤ b and hence z ≤ a, z ≤ b ∈ (b, c)u. Therefore
z ∈ (a, (b, c)u)l. Thus (a, b)l ⊆ (a, (b, c)u)l. Now, we prove that ((a, b)l, c) ⊆
(a, (b, c)u)l. Let z ∈ ((a, b)l, c). Then z ∈ (a, b)l or z = c. If z = c, then
c ∈ (a, (b, c)u)l. If t ∈ (b, c)u, then t ≥ b, t ≥ c. Therefore c ∈ (a, (b, c)u)l. Hence
((a, b)l, c) ⊆ (a, (b, c)u)l. Therefore, by poset property, A ⊆ B implies Au ⊇ Bu,
we get that ((a, b)l, c)u ⊇ (a, (b, c)u)lu. Thus we get (a, (b, c)u)lu = ((a, b)l, c)u.
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Lemma 3.14. (A) (a, (a, c)l)ul = aul.

Proof. Let x ∈ (a, (a, c)l)u. Then x ≥ a, x ≥ t for any t ∈ (a, c)l and hence
x ≥ a, x ≥ t. Therefore t ≤ a ≤ x, a ≤ x. Hence x ≥ a. Therefore x ∈ au,
so that (a, (a, c)l)u ⊆ au. Thus (a, (a, c)l)ul ⊇ aul. Let x ∈ au, Then x ≥ a.
Now, we have to prove that x ≥ t for any t ∈ (a, c)l. Suppose t ∈ (a, c)l. Then
t ≤ a, t ≤ c and hence x ≤ a ≤ t. Therefore x ≥ t. Thus x ∈ (a, (a, c)l)u, so that
au ⊆ (a, (a, c)l)u. Therefore au = (a, (a, c)l)u.

The following has similar proof as above lemma.

Lemma 3.15. (B) (a, (a, c)u)lu = alu.

Proof. Let x ∈ (a, (a, c)u)l. Then x ≤ a, x ≤ t for any t ∈ (a, c)u and hence
t ≤ a, x ≤ t. Therefore x ≥ a ≥ x, so that x ≤ a. Hence x ∈ al. Thus
(a, (a, c)u)l ⊆ al, so that (a, (a, c)u)lu ⊇ alu. Let x ∈ al. Then x ≤ a. Now, we
have to prove that x ≤ t for any t ∈ (a, c)u. Suppose that t ∈ (a, c)u. Then
t ≥ a, t ≥ c and hence t ≥ a ≥ x, so that t ≥ x. Therefore x ∈ (a, (a, c)u)l. Hence
al ⊆ (a, (a, c)u)l. Thus we have (a, (a, c)u)l = al.

Remark 3.16. Let P be a modular poset such that if (a, c)u = (b, c)u, (a, c)l =
(b, c)l and a ≤ b then aul = bl.

Proof. Let a, b, c ∈ P . Suppose (a, c)u = (b, c)u, (a, c)l = (b, c)l and a ≤ b. Now
a ≤ b implies (a, (c, b)l)ul = ((a, c)u, b)l. Then (a, (a, c)l)ul = ((b, c)u, b)l. By
known Lemmas (A), (B), we get aul = bl.

Remark 3.17. If aul = bl and bul = al, then a = b.

Proof. We know that, a ∈ aul = bl, then a ≤ b. Similarly, if b ∈ bul = al, then
b ≤ a. Therefore a = b.

Remark 3.18. If alu = bu and blu = au, then a = b.

Proof. We know that, a ∈ alu = bu, then a ≥ b. Similarly, if b ∈ blu = au, then
b ≥ a. Therefore a = b.

Finally we conclude with the following theorem.

Theorem 3.19. Let (P,≤) be a modular poset, then a ≥ c implies ((a, b)l, (b, c)l,
(c, a)l)u ⊇ ((a, b)u, (b, c)u, (c, a)u)lu.

Proof. Assume P is a modular poset. We prove that, a ≥ c implies (a, b)l, (b, c)l,
(c, a)l)u ⊇ ((a, b)u, (b, c)u, (c, a)u)lu. It is enough to prove that ((a, b)l, (b, c)l,
(c, a)l) ⊆ ((a, b)u, (b, c)u, (c, a)u)l for a ≥ c. Now, assume a ≥ c. Let z ∈ (a, b)l ∪
(b, c)l ∪ (c, a)l. Then z ∈ (a, b)l or z ∈ (b, c)l or z ∈ (c, a)l, so that z ≤ a, b or
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z ≤ b, c or z ≤ c, a. Now, we have to prove that if z ∈ ((a, b)u, (b, c)u, (c, a)u)l

then, z ≤ t for any t ∈ ((a, b)u, (b, c)u, (c, a)u). Suppose t ∈ (a, b)u∪(b, c)u∪(c, a)u.
Then t ∈ (a, b)u or t ∈ (b, c)u or t ∈ (c, a)u.

Case (i). If z ≤ a, b. Suppose t ∈ (a, b)u. Then t ≥ a, b and hence t ≥ a ≥ z.
Therefore z ≤ t. Suppose t ∈ (b, c)u. Then t ≥ b, c and hence z ≤ b ≤ t.
Therefore z ≤ t. Suppose t ∈ (c, a)u. Then t ≥ c, a and hence z ≤ a ≤ t.
Therefore z ≤ t. Thus we have, if t ∈ (a, b)u ∪ (b, c)u ∪ (c, a)u, then z ≤ t.

Case (ii). If z ≤ b, c. Suppose t ∈ (a, b)u. Then t ≥ a, t ≥ b and hence
z ≤ b ≤ t. Therefore z ≤ t. Suppose t ∈ (b, c)u. Then t ≥ b, t ≥ c and hence
z ≤ b ≤ t. Therefore z ≤ t. Suppose t ∈ (c, a)u. Then t ≥ c, t ≥ a and hence
z ≤ c ≤ t. Therefore z ≤ t. Thus we have, if t ∈ (a, b)u ∪ (b, c)u ∪ (c, a)u, then
z ≤ t.

Case (iii). If z ≤ c, a. Suppose t ∈ (a, b)u. Then t ≥ a, t ≥ b and hence
z ≤ a ≤ t. Therefore z ≤ t. Suppose t ∈ (b, c)u. Then t ≥ b, t ≥ c and hence
z ≤ c ≤ t. Therefore z ≤ t. Suppose t ∈ (c, a)u. Then t ≥ c, t ≥ a and hence
z ≤ t. Therefore z ≤ t. Thus we have, if t ∈ ((a, b)u, (b, c)u, (c, a)u)lu, then z ≤ t.

Thus we get ((a, b)l, (b, c)l, (c, a)l) ⊆ ((a, b)u, (b, c)u, (c, a)u)l for a ≥ c. Hence,
if a ≥ c ⇒ ((a, b)l, (b, c)l, (c, a)l)u ⊇ ((a, b)u, (b, c)u, (c, a)u)lu.
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