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Abstract

A nontrivial pseudovariety is join irreducible if whenever it is contained
in the complete join of some collection of pseudovarieties, then it is con-
tained in one of the pseudovarieties. A finite semigroup is join irreducible

if it generates a join irreducible pseudovariety. The present article is con-
cerned with semigroups that are 2-testable in the sense that they satisfy any
equation formed by a pair of words that begin with the same variable, end
with the same variable, and share the same set of factors of length two. The
main objective is to show that there exist precisely seven join irreducible
pseudovarieties of 2-testable semigroups. As a consequence, it is decidable
in quadratic time if a finite 2-testable semigroup is join irreducible.
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1. Introduction

Acquaintance with rudiments of finite semigroup theory and universal algebra is
assumed of the reader. Refer to Almeida [2], Burris and Sankappanavar [3], and
Rhodes and Steinberg [20] for more information.

The class SEM of finite semigroups is closed under the formation of homomor-
phic images, subsemigroups, and finitary direct products; such a class is called
a pseudovariety. Under class inclusion, the subpseudovarieties of SEM form a
complete lattice. A nontrivial pseudovariety V is join irreducible if the following
implication holds for any collection {Vi | i ∈ I} of pseudovarieties:

V ⊆
∨

i∈I Vi =⇒ V ⊆ Vi for some i.
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A finite semigroup S is join irreducible if the pseudovariety 〈S〉 generated by S
is join irreducible. Equivalently, S is join irreducible if and only if the class

Ex(S) = {T ∈ SEM |S /∈ 〈T 〉},

called the exclusion class of S, is a pseudovariety. Refer to Rhodes and Steinberg
[20] for more information.

The non-orthodox 0-simple semigroup A2 of order five, which can also be
given as the matrix semigroup

A2 =

{[

0 0
0 0

]

,

[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

1 0
1 0

]

,

[

0 1
0 1

]}

under usual matrix multiplication, plays an important role in the theory of semi-
groups and is responsible for providing many examples with extreme properties
[6, 8, 18, 21–23, 27]. The semigroup A2 is 2-testable in the sense that it satisfies
any equation formed by a pair of words that begin with the same variable, end
with the same variable, and share the same set of factors of length two. In fact,
Trahtman [24,25] proved that the pseudovariety 〈A2〉 coincides with the class of
all finite 2-testable semigroups and that its equations are axiomatized by

(1) x3 ≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx.

Therefore a finite semigroup is 2-testable if and only if it satisfies the equations
(1); this can be checked in cubic time since the equations (1) involve three distinct
variables. Although the lattice L 〈A2〉 of subpseudovarieties of 〈A2〉 is countable
and well investigated [11, 13], it has an extremely complex structure since it
embeds every finite lattice [26].

It follows from Escada [4, Proposition 5.3] or Lee [10] that the semigroup A2

is join irreducible. Recently, the pseudovariety 〈A2〉 is shown to be one of only
30 join irreducible pseudovarieties generated by a semigroup of order five or less
[16, Theorem 7.1]. These 30 join irreducible pseudovarieties include six subpseu-
dovarieties of 〈A2〉, which are generated by the following matrix semigroups:

Sℓ2 =

{[

0 0
0 0

]

,

[

1 0
0 0

]}

, N2 =

{[

0 0
0 0

]

,

[

0 1
0 0

]}

,

L2 =

{[

1 0
0 0

]

,

[

1 0
1 0

]}

, R2 =

{[

1 0
1 0

]

,

[

0 1
0 1

]}

,

A0 =

{[

0 0
0 0

]

,

[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 1
0 1

]}

,

and B2 =

{[

0 0
0 0

]

,

[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]}

.
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In other words, the pseudovarieties

(2) 〈Sℓ2〉, 〈N2〉, 〈L2〉, 〈R2〉, 〈A0〉, 〈B2〉, and 〈A2〉

are join irreducible pseudovarieties of 2-testable semigroups. Note that Sℓ2 is a
semilattice, N2 is a nilpotent semigroup, L2 is a left zero semigroup, R2 is a right
zero semigroup, A0 is a J-trivial semigroup, and B2 is a Brandt semigroup. All
these semigroups except B2 are subsemigroups of A2.

Given how large and complex the lattice L 〈A2〉 is and how small the semi-
groups generating the above join irreducible subpseudovarieties of 〈A2〉 are, it
seems inconceivable for 〈A2〉 to not contain other join irreducible subpseudo-
varieties that are generated by larger semigroups. Specifically, is there a join
irreducible pseudovariety of 2-testable semigroups that is different from those
in (2)? The goal of the present article is to show that surprisingly, the answer to
this question is negative.

Theorem 1. The pseudovarieties in (2) are the only join irreducible pseudova-

rieties of 2-testable semigroups.

The proof of Theorem 1 is given in Section 3 after some background infor-
mation and results are first established in Section 2.

Recall that a finite semigroup is 2-testable if and only if it satisfies the equa-
tions (1). Since the equations that define both the pseudovarieties from (2) and
their maximal proper subpseudovarieties are available [16], it is also possible to
determine if a finite nontrivial 2-testable semigroup S is join irreducible:

〈S〉 = 〈Sℓ2〉 ⇐⇒ S |= x2 ≈ x, xy ≈ yx;

〈S〉 = 〈N2〉 ⇐⇒ S |= x2 ≈ xy, x2 ≈ yx;

〈S〉 = 〈L2〉 ⇐⇒ S |= xy ≈ x;

〈S〉 = 〈R2〉 ⇐⇒ S |= xy ≈ y;

〈S〉 = 〈A0〉 ⇐⇒ S |= xyx ≈ yxy and S 6|= x2y2 ≈ y2x2;

〈S〉 = 〈B2〉 ⇐⇒ S |= x2y2 ≈ y2x2 and S 6|= xy2x ≈ xyx;

〈S〉 = 〈A2〉 ⇐⇒ S 6|= x2y2x2 ≈ x2yx2.

(The first four equivalences are well known and easily established while the latter
three follow from Lee et al. [16, Propositions 5.22, 5.28, and 5.26].) If all of the
above seven cases do not hold for a finite nontrivial 2-testable semigroup S, then
the pseudovariety 〈S〉 is not join irreducible.

Corollary 2. It is decidable in quadratic time if a finite 2-testable semigroup is

join irreducible.

In general, whether or not it is decidable if a finite semigroup is join irre-
ducible remains an open problem [16, Question 1.2].
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2. Preliminaries

For an arbitrary class K of finite semigroups, the pseudovariety 〈K〉 generated by K

can be very different from the variety 〈K〉∞ generated by K; for instance, if C is
the class of finite cyclic groups, then 〈C〉 is the pseudovariety of finite commuta-
tive groups but 〈C〉∞ coincides with the variety of all commutative semigroups.
However, the situation becomes simpler if the class K is finite.

Lemma 3 [1, Lemma 1.4]. Let K be any finite class of finite semigroups. Then

(i) the mapping V 7→ 〈V〉∞ is an isomorphism from L 〈K〉 onto L 〈K〉∞;

(ii) the mapping V 7→ V ∩ SEM is an isomorphism from L 〈K〉∞ onto L 〈K〉;

(iii) the mappings in (i) and (ii) are inverses of each other.

Consequently, any subpseudovariety V of 〈K〉 and the variety 〈V〉∞ it generates

are defined by the same equations.

In the following, two matrix semigroups beyond those from (2) are required:

B0 =

{[

0 0
0 0

]

,

[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
0 1

]}

and C0 =

{[

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]

,

[

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]

,

[

1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

]

,

[

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]

,

[

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 1

]

,

[

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1

]}

.

Note that B0 is a subsemigroup of B2 and C0 is isomorphic to an amalgamation
of two copies of A0 [17, page 181]. For any semigroup S of n× n matrices, let S1

denote the monoid obtained by adjoining the n× n identity matrix to S.

Lemma 4. (i) 〈B1

0
〉 ∨ 〈L1

2
〉 ∨ 〈R1

2
〉 = 〈N1

2
〉 ∨ 〈L1

2
〉 ∨ 〈R1

2
〉.

(ii) 〈C1

0
〉 = 〈A1

0
〉 ∨ 〈L1

2
〉 ∨ 〈R1

2
〉.

Proof. These equalities hold by Lemma 3 since 〈B1

0
,L1

2
,R1

2
〉∞ = 〈N1

2
,L1

2
,R1

2
〉∞

[15, Figure 1] and 〈C1

0
〉∞ = 〈A1

0
,L1

2
,R1

2
〉∞ [14, Lemma 3.2].

Lemma 5. (i) Sℓ2,N2,N
1

2
∈ 〈B1

0
〉.

(ii) Sℓ2,N2 ∈ 〈A0〉 and Sℓ2,N2 ∈ 〈B2〉.

(iii) L2,L
1

2
,R2,R

1

2
/∈ 〈B1

0
〉.

(iv) N1

2
,L1

2
,R1

2
,A1

0
/∈ 〈A2〉.

(v) N1

2
/∈ 〈A0〉 and N1

2
/∈ 〈B2〉.

Proof. (i) The semigroups Sℓ2, N2, and N1

2
are subsemigroups of B1

0
.

(ii) The semigroups Sℓ2 and N2 are subsemigroups of A0 and of B2.
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(iii) The equation x2y2 ≈ y2x2 of B1

0
is violated by L2, L

1

2
, R2, and R1

2
.

(iv) The equation xyxzxyx ≈ xzxyxzx of A2 is violated by N1

2
, L1

2
, R1

2
, and A1

0
.

(v) This follows from part (iv) because A0,B2 ∈ 〈A2〉.

Minimal nontrivial pseudovarieties are commonly known as atoms. For any
nontrivial pseudovariety V, let JV denote the set of all join irreducible subpseu-
dovarieties of V. Since each nontrivial pseudovariety V contains some atom and
every atom is join irreducible [20, Subsection 7.1.1], the set JV is nonempty.
It is clear that for any nontrivial pseudovarieties V and W, both the equality
J (V ∨W) = JV ∪ JW and the implication V ⊆ W ⇒ JV ⊆ JW hold.

Lemma 6. (i) J 〈A0〉 =
{

〈A0〉
}

∪ J 〈B0〉.

(ii) J 〈B2〉 =
{

〈B2〉
}

∪ J 〈B0〉.

(iii) J 〈A1

0
〉 =

{

〈A1

0
〉
}

∪ J 〈A0〉 ∪ J 〈B1

0
〉.

(iv) J 〈A2〉 =
{

〈A2〉
}

∪ J 〈B2〉 ∪ J 〈C0〉.

Proof. For each join irreducible semigroup S, the exclusion class Ex(S) of S is a
pseudovariety, so that 〈S〉 = 〈S〉 ∩ Ex(S) is the unique maximal proper subpseu-
dovariety of 〈S〉 [20, Theorem 7.1.2]. Therefore

(a) J 〈S〉 = {〈S〉} ∪ J 〈S〉 for any join irreducible semigroup S.

Further, it follows from Lemma 3 that the variety 〈S〉∞ also has a unique maximal
proper subvariety 〈S〉∞ and that 〈S〉 and 〈S〉∞ are defined by the same equations.

Now A0, B2, A1

0
, and A2 are join irreducible semigroups [16] such that

〈A0〉∞ = 〈B2〉∞ = 〈B0〉∞ [9, Lemma 4.2 and Corollary 4.3], 〈A1

0
〉∞ = 〈A0,B

1

0
〉∞

[12, Subsection 2.2], and 〈A2〉∞ = 〈B2,C0〉∞ [17, Theorem 4.3(iv)]. Therefore

(b) 〈A0〉 = 〈B0〉;

(c) 〈B2〉 = 〈B0〉;

(d) 〈A1

0
〉 = 〈A0〉 ∨ 〈B1

0
〉;

(e) 〈A2〉 = 〈B2〉 ∨ 〈C0〉.

Hence part (i) holds by (a) and (b), part (ii) holds by (a) and (c), part (iii) holds
by (a) and (d), and part (iv) holds by (a) and (e).

3. Proof of Theorem 1

The set J 〈S〉 is first computed for several finite semigroups S. Based on these
results, the set J 〈A2〉 is then obtained at the end of the section, thus establishing
Theorem 1.
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Proposition 7. J 〈N1

2
〉 =

{

〈Sℓ2〉, 〈N2〉, 〈N
1

2
〉
}

.

Proof. The pseudovariety 〈N1

2
〉 is defined by the equations

(3) xy ≈ yx, x3 ≈ x2

and the lattice L 〈N1

2
〉 can be found in Evans [5, Figure 5(b)]. Specifically, this

lattice is the disjoint union of the chains

(a) E1 ⊂ E2 ⊂ E3 ⊂ · · · ⊂ E and

(b) 〈Sℓ2〉 ⊂ 〈Sℓ2〉 ∨ E2 ⊂ 〈Sℓ2〉 ∨ E3 ⊂ · · · ⊂ 〈Sℓ2〉 ∨ E ⊂ 〈N1

2
〉,

where Ek is the pseudovariety defined by the equations (3) and

(4) x1x2 · · · xk ≈ x2

and E =
∨

k≥1
Ek. In (a), the pseudovariety E1 is trivial, E2 = 〈N2〉 is join irre-

ducible [16, Theorem 5.7], and E is obviously not join irreducible. It is shown in
Lemma 8 below that for each k ≥ 3, the pseudovariety Ek is not join irreducible.
In (b), the pseudovarieties 〈Sℓ2〉 and 〈N1

2
〉 are join irreducible [16, Theorem 5.9]

while the others are clearly not join irreducible.

For each k ≥ 3, let Pk denote the pseudovariety defined by the equations

(5) x1x2 · · · xk−2y ≈ x1x2 · · · xk−2y
2, x1x2 · · · xk−2yz ≈ x1x2 · · · xk−2zy

and let Qk denote the pseudovariety defined by the identities

(6) yx1x2 · · · xk−2 ≈ y2x1x2 · · · xk−2, yzx1x2 · · · xk−2 ≈ zyx1x2 · · · xk−2.

Lemma 8. Suppose that k ≥ 3. Then

(i) Ek ⊆ Pk ∨Qk;

(ii) Ek * Pk;

(iii) Ek * Qk.

Consequently, the pseudovariety Ek is not join irreducible.

Proof. The varieties Ek = 〈Ek〉∞, Pk = 〈Pk〉∞, and Qk = 〈Qk〉∞ are locally fi-
nite [21, Proposition 3.1] and contain finitely many subvarieties [19], whence they
are finitely generated [7, Lemma 6.1]. It follows from Lemma 3 that for any pair

(V,V) ∈
{

(Ek,Ek), (Pk,Pk), (Qk,Qk), (Pk ∨Qk,Pk ∨Qk)
}

,

the pseudovariety V and the variety V are defined by the same equations. Hence
it suffices to consider only varieties when establishing the results in parts (i)–(iii).

(i) Suppose that u ≈ v is any equation of Pk ∨Qk. Then
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(a) the equations (5) of Pk imply u ≈ v,

(b) the equations (6) of Qk imply u ≈ v, and

(c) the set of variables of u coincides with the set of variables of v.

It suffices to show that the equations {(3), (4)} that define Ek imply u ≈ v,
whence Ek ⊆ Pk ∨Qk. It is obvious that the equations (5) of Pk cannot con-
vert any word of length k − 2 or less into a different word. Therefore if ei-
ther |u| ≤ k − 2 or |v| ≤ k − 2, then the equation u ≈ v is trivial, whence the
equations {(3), (4)} vacuously imply u ≈ v. Thus it remains to assume that
|u|, |v| ≥ k − 1. There are two cases.

Case 1. |u|, |v| ≥ k. Then the equation (4) implies u ≈ v.

Case 2. |u| = k − 1 and |v| ≥ k − 1. Then u = x1x2 · · · xk−1 for some vari-
ables x1, x2, . . . , xk−1. There are two subcases.

2.1. The variables x1, x2, . . . , xk−1 are distinct. Since the equations (5) can
only convert u into a word of the form x1x2 · · · xk−1x

n

k−1
, it follows from

(a) that v ∈ x1x2 · · · xk−1{xk−1}
∗. Dually, it follows from (b) that v ∈

{x1}
∗x1x2 · · · xk−1. Since the variables x1, x2, . . . , xk−1 are distinct, the

equation u ≈ v is easily seen to be trivial.

2.2. Two of the variables x1, x2, . . . , xk−1 coincide. Then in view of (c), it is
routinely shown that the equations {(3), (4)} imply u ≈ v.

(ii) Suppose the equations {(3), (4)} that define Ek imply some nontrivial equa-
tion of the form x1x2 · · · xk−2y ≈ u, where x1, x2, . . . , xk−2, y are distinct vari-
ables. Then it is clear that only the equation xy ≈ yx from (3) can be used
to convert x1x2 · · · xk−2y into a different word. Therefore, u is obtained from
x1x2 · · · xk−2y by rearranging its variables; in other words, u 6= x1x2 · · · xk−2y

2.
It follows that the equations {(3), (4)} cannot imply the first of the equations (5)
that define Pk, whence Ek * Pk.

(iii) This is symmetrical to part (ii).

Proposition 9. (i) J 〈L1

2
〉 =

{

〈Sℓ2〉, 〈L2〉, 〈L
1

2
〉
}

.

(ii) J 〈R1

2
〉 =

{

〈Sℓ2〉, 〈R2〉, 〈R
1

2
〉
}

.

(iii) J 〈B1

0
〉 =

{

〈Sℓ2〉, 〈N2〉, 〈N
1

2
〉
}

.

(iv) J 〈A0〉 =
{

〈Sℓ2〉, 〈N2〉, 〈A0〉
}

.

(v) J 〈B2〉 =
{

〈Sℓ2〉, 〈N2〉, 〈B2〉
}

.

(vi) J 〈A1

0
〉 =

{

〈Sℓ2〉, 〈N2〉, 〈N
1

2
〉, 〈A0〉, 〈A

1

0
〉
}

.

(vii) J 〈C1

0
〉 =

{

〈Sℓ2〉, 〈N2〉, 〈N
1

2
〉, 〈L2〉, 〈L

1

2
〉, 〈R2〉, 〈R

1

2
〉, 〈A0〉, 〈A

1

0
〉
}

.
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Proof. (i) It is well known that the pseudovariety 〈L1

2
〉 contains precisely four

nontrivial subpseudovarieties: 〈Sℓ2〉, 〈L2〉, 〈Sℓ2〉 ∨ 〈L2〉, and 〈L1

2
〉.

(ii) This is dual to part (i).

(iii) It follows from Lemma 4(i), Proposition 7, and parts (i) and (ii) that

J 〈B1

0
〉 ⊆ J 〈N1

2
〉 ∪ J 〈L1

2
〉 ∪ J 〈R1

2
〉

=
{

〈Sℓ2〉, 〈N2〉, 〈N
1

2〉, 〈L2〉, 〈L
1

2〉, 〈R2〉, 〈R
1

2〉
}

.

Since Sℓ2,N2,N
1

2
∈ 〈B1

0
〉 and L2,L

1

2
,R2,R

1

2
/∈ 〈B1

0
〉 by Lemma 5(i,iii), the

result follows.

(iv) It follows from Lemma 6(i) and part (iii) that

J 〈A0〉 =
{

〈A0〉
}

∪ J 〈B0〉 ⊆
{

〈Sℓ2〉, 〈N2〉, 〈N
1

2
〉, 〈A0〉

}

.

Since Sℓ2,N2 ∈ 〈A0〉 and N1

2
/∈ 〈A0〉 by Lemma 5(ii,v), the result follows.

(v) This is similar to part (iv) since J 〈B2〉 =
{

〈B2〉
}

∪J 〈B0〉 by Lemma 6(ii).

(vi) Since J 〈A1

0
〉 =

{

〈A1

0
〉
}

∪J 〈A0〉∪J 〈B1

0
〉 by Lemma 6(iii), the result holds

by parts (iii) and (iv).

(vii) It follows from Lemma 4(ii) that J 〈C1

0
〉 = J 〈A1

0
〉 ∪ J 〈L1

2
〉 ∪ J 〈R1

2
〉. The

result then holds by parts (i), (ii), and (vi).

Theorem 10. J 〈A2〉 =
{

〈Sℓ2〉, 〈N2〉, 〈L2〉, 〈R2〉, 〈A0〉, 〈B2〉, 〈A2〉
}

.

Proof. By Lemma 6(iv) and Proposition 9(v,vii),

J 〈A2〉 =
{

〈A2〉
}

∪ J 〈B2〉 ∪ J 〈C0〉

⊆
{

〈Sℓ2〉, 〈N2〉, 〈N
1

2
〉, 〈L2〉, 〈L

1

2
〉, 〈R2〉, 〈R

1

2
〉, 〈A0〉, 〈A

1

0
〉, 〈B2〉, 〈A2〉

}

.

Since Sℓ2,N2,L2,R2,A0,B2 ∈ 〈A2〉 and N1

2
,L1

2
,R1

2
,A1

0
/∈ 〈A2〉 by Lemma 5(iv),

the theorem holds.
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