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Abstract

Let R be a noncommutative prime ring of char (R) 6= 2, F a generalized
derivation of R associated to the derivation d of R and I a nonzero ideal of R.
Let S ⊆ R. The left annihilator of S in R is denoted by lR(S) and defined by
lR(S) = {x ∈ R |xS = 0}. In the present paper, we study the left annihilator
of the sets {F (x)◦nF (y)−x◦ny |x, y ∈ I} and {F (x)◦nF (y)−d(x◦ny) |x, y
∈ I}.
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1. Introduction

Throughout this paper, R always denotes an associative ring with center Z(R).
For any a, b ∈ R, a ring R is said to be prime, if aRb = (0) implies either a = 0
or b = 0 and is semiprime if for any a ∈ R, aRa = (0) implies a = 0. A mapping
f is said to be an additive mapping on R if f(x+ y) = f(x) + f(y) holds for all
x, y ∈ R. An additive mapping d : R → R defined by d(xy) = d(x)y+xd(y) for all
x, y ∈ R is called a derivation on R. The map d(x) = [a, x] for all x ∈ R and for
some fixed a ∈ R, is called an inner derivation of R. For any x, y ∈ R, the symbol
[x, y] stands for the commutator xy − yx and the symbol x ◦ y stands for the
anti-commutator xy+ yx. For given x, y ∈ R, we set x ◦0 y = x, x ◦1 y = xy+ yx,
and inductively x ◦n y = (x ◦n−1 y) ◦ y for n > 1. Let S ⊆ R. Then rR(S)
denotes the right annihilator of S in R, that is, rR(S) = {x ∈ R|Sx = 0} and
lR(S) denotes the left annihilator of S in R that is, lR(S) = {x ∈ R|xS = 0}. If
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rR(S) = lR(S), then rR(S) is called an annihilator ideal of R and is written as
annR(S).

Ashraf and Rehman [3] proved that if R is a prime ring of char (R) 6= 2, I is
a nonzero ideal of R and d 6= 0 such that d(x) ◦ d(y) = x ◦ y for all x, y ∈ I, then
R is commutative.

In [1], Ali and Huang studied the case for semiprime ring. They proved that
if R is a 2-torsion free semiprime ring and I a nonzero ideal of R and d(I) 6= (0)
such that d(x) ◦ d(y) = x ◦ y for all x, y ∈ I, then R has a nonzero central ideal.

There is ongoing interest to investigate the situations replacing derivations
with generalized derivations. An additive mapping F : R → R is said to be a
generalized derivation of R, if there exists a derivation d of R such that F (xy) =
F (x)y+xd(y) holds for all x, y ∈ R. In particular, when d = 0, then F becomes a
left multiplier map on R. Thus a generalized derivation covers both the concept
of derivation and left multiplier map.

In [12], Huang proved that if R is a prime ring with char (R) 6= 2, L is
a square closed Lie ideal of R and F a generalized derivation associated with
derivation d of R such that d(x) ◦ F (y) = x ◦ y for all x, y ∈ L, then either d = 0
or L ⊆ Z(R). In [4], Bell and Rehman studied the situation for prime ring R
that F (x) ◦ F (y) = x ◦ y for all x, y ∈ R.

Ashraf et al. [2] proved that the prime ring R must be commutative if R ad-
mits a generalized derivation F associated with a nonzero derivation d satisfying
d(x)◦F (y) = x◦y for all x, y ∈ I, where I is a nonzero ideal of R. Then Dhara et

al. [9] studied the same situation in 2-torsion free semiprime ring and obtained
that R has a nonzero central ideal. Recently, in [18], Raza and Rehman studied
the cases F (x) ◦m F (y) = (x ◦ y)n for all x, y ∈ I and F (x) ◦m d(y) = d(x ◦ y)n

for all x, y ∈ I in prime and semiprime rings, where I is a nonzero ideal of R, F
is a generalized derivation of R with associated derivation d and m,n are fixed
positive integers. In the present paper, we investigate the left annihilator condi-
tion of the identities, that is a{F (x) ◦n F (y)− (x ◦n y)} = 0 for all x, y ∈ I and
a{F (x) ◦n F (y)− d(x ◦n y)} = 0 for all x, y ∈ I.

Let R be a prime ring with center Z(R) and U is the Utumi quotient ring
of R. It is well known that any derivation of R can be uniquely extended to
a derivation of U , and so any derivation of R can be defined on the whole of
U . Moreover U is a prime ring as well as R and the extended centroid C of R
coincides with the center of U . Note that C is a field. We refer to [16] for more
details.

We mention a very important result which will be used quite frequently as
follows.

Theorem 1.1 (Kharchenko [14]). Let R be a prime ring, d a nonzero derivation

on R and I a nonzero ideal of R. If I satisfies the differential identity
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f(r1, r2, . . . , rn, d(r1), d(r2), . . . , d(rn)) = 0

for any r1, r2, . . . , rn ∈ I, then either

(i) I satisfies the generalized polynomial identity

f(r1, r2, . . . , rn, x1, x2, . . . , xn) = 0
or

(ii) d is inner i.e., for some q ∈ U , d(x) = [q, x] for all x ∈ R and I satisfies the

generalized polynomial identity

f(r1, r2, . . . , rn, [q, r1], [q, r2], . . . , [q, rn]) = 0.

2. Main results

We begin with the theorem.

Theorem 2.1. Let R be a noncommutative prime ring of char (R) 6= 2 with its

Utumi ring of quotients U , C = Z(U) the extended centroid of R, F a generalized

derivation of R and I a nonzero ideal of R. Suppose that there exists 0 6= a ∈ R
such that a

(

F (x)n − xn
)

= 0 for all x ∈ I, where n ≥ 1 is a fixed integer. Then

one of the following holds.

(1) n = 1 and there exists b ∈ U such that F (x) = bx for all x ∈ R with

a(b− 1) = 0;

(2) n ≥ 2 and there exists λ ∈ C such that F (x) = λx for all x ∈ R with λn = 1.

Proof. In light of [15, Theorem 3], there exist b ∈ U and derivation d of U such
that F (x) = bx+d(x). Since I, R and U satisfy the same generalized polynomial
identities (see [8]) as well as the same differential identities (see [16]), without loss
of generality, we have a

(

F (x)n − xn
)

= 0 for all x ∈ U , where d is the derivation
of U , that is,

a
(

(bx+ d(x))n − xn
)

= 0

for all x ∈ U .
If F = 0, then our hypothesis reduces to axn = 0 for all x ∈ U . Replacing x

with xa yields (xa)n+1 = 0 for all x ∈ U . Since R is a prime ring, by Levitzki’s
Lemma [11, Lemma 1.1], a = 0, a contradiction.

Now we assume F 6= 0. By Kharchenko’s theorem, we divide the proof in
two cases.

Case 1. Let d be an outer derivation of U . Then by Kharchenko’s theorem
[14], we have by our assumption that

a
(

(bx+ u)n − xn
)

= 0
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for all x, u ∈ U . In particular, for x = 0, we have aun = 0 for all u ∈ U . Again,
this implies a = 0, a contradiction.

Case 2. Let d be inner derivation of U , that is, d(x) = [c, x] for all x ∈ R
and for some c ∈ U . Since d 6= 0, c /∈ C. Thus a

(

(bx + [c, x])n − xn
)

=
0 is a nontrivial generalized polynomial identity (GPI) for U . Denote by E
either the algebraic closure of C or C according as C is either infinite or finite,
respectively. Then, by a standard argument (see for instance, [16, Proposition]),
a
(

(bx + [c, x])n − xn
)

= 0 is also a GPI for U ⊗C E. Since U ⊗C E is centrally
closed prime E-algebra [10, Theorem 2.5 and Theorem 3.5], by replacing R, C
with U ⊗C E and E, respectively, we may assume R is centrally closed and C
is either finite or algebraically closed. By Martindale’s theorem [17], R is then
a primitive ring having nonzero socle H with C as the associated division ring.
Hence by Jacobson’s theorem [13, p.75] R is isomorphic to a dense ring of linear
transformations of some vector space V over C, and H consists of the linear
transformations in R of finite rank.

If V is finite dimensional over C, then by the density of R on V , R ∼= Mk(C)
where k = dimCV .

Since R is noncommutative, dimCV ≥ 2.

We show that v and cv are linearly C-dependent for any v ∈ V . Suppose
that v and cv are linearly independent for some v ∈ V . By the density there
exists x ∈ R such that

xv = 0, xcv = v.

Then

0 = a
(

(bx+ [c, x])n − xn
)

v = av.

If for some u ∈ V , {u, v} is linearly C-dependent, then au = 0. Since a 6= 0,
there exists w ∈ V such that aw 6= 0 and so {w, v} is linearly C-independent.
Moreover, a(w + v) = aw 6= 0 and a(w − v) = aw 6= 0. By the above argument,
it follows that w and cw are linearly C-dependent, as are {w + v, c(w + v)} and
{w − v, c(w − v)}. Therefore there exist αw, αw+v, αw−v ∈ C such that

cw = αww, c(w + v) = αw+v(w + v), c(w − v) = αw−v(w − v).

This gives

(1) αww + cv = αw+vw + αw+vv

and

(2) αww − cv = αw−vw − αw−vv.
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Now (1) and (2) together yields

(3) (2αw − αw+v − αw−v)w + (αw−v − αw+v)v = 0

and

(4) 2cv = (αw+v − αw−v)w + (αw+v + αw−v)v.

By (3), and since {w, v} are C-independent and char (R) 6= 2, we have αw =
αw+v = αw−v. Thus by (4), we have cv = αwv. This leads to a contradiction
with the fact that {v, cv} is linear C-independent.

In light of this, we may assume that for any v ∈ V there exists a suitable
αv ∈ C such that cv = αvv. By standard argument, there is α ∈ C such that
cv = αv for all v ∈ V . Now let r ∈ R, v ∈ V . Since cv = αv,

(5) [c, r]v = (cr)v − (rc)v = c(rv)− r(cv) = α(rv)− r(αv) = 0.

Thus [c, r]v = 0 for all v ∈ V , i.e., [c, r]V = 0. Since [c, r] acts faithfully as a
linear transformation on the vector space V , [c, r] = 0 for all r ∈ R. Therefore,
c ∈ Z(R). Then

a
(

(bx)n − xn
)

= 0

for all x ∈ R. If n = 1, then a(b− 1)R = (0) implying a(b− 1) = 0.
So, let n > 1. Suppose that v and bv are linearly independent for some v ∈ V .

By the density there exists x ∈ R such that

xv = v, xbv = 0,

and hence
0 = a

(

(bx)n − xn
)

v = −av.

Since a 6= 0, by the same argument as earlier, it yields b ∈ C. Then
a
(

bnxn − xn
)

= 0, i.e., a(bn − 1)xn = 0 for all x ∈ R. By the same argu-
ment as before, we have a(bn − 1) = 0. Since a 6= 0, it yields bn = 1. This
completes the proof.

Corollary 2.2. Let R be a noncommutative prime ring of char R 6= 2 with its

Utumi ring of quotients U , C = Z(U) the extended centroid of R, F a generalized

derivation of R and I a nonzero ideal of R. Suppose that there exists 0 6= a ∈ R
such that a

(

F (x) ◦n F (y) − x ◦n y
)

= 0 for all x, y ∈ I, where n ≥ 0 is a fixed

integer. Then one of the following holds.

(1) n = 0 and there exists b ∈ U such that F (x) = bx for all x ∈ R with

a(b− 1) = 0;
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(2) n ≥ 1 and there exists λ ∈ C such that F (x) = λx for all x ∈ R with

λn+1 = 1.

Proof. In particular, for x = y, we have a
(

F (x)n+1 − xn+1
)

= 0 for all x ∈ I.
Then by Theorem 2.1, we conclude one of the following.

(1) n = 0 and there exists b ∈ U such that F (x) = bx for all x ∈ R with
a(b− 1) = 0;

(2) n ≥ 1 and there exists λ ∈ C such that F (x) = λx for all x ∈ R with
λn+1 = 1.

In particular, for F = d, we have the following corollary.

Corollary 2.3. Let R be a prime ring of char (R) 6= 2 and 0 6= a ∈ R. Suppose

that d is a nonzero derivation of R and n ≥ 0 a fixed integer such that a
(

d(x) ◦n
d(y) − x ◦n y

)

= 0 for all x, y ∈ I, then R is commutative.

Theorem 2.4. Let R be a noncommutative prime ring of char (R) 6= 2 with its

Utumi ring of quotients U , C = Z(U) the extended centroid of R, F a generalized

derivation of R with associated derivation d of R and I a nonzero ideal of R.

Suppose that there exists 0 6= a ∈ R such that a
(

F (x)n−d(xn)
)

= 0 for all x ∈ I,
where n ≥ 1 is a fixed integer. Then there exists b ∈ U such that F (x) = bx for

all x ∈ R with ab = 0.

Proof. In light of [15, Theorem 3], we may assume that there exist b ∈ U and
derivation d of U such that F (x) = bx + d(x). Since I, R and U satisfy the
same generalized polynomial identities (see [8]) as well as the same differential
identities (see [16]), without loss of generality, we have a

(

F (x)n − d(xn)
)

= 0 for
all x ∈ U , where d is derivation on U , that is

a

{

(bx+ d(x))n −
n
∑

i=0

xid(x)xn−i−1

}

= 0

for all x ∈ U .

In light of Kharchenko’s theorem, we divide the proof in two cases.

Case 1. If d is not U -inner, then by Kharchenko’s theorem [14] we have

a

{

(bx+ y)n −

n−1
∑

i=0

xiyxn−i−1

}

= 0

for all x, y ∈ U . If n > 1, then in particular for x = 0, we have ayn = 0 for all
y ∈ U . This yields a = 0, a contradiction.

On the other hand, if n = 1, then abx = 0 for all x ∈ U , implying ab = 0.
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Case 2. We assume the case when d is U -inner derivation, that is for some
c ∈ U , d(x) = [c, x] for all x ∈ U . Since d 6= 0, c /∈ C. Hence a

(

(bx + [c, x])n −
[c, xn]

)

= 0 is a nontrivial generalized polynomial identity (GPI) for U . Denote by
E either the algebraic closure of C or C according as C is either infinite or finite,
respectively. Then, by a standard argument (see for instance, [16, Proposition]),
a
(

(bx+ [c, x])n − [c, xn]
)

= 0 is also a GPI for U ⊗C E. Since U ⊗C E is centrally
closed prime E-algebra [10, Theorem 2.5 and Theorem 3.5], by replacing R, C
with U ⊗C E and E, respectively, we may assume that R is centrally closed and
C is either finite or algebraically closed. By Martindale’s theorem [17], R is then
a primitive ring having nonzero socle H with C as the associated division ring.
Hence by Jacobson’s theorem [13, p.75] R is isomorphic to a dense ring of linear
transformations of some vector space V over C, and H consists of the linear
transformations in R of finite rank. If V is finite dimensional over C, then by the
density of R on V gives R ∼= Mk(C), where k = dimCV .

Since R is noncommutative, dimCV ≥ 2.

We prove now that for any v ∈ V , v and cv are linearly C-dependent. Suppose
on the contrary that v and cv are linearly independent for some v ∈ V . By the
density, there exists x ∈ R such that

xv = 0, xcv = v.

Then

0 = a
(

(bx+ [c, x])n − [c, xn]
)

v = av.

If for any u ∈ V , {u, v} is linearly C-dependent, then au = 0. Since a 6= 0,
there exists w ∈ V such that aw 6= 0 and so {w, v} are linearly C-independent.
Also a(w + v) = aw 6= 0 and a(w − v) = aw 6= 0. By the above argument, it
follows that w and cw are linearly C-dependent, as are {w + v, c(w + v)} and
{w − v, c(w − v)}. Therefore there exist αw, αw+v, αw−v ∈ C such that

cw = αww, c(w + v) = αw+v(w + v), c(w − v) = αw−v(w − v).

Thus we have

(6) αww + cv = αw+vw + αw+vv

and

(7) αww − cv = αw−vw − αw−vv.

Now (6) and (7) together yields

(8) (2αw − αw+v − αw−v)w + (αw−v − αw+v)v = 0
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and

(9) 2cv = (αw+v − αw−v)w + (αw+v + αw−v)v.

By (8), and since {w, v} are C-independent, 2αw −αw+v−αw−v = 0 and αw−v−
αw+v = 0. These relations imply by using char (R) 6= 2, that αw = αw+v = αw−v.
By (9) it follows cv = αwv. This leads to a contradiction with the fact that {v, cv}
is linear C-independent.

In light of this, we may assume that for any v ∈ V there exists a suitable
αv ∈ C such that cv = αvv, and standard argument shows that there is α ∈ C
such that cv = αv for all v ∈ V . Then by the same argument as in Theorem
2.1, c ∈ Z(R). Then a(bx)n = 0 for all x ∈ R. Replacing x with xa, we have
(xab)n+1 = 0 for all x ∈ R. By Levitzki’s Lemma [11, Lemma 1.1], ab = 0.

Corollary 2.5. Let R be a noncommutative prime ring of char (R) 6= 2 with its

Utumi ring of quotients U , C = Z(U) the extended centroid of R, F a generalized

derivation of R with associated derivation d and I a nonzero ideal of R. Suppose

that there exists 0 6= a ∈ R such that a
(

F (x) ◦n F (y) − d(x ◦n y)
)

= 0 for all

x, y ∈ I, where n ≥ 0 is a fixed integer. Then d = 0 and there exists b ∈ U such

that F (x) = bx for all x ∈ R with ab = 0.

Proof. In particular, for x = y, we have a
(

F (x)n+1 − d(xn+1)
)

= 0 for all x ∈ I.
Then by Theorem 2.4, we conclude that there exists b ∈ U such that F (x) = bx
for all x ∈ R with ab = 0.

In particular, for F = d, we have the following corollary.

Corollary 2.6. Let R be a prime ring of char (R) 6= 2 and 0 6= a ∈ R. Suppose

that d is a nonzero derivation of R and n ≥ 0 a fixed integer such that a
(

d(x) ◦n
d(y) − d(x ◦n y)

)

= 0 for all x, y ∈ I. Then R is commutative.

Example 2.7. Let Z be the set of all integers. Consider

R =











0 x y
0 0 z
0 0 0



 | x, y, z ∈ Z







.

Notice that R is not prime ring. We define maps F, d : R → R by F





0 x y
0 0 z
0 0 0





=





0 0 x
0 0 0
0 0 0



 and d





0 x y
0 0 z
0 0 0



 =





0 0 z
0 0 0
0 0 0



. Then it is easy to verify

that F is a generalized derivation associated with a derivation d on R. We
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choose 0 6= a =





0 a1 0
0 0 b1
0 0 0



 ∈ R such that a(F (x) ◦n F (y) − x ◦n y) = 0

and a(F (x) ◦n F (y) − d(x ◦n y)) = 0 for all x, y ∈ R and for any integer n ≥ 1.
But d 6= 0 and so F can not be written as F (x) = bx for all x ∈ R, for some
b ∈ R. Thus the primeness hypothesis in Corollary 2.2 and Corollary 2.5 is not
superfluous.

3. The results on semiprime rings

In this section we extend Corollary 2.3 and Corollary 2.6 to the semiprime ring.
Let R be a semiprime ring and U be its left Utumi ring of quotients. Then
C = Z(U) is the extended centroid of R [7, p. 38]. We know the fact.

Fact 1. Any derivation of a semiprime ring R can be uniquely extended to a

derivation of its left Utumi quotient ring U and so any derivation of R can be

defined on the whole of U [16, Lemma 2].

Let M(C) be the set of all maximal ideals of C.
By the standard theory of orthogonal completions for semiprime rings, we

have the following lemma.

Lemma 3.1 ([6], Lemma 1 and Theorem 1). Let R be a 2-torsion free semiprime

ring and P a maximal ideal of C. Then PU is a prime ideal of U invariant under

all derivations of U . Moreover,
⋂

{PU : P ∈ M(C) with U/PU 2-torsion free}
= 0.

Theorem 3.2. Let R be a noncommutative 2-torsion free semiprime ring, U the

left Utumi quotient ring of R and 0 6= a ∈ R. Let d be a nonzero derivation of R
such that a(d(x)◦n d(y)−x◦n y) = 0 for all x, y ∈ R. Then R contains a nonzero

central ideal.

Proof. By Fact 1 and since U and R satisfy the same differential identities (see
[16]), we have a(d(x) ◦n d(y) − x ◦n y) = 0 for all x, y ∈ U . Let P ∈ M(C) be
such that U/PU is 2-torsion free. It is clear that U is 2-torsion free semiprime
ring. Then PU is a prime ideal of U invariant under d by Lemma 3.1. Denote
U = U/PU and d the derivation induced by d on U , that is d(x) = d(x) for
all x ∈ U . For any x, y ∈ U , we get a(d(x) ◦n d(y) − x ◦n y) = 0. Moreover
U is a prime ring so by Corollary 2.3, we get either d = 0 or [U,U ] = 0. In
any case we have d(U)[U,U ] ⊆ PU for all P ∈ M(C). In view of Lemma 3.1,
⋂

{PU : P ∈ M(C) with U/PU 2-torsion free} = 0. Then d(U)[U,U ] = 0.
In particular we get d(R)[R,R] = 0. These imply that 0 = d(R)[R2, R] =
d(R)R[R,R] + d(R)[R,R]R = d(R)R[R,R]. In particular d(R)R[R, d(R)] = 0.
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Thus [d(R), R]R[d(R), R] = 0. Since R is semiprime, we obtain that [d(R), R] =
0. Then by [5, Theorem 3], R contains a nonzero central ideal.

Similarly, we have

Theorem 3.3. Let R be noncommutative 2-torsion free semiprime ring, U the

left Utumi quotient ring of R and 0 6= a ∈ R. Let d be a nonzero derivation of

R such that a(d(x) ◦n d(y) − d(x ◦n y)) = 0 for all x, y ∈ R. Then R contains a

nonzero central ideal.
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