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Abstract

Let (G, ∗) be a group and τ be a topology on G. Let τα = {A ⊆
G : A ⊆ Int(Cl(Int(A)))}, g ∗ τ = {g ∗ A : A ∈ τ} for g ∈ G. In this
paper, we establish two relations between G and τ under which it follows
that g ∗ τ ⊆ τα and g ∗ τα ⊆ τα, designate them by α-topological groups
and α-irresolute topological groups, respectively. We indicate that under
what conditions an α-topological group is topological group. This paper
also covers some general properties and characterizations of α-topological
groups and α-irresolute topological groups. In particular, we prove that
(1) the product of two α-topological groups is α-topological group, (2) if
H is a subgroup of an α-irresolute topological group, then αInt(H) is also
subgroup, and (3) if A is an α-open subset of an α-irresolute topological
group, then < A > is also α−open. In the mid of discourse, we also mention
about their relationships with some existing spaces.

Keywords: α-open sets, α-closed sets, α-topological groups, α-irresolute
topological group.
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1. Introduction and preliminaries

The study of topological groups is quite well-known in mathematics and promi-
nent in many areas of mathematics. Assuming familiarity with the features and
applications of topological groups, we recall some similar notions and generaliza-
tions of topological groups: Semi-topological groups [9, 10], s-topological groups
[1, 2], S-topological groups [1], Quasi S-topological groups [4], Irresolute topo-
logical groups [3, 8], Quasi-irresolute topological groups [11] and paratopological
groups [13]. Also, we obtained a new useful generalization of topological groups
in [12].
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These structures are mainly developed by investigating the group structure
via some weaker or stronger forms of continuity. This kind of investigation is
quite useful and successful for the development of new notions having significance
analogous to topological groups.

In this paper, we introduce two new structures of topology and group theory
which are resembling to topological groups. This paper also involves some im-
portant properties and characterizations of α-topological groups and α-irresolute
topological groups. We comprehend these concepts through some examples and
counter examples which also speak volumes about their relationship. We will ob-
serve that the class of α-topological groups is a fine generalization of topological
groups. Concerning the obverse of the fact, we point out some conditions with
which an α-topological group is topological group.

In 1965, Njastad [6] introduced a weaker but useful class of open sets, the
class of α-open sets, in topological spaces. He defines a set A in a topological
space X to be α-open if A ⊆ Int(Cl(Int(A))). The complement of an α-open
set is said to be α-closed set; or equivalently, a set A in a topological space X is
α-closed if Cl(Int(Cl(A))) ⊆ A.

For a subset A of X, the α-closure of A is the intersection of all α-closed sets
in X containing A and the α-interior of A is the union of all α-open sets in X that
are contained in A. These are denoted by αCl(A) and αInt(A), respectively. It
is known that a subset A of X is α-closed if and only if A = αCl(A). Moreover, a
point x ∈ αCl(A) if and only if A∩U 6= ∅ for each α-open set U in X containing
x. A subset A of X is α-open if and only if A = αInt(A). A point x of X is
called an α-interior point of a set A in X if there exists an α-open set U in X

containing x such that U ⊆ A. The set of all α-interior points of A is equal to
αInt(A). The family of all α-open (resp. α-closed) sets in X will be denoted by
τα (resp. αC(X)) where τ denotes the topology of X. Njastad [6] showed that
τα also forms a topology on X. For x ∈ X, τ (α,x) denotes the collection of all
α-open sets in X containing x.

2. α-topological groups

This section acquaints us with the notion and some examples of α-topological
groups. We will see that every topological group is an α-topological group but
the converse is not true in general. In this connection, we prove a theorem,
Theorem 2.1, which tells us under what conditions the converse holds. We also
establish some basic properties and characterizations of α-topological groups.

By G, we mean the group (G, ∗) where ‘∗’ is a binary operation on G under
which G is a group. For A,B ⊆ G, let A ∗ B = {a ∗ b : a ∈ A, b ∈ B} and
A−1 = {a−1 : a ∈ A}. For g, h ∈ G, we write g ∗ B or A ∗ h rather than {g} ∗B
or A ∗ {h}. The identity element of G is denoted by e.
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Definition 2.1. An α-topological group, denoted by (G, τ), is a group G endowed
with a topology τ such that.

(1) For each x, y ∈ G and each open set W in G containing x ∗ y, there exist
α-open neighborhoods U and V of x and y, respectively, in G such that
U ∗ V ⊆ W , and

(2) For each x ∈ G and each open set V in G containing x−1, there exists an
α-open neighborhood U of x in G such that U−1 ⊆ V .

Example 2.1. Let H be the additive group of real numbers. Then H with its
usual topology τ , is an α-topological group.

Example 2.2. Let (G, ∗) be a group of order 4. Let A,B be two subsets of G
such that

(i) G = A ∪B and A ∩B = ∅.

(ii) g ∗ A = A or B and g ∗B = A or B for each g ∈ G.

(iii) A ∗A = A, B ∗B = A and A ∗B = B.

Let τ = {∅, A,B,G} be the topology on G. Then (G, τ) is an α-topological
group.

Proof. Let G = {e, a, b, c} where e denotes the identity element in G. By con-
ditions (i) and (iii) of the hypothesis, A 6= ∅ and B 6= ∅. Notice that G has an
element x 6= e such that x2 = e. Let a be the such element. By Condition (iii)
with previous argument, we must have

A = {e, a} and B = {b, c}.

Observe that

A−1 = A and B−1 = B.

Now, let x, y ∈ G and W be an open neighborhood of x ∗ y in G. If W = A,
we have either both x, y ∈ A or both x, y ∈ B. Consequently, owing to Condition
(iii) of hypothesis, we obtain α-open sets U and V in G containing x and y

respectively such that U ∗ V ⊆ A. If W = B, then we see that either x ∈ A,

y ∈ B or y ∈ A, x ∈ B. Again, by Condition (iii) of hypothesis, we find out
α-open neighborhoods U of x and V of y such that U ∗ V ⊆ B. Finally, for any
x ∈ G and any open neighborhood V of x−1, we can choose α-open neighborhood
U = V of x such that U−1 ⊆ V . Hence (G, τ) is α-topological group.

It is obvious from the definition that every α-topological group is s-topological
group [1], but the converse is not true in general as below example shows.
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Example 2.3. Consider the additive group (R,+) of real numbers endowed with
the topology τ generated by the family of sets {(a, b) : a, b ∈ R}∪{[c, d) : c, d ∈ R,

0 < c < d}. Then, (R, τ) is an s-topological group but it is not α-topological
group.

By Definition 2.1, it follows immediately that every topological group is an
α-topological group, but the converse is not true, in general. We give a theorem
about the converse of this fact.

Theorem 2.1. Let (G, ℘) be a regular α-topological group such that every
nowhere dense subset of G is closed. Then (G, ℘) is topological group if and
only if ℘ = ℘α.

Proof. One way is trial. Conversely, let (G, ℘) be a topological group and A be
an α-open subset of G. Then A = B −N where B is open subset of G and N is
nowhere dense subset of G.

Claim. A is open.

Let x be any element of A. By hypothesis, N is closed, and thus, there exist
open subsets U and V of G such that x ∈ U , N ⊆ V and U ∩ V = ∅. This
implies that there exists an open subset P of G such that x ∈ P ⊆ A. Hence the
claim.

Definition 2.2. Let X and Y be two topological spaces. A function f : X → Y

is α-continuous [5] if f−1(U) is α-open set in X, for every open set U of Y .

Theorem 2.2. Let G be an α-topological group and g ∈ G. Then

(1) the mapping hg : G → G defined by hg(x) = g ∗ x, ∀x ∈ G, is α-continuous,

(2) the mapping lg : G → G defined by lg(x) = x ∗ g, ∀x ∈ G, is α-continuous.

Proof. Straightforward.

Theorem 2.3. Let N be an open set in an α-topological group G with e ∈ N .
Then, the following implications hold:

(1) There exists U ∈ τ (α,e) such that U ∗ U ⊆ N .

(2) There exists U ∈ τ (α,e) such that U−1 ⊆ N .

Proof. A simple.

Theorem 2.4 (Necessary Condition). Let A be any open set in an α-topological
group G. The following are valid:

(1) g ∗ A ∈ τα for all g ∈ G.
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(2) A ∗ g ∈ τα for all g ∈ G.

(3) A−1 ∈ τα.

Proof. We only prove (1) and (3). The proof for part (2) follows along similar
lines.

(1) For a ∈ A, let x = g∗a. By Theorem 2.2, hg−1 is α-continuous. Therefore,

∃ U ∈ τ (α,x) such that hg−1(U) ⊆ A.

That is, g−1 ∗ U ⊆ A.

This implies that U ⊆ g ∗ A. Thus, x ∈ αInt(g ∗ A) showing that g ∗ A is
α-open.

(3) Let y = x−1 ∈ A−1 where x is an element of A. By Definition 2.1, we
get an α-open set U in G containing y such that U−1 ⊆ A ⇒ U ⊆ A−1 ⇒ y ∈
αInt(A−1). Hence the assertion follows.

Using Theorem 2.4, it can be easily checked that Sorgenfrey line is not an
α-topological group. Explicitly,

Example 2.4. Consider the additive group G of reals. Let L be the lower-limit
topology on G = R. Then (G,L) is not an α-topological group because for open
set A = [1, 2), −A = (−2,−1] is not α-open in G.

Corollary 2.4.1. Let B be any closed set in an α-topological group G. Then

(1) g ∗B ∈ αC(G) for each g ∈ G.

(2) B−1 ∈ αC(G).

Theorem 2.5 (Characterizations). Let G be an α-topological group. For A ⊆
G, the following hold:

(1) αCl(g ∗A) ⊆ g ∗ Cl(A) for each g ∈ G.

(2) g ∗ αCl(A) ⊆ Cl(g ∗ A) for each g ∈ G.

(3) g ∗ Int(A) ⊆ αInt(g ∗A) for each g ∈ G.

(4) Int(g ∗ A) ⊆ g ∗ αInt(A) for each g ∈ G.

Proof. (1) For x ∈ αCl(gA), set y = g−1 ∗ x. Let W be any open set in G

containing y. Then

∃ U ∈ τ (α, g−1) and V ∈ τ (α,x) such that U ∗ V ⊆ W .

Since x ∈ αCl(gA), there is a ∈ gA ∩ V .

This implies that g−1 ∗ a ∈ A ∩ U ∗ V ⊆ A ∩ W ⇒ A ∩ W 6= ∅. Hence
y ∈ Cl(A); that is, x ∈ gCl(A).

(2) For x ∈ αCl(A), let W be an open neighborhood of g ∗ x. Then
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∃ U ∈ τ (α, g) and V ∈ τ (α,x) satisfying U ∗ V ⊆ W .

Since x ∈ αCl(A), A ∩ V 6= ∅. This results in g ∗ A ∩W 6= ∅, i.e., g ∗ αCl(A) ⊆
Cl(g ∗ A).

(3) A direct consequence of Theorem 2.4.

(4) Pick an arbitrary point x ∈ Int(g ∗ A). Then x = g ∗ y for some y ∈ A.
There exist U ∈ τ (α,g) and V ∈ τ (α,y) such that

U ∗ V ⊆ g ∗ A.

In particular, g∗V ⊆ g∗A. Thus, g∗V ⊆ g∗αInt(A). Whereby the assertion
follows.

Under certain extra condition on A in Theorem 2.5, we obtain the following
result.

Theorem 2.6. Let A be an open set in an α-topological group G. Then Cl(g ∗
A) = g ∗ Cl(A) for each g ∈ G.

To prove Theorem 2.6, we use the following result.

Lemma 2.7 [5, Theorem 1.1]. Let f : X → Y be a mapping, then the following
statements are equivalent.

(1) f is α-continuous.

(ii) f [Cl(Int(Cl(A)))] ⊆ Cl(f(A)) for each A ⊆ X.

Proof of Theorem 2.6. Since A is open, Cl(A) = Cl(Int(Cl(A))). By Theorem
2.2, hg is α-continuous. Now by above lemma, we obtain that

g ∗ Cl(Int(Cl(A))) ⊆ Cl(g ∗A).

This gives,
g ∗ Cl(A) ⊆ Cl(g ∗A).

Next, it follows from Corollary 2.4.1 that Cl(g ∗ A) ⊆ Cl(Int(Cl(g ∗ A))) ⊆
g ∗ Cl(A). This finishes the proof.

Theorem 2.8. Let A and B be any subsets of an α-topological group G. Then
αCl(A) ∗ αCl(B) ⊆ Cl(A ∗B).

Proof. Straightforward.

Theorem 2.9. Under the same conditions of Theorem 2.5, the following hold:

(1) αCl(A−1) ⊆ [Cl(A)]−1.

(2) [αCl(A)]−1 ⊆ Cl(A−1).
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(3) [Int(A)]−1 ⊆ αInt(A−1).

(4) Int(A−1) ⊆ [αInt(A)]−1.

Theorem 2.10. The product of two α-topological groups is α-topological group.

Proof. Let (G, ∗1, τ1) and (H, ∗2, τ2) be two α-topological groups. We show that
(G×H, ∗, τ) is an α-topological group, where τ is the product topology on G×H

and ‘∗′ is a binary operation on G×H, defined as

(x, y) ∗ (x′, y′) = (x ∗1 x
′, y ∗2 y

′) for (x, y), (x′, y′) ∈ G×H.

Pick arbitrary points ζ = (x, y) and η = (g, h) from G×H and let W be an
open neighborhood of ζ ∗ η. Then there exist open sets A in G containing x ∗1 g

and B in H containing y ∗2 h. There exist U1 ∈ τ
(α,x)
1 , U2 ∈ τ

(α,y)
2 , V1 ∈ τ

(α, g)
1

and V2 ∈ τ
(α,h)
2 such that U1 ∗1 V1 ⊆ A and U2 ∗2 V2 ⊆ B. Hence we get α-open

sets U = U1 × U2 and V = V1 × V2 containing ζ and η, respectively such that
U ∗ V ⊆ W .

Next, for ζ = (x, y) ∈ G×H, let W be an open neighborhood of ζ−1. Then
W = U × V where U is open subset of G containing x−1 and V is open subset

of H containing y−1. As a result of this, there exist α-open sets P ∈ τ
(α,x)
1 and

Q ∈ τ
(α,y)
2 such that P−1 ⊆ U and Q−1 ⊆ V . Thus, P ×Q is α-open set in G×H

with (x, y) ∈ P ×Q and [P ×Q]−1 ⊆ W . This ends the proof.

3. α-irresolute topological groups

This section deals with the α-irresolute topological groups and several indispens-
able features of them. In particular, we prove that (1) if H is a subgroup of an
α-irresolute topological group G, then αInt(H) is also subgroup of G and (2) if
A is any non-empty α-open subset of G, then < A > is also α-open.

Definition 3.1. An α-irresolute topological group (G, τ) is a group G endowed
with a topology τ such that

(1) For each x, y ∈ G and each α-open set W in G containing x ∗ y, there
exist α-open sets U and V in G containing x and y, respectively such that
U ∗ V ⊆ W , and

(2) For each x ∈ G and each α-open set V in G containing x−1, there exists an
α-open set U in G containing x such that U−1 ⊆ V .

Example 3.1. Consider the multiplicative group Z5 = {1, 2, 3, 4} with the topol-
ogy τ on Z5 where τ = {∅, {1, 4}, {2, 3},Z5}. Then (Z5, τ) is an α-irresolute
topological group.
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Theorem 3.1. Let (G, τ) be an α-irresolute topological group. For any A ∈ τα,
the following hold:

(1) g ∗ A ∈ τα for each g ∈ G.

(2) A ∗ g ∈ τα for each g ∈ G.

(3) A−1 ∈ τα.

Proof. (1) Let x ∈ g ∗ A be any element. Then ∃ U ∈ τ (α,g
−1) and V ∈ τ (α,x)

such that

U ∗ V ⊆ A

That is, V ⊆ g ∗A. Hence x ∈ αInt(g ∗A). Therefore, g ∗A is α-open.

(2) Follows along similar lines as above.

(3) Let y = x−1 be an arbitrary point of A−1 where x is an element of A.

By Definition 3.1,

∃ U ∈ τ (α, y) such that U ⊆ A−1.

That is, y ∈ αInt(A−1). Thus, A−1 is α-open.

The following result about α-irresolute topological groups is elementary but
indispensable. The proof of this result is petty and thus, not given

Theorem 3.2. Let G be an α-irresolute topological group. For V ∈ τ (α,e), the
following assertions hold:

(1) There exists U ∈ τ (α,e) such that U ∗ U ⊆ V .

(2) There exists U ∈ τ (α,e) such that U−1 ⊆ V .

(3) There exists a symmetric U ∈ τ (α,e) (i.e., U = U−1) such that U ∗ U ⊆ V .

(4) There exists a symmetric U ∈ τ (α,e) such that U−1 ⊆ V .

(5) For each g ∈ G, there exists U ∈ τ (α,e) such that g−1 ∗ U ∗ g ⊆ V .

Proof. Simple and therefore, omitted.

Theorem 3.3. Let G be an α-irresolute topological group. For any A ⊆ G, the
following assertions hold:

(1) αCl(g ∗A) = g ∗ αCl(A) for all g ∈ G.

(3) αCl(A−1) = [αCl(A)]−1.

Proof. (1) For x ∈ αCl(g ∗ A), set y = g−1 ∗ x. If W ∈ τ (α, y), there exists
U ∈ τ (α, g−1) and V ∈ τ (α, x) such that

U ∗ V ⊆ W.
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In particular,
g−1 ∗ V ⊆ W.

Since x ∈ αCl(g ∗ A), g ∗ A ∩ V 6= ∅. This implies that g ∗ A ∩ g ∗W 6= ∅.
Consequently, A ∩W 6= ∅. Thereby it follows that αCl(g ∗A) ⊆ g ∗ αCl(A). On
the other hand, for any x ∈ αCl(A) and any α-open neighborhood W of g ∗ x,
we have

U ∗ V ⊆ W for some U ∈ τ (α,g), and V ∈ τ (α,x).

Thence we find that A ∩ V 6= ∅ and as a result, g ∗ A ∩W 6= ∅. Therefore,
g ∗ αCl(A) ⊆ αCl(g ∗ A). This completes the proof of part (1).

(2) Let x be any point of αCl(A−1) and V ∈ τ (α,x
−1). There exists U ∈ τ (α, x)

with U−1 ⊆ V . By assumption, A−1 ∩ U 6= ∅. This gives that A ∩ U−1 6= ∅ ⇒
A ∩ V 6= ∅. Thus, x ∈ [αCl(A)]−1. Conversely, pick an arbitrary point y of
[αCl(A)]−1 and let V be an α-open set in G containing y. Then y = x−1 for
some x ∈ αCl(A) and there exists U ∈ τ (α, x) such that U−1 ⊆ V . Now,

Since x ∈ αCl(A), A∩U 6= ∅. This results in A−1∩U−1 6= ∅ ⇒ A−1∩V 6= ∅.
Therefore, y ∈ αCl(A−1). Hence the assertion follows.

Theorem 3.4. Under the same statement as Theorem 3.3, the following hold:

(1) αInt(g ∗A) = g ∗ αInt(A) for all g ∈ G.

(2) αInt(A−1) = [αInt(A)]−1.

Proof. (1) It follows immediately from Theorem 3.1 that g ∗αInt(A) ⊆ αInt(g ∗
A). On the obverse side, let x be an arbitrary point of αInt(g ∗ A). Then for
some a ∈ A, there exist U ∈ τ (α,g), V ∈ τ (α,a) with U ∗ V ⊆ g ∗ A. Whence we
have that x ∈ g ∗ αInt(A). Thus, αInt(g ∗A) = g ∗ αInt(A).

(2) By Theorem 3.1, [αInt(A)]−1 ⊆ αInt(A−1). Next, for x ∈ αInt(A−1),
there exists an α-open set U in G containing h such that U−1 ⊆ A−1 for some
h ∈ A. From this fact, we get that αInt(A−1) ⊆ [αInt(A)]−1. Hence the proof.

We recall a fact from group theory that if A is a subset of G, then < A >

denotes the intersection of all subgroups of G containing A. Indeed, < A > is
the smallest subgroup of G containing A. Symbolically,

< A >=
⋂

{H ⊂ G : A ⊆ H, H ≤ G},

where H ≤ G denotes that H is subgroup of G.

Theorem 3.5. Let G be an α-irresolute topological group.

(1) If H is a subgroup of G, then αInt(H) is also subgroup of G, provided
αInt(H) 6= ∅.
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(2) If A ⊆ G is a non-empty α-open set, then < A > is α-open.

Proof. (1) Follows immediately from Theorem 3.1.

(2) By definition,

< A >=
⋂

{H : A ⊆ H, H ≤ G}.

Since A is α-open, < A >=
⋂
{αInt(H) : A ⊆ H, H ≤ G}. By a result in

[6], it follows that < A > is α-open.
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