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Abstract

A poe-semigroup is a semigroup S at the same time an ordered set hav-
ing a greatest element “e” in which the multiplication is compatible with
the ordering. A ∨e-semigroup is a semigroup S at the same time an upper
semilattice with a greatest element “e” such that a(b ∨ c) = ab ∨ ac and
(a ∨ b)c = ac ∨ bc for every a, b, c ∈ S. If S is not only an upper semi-
lattice but a lattice, then it is called le-semigroup. From many results on
le-semigroups, ∨e-semigroups or poe-semigroups, corresponding results on
ordered semigroups (without greatest element) can be obtained. Related re-
sults on hypersemigroups or ordered hypersemigroups follow as application.
An example is presented in the present note; the same can be said for every
result on these structures. So order-lattices play an essential role in studying
the hypersemigroups and the ordered hypersemigroups.

Keywords: ∨e-semigroup, hypersemigroup, (m,n)-ideal (element), regular,
left regular, completely regular.
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1. Introduction and prerequisites

We refer the reader to the review of the monograph of Ottó Steinfeld “Quasi-
Ideals in Rings and Semigroups”, Akadémiai Kiadó, Budapest 1978 by A.H.
Clifford in the Bulletin (New Series) of the Amer. Math. Soc., Vol. 1, Num-
ber 5, September 1979, where A.H. Clifford reviews some results on rings and
semigroups making a comparison between rings and semigroups. In the present
paper we give a comparison between ordered semigroups and ordered hypersemi-
groups.

http://dx.doi.org/10.7151/dmgaa.1353
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The aim is to say that from many results on le-semigroups, ∨e-semigroups
(or even poe-semigroups), one can have as corollaries the corresponding results on
hypersemigroups (without order). The results on ordered hypersemigroups are
not obtained as corollaries to le-semigroups or ∨e-semigroups, but even in that
case their proofs are on the line of the proofs of the le-semigroups, ∨e-semigroups,
or ordered semigroups (without greatest). In fact, whenever we look at any result
on le-semigroup, ∨e-semigroup or poe-semigroup, we immediately know if it holds
for hypersemigroups and for ordered hypersemigroups. The results that hold for
hypersemigroups, for ordered hypersemigroups also hold.

We have casually chosen to examine some results on ∨e-semigroups for section
2 to comment on hypersemigroups and on ordered hypersemigroups in the rest of
the paper. We could have said the same for many other results on le-semigroups
or ∨e-semigroups.

In this respect, in section 2, we characterize ∨e-semigroups that are both
regular and left regular in terms of (1, 2)-ideal elements. Also ∨e-semigroups
that are both regular and right regular in terms of (2, 1)-ideal elements. As a
consequence a characterization of completely regular ∨e-semigroups in terms of
(1, 2)-ideal elements and (2, 1)-ideal elements is obtained. A further character-
ization of completely regular ∨e-semigroups in terms of (2, 2)-ideal elements is
also given. In section 3, we show that corresponding characterizations for both
regular and left regular, both regular and right regular and completely regular
hypersemigroups follow as application. In section 4, the results on ∨e-semigroups
in case of ordered semigroups (without greatest) are examined, to see that their
proofs go on the line of the proofs of ∨e-semigroups. Finally, in section 5 we show
that, after giving the necessary definitions and two basic properties in which the
order of the ordered hypersemigroup plays the main role, corresponding results
on ordered hypersemigroups follow from ordered semigroups just replacing the
multiplication “·” of the ordered semigroup by the operation “∗” of the ordered
hypersemigroup.

As we see, in the whole investigation the ∨e-semigroups play the essential
role. Although we can also pass from ordered semigroups (without greatest) to
∨e-semigroups (or to le-semigroups) (the two theories related to some results are
parallel to each other [10, 11]), the proofs based on order, being simplified and
unified, makes it easier to examine the results on ∨e (le)-semigroups first (see
also [G. Birkhoff, What can lattices do for you ? in “Trends in lattice theory”,
Van Nostrand Reinhold Comp. 1970]).

An ordered semigroup shortly (po-semigroup) is a semigroup (S, ·) at the same
time an ordered set (S,≤) such that a ≤ b implies ac ≤ bc and ca ≤ cb for all
c ∈ S and it is denoted by (S, ·,≤). An ordered semigroup (S, ·,≤) possessing a
greatest element “e” (e ≥ a for every a ∈ S), is called a poe-semigroup. A ∨e-
semigroup is a semigroup (S, ·) at the same time a semilattice under “∨” having
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a greatest element “e” such that a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc for all
a, b, c ∈ S [1, 2, 3]. A ∨e-semigroup that is not only a semilattice but a lattice,
is called le-semigroup.

When we say “ordered semigroup” we assume that it does not possess a
greatest element. Clearly, every ∨e-semigroup is a poe-semigroup, and every poe-
semigroup is a po-semigroup. If S is an ordered semigroup and A a nonempty
subset of S, we denote by (A] the subset of S defined by (A] = {t ∈ S | t ≤ a for
some a ∈ A}; and for any nonempty subsets A, B of S, the following hold [6]:

(1) A ⊆ (A]

(2) A ⊆ B implies (A] ⊆ (B]

(3) (A](B] ⊆ (AB]

(4)
(

A(B]
]

=
(

(A]B
]

=
(

(A](B]
]

= (AB]

(5)
(

(A]
]

= (A]

(6) (S] = S.

An ordered semigroup (S, ·,≤) is called regular if for every a ∈ S there exists
x ∈ S such that a ≤ axa. This is equivalent to saying that A ⊆ (ASA] for any
nonempty subset A of S [9]. It is called left regular if for every a ∈ S there exists
x ∈ S such that a ≤ xa2; equivalently if A ⊆ (SA2] for every nonempty subset
A of S. It is called right regular if for every a ∈ S there exists x ∈ S such that
a ≤ a2x; equivalently if A ⊆ (A2S] for every nonempty subset A of S [7]. By a
completely regular ordered semigroup we mean an ordered semigroup that is at
the same time regular, left regular and right regular [8].

A poe-semigroup S is called regular (left regular, right regular, completely
regular) if the po-semigroup S is so.

Lemma 1.1 [4]. A poe-semigroup S is regular if and only if a ≤ aea for every

a ∈ S.

Proof. =⇒ Let a ∈ S. Since S is a regular po-semigroup, there exists x ∈ S

such that a ≤ axa. Since x ≤ e, we have axa ≤ aea and so we have a ≤ aea.
The “⇐” part is obvious.

In a similar way, we prove the following.

Lemma 1.2 [4]. A poe-semigroup S is left (resp. right) regular if and only if

a ≤ ea2 (resp. a ≤ a2e) for every a ∈ S.

2. On ∨e-semigroups

If (S, ·,≤) is a poe-semigroup, an element a of S is called an (m,n)-ideal element

[5] if amean ≤ a. Here we assume that m,n are integers such that m ≥ 0 and
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n ≥ 1 or n ≥ 0, m ≥ 1. For m = 0 (resp. n = 0) we define a0ean = ean (resp.
amea0 = ame) (in general, define xy0 = y0x = x (x, y ∈ S)).

Denote by I(m,n) the set of all (m,n)-ideal elements of S and by < a >(m,n)

the (m,n)-ideal element of S generated by a (that is, < a >(m,n)∈ I(m,n),
< a >(m,n)≥ a and if t ∈ I(m,n) such that t ≥ a, then < a >(m,n)≤ t).

For a ∨e-semigroup S, the element a ∨ aea2 is the (1, 2)-ideal element of
S generated by a. Indeed: The element a ∨ aea2 is a (1, 2)-ideal element of S
containing a,

(a ∨ aea2)e(a ∨ aea2)2 = (ae ∨ aea2)e(a ∨ aea2)(a ∨ aea2)

= (ae ∨ aea2e)(a2 ∨ aea3 ∨ a2ea2 ∨ aea3ea2)

= aea2 ∨ aeaea3 ∨ aea2ea2 ∨ aeaea3ea2 ∨ aea2ea2

∨ aea2eaea3 ∨ aea2ea2ea2 ∨ aea2eaea3ea2

= aea2 ≤ a ∨ aea2,

and if t is an (1, 2)-ideal element of S such that t ≥ a, then a∨aea2 ≤ t∨ tet2 = t.
In a similar way we prove that the element a∨ a2ea is the (2, 1)-ideal element of
S generated by a, the element a∨ a2ea2 is the (2, 2)-ideal element of S generated
by a; and the element a∨ amean is the (m,n)-ideal element of S generated by a,
in general. So, for a ∨e-semigroup S and an element a of S, we have

(1) < a >(1,2)= a ∨ aea2

(2) < a >(2,1)= a ∨ a2ea

(3) < a >(2,2)= a ∨ a2ea2.

Theorem 2.1. A ∨e-semigroup S is both regular and left regular if and only if

for every a ∈ I(1,2) we have a = aea2.

Proof. =⇒ Let a be a (1, 2)-ideal element of S. Then aea2 ≤ a. Since S is
regular and left regular, we have

a ≤ (ae)a ≤ (ae)(ea2) ≤ aea2.

Thus we have a = aea2.

⇐= Let a ∈ S. Since < a >(1,2) is a (1, 2)-ideal element of S containing a, by
hypothesis, we have

a ≤< a >(1,2)=< a >(1,2) e < a >2
(1,2) .

As < a >(1,2)= a∨ aea2, we have a ≤ (a∨ aea2)e(a∨ aea2)2. We have seen above
that (a∨ aea2)e(a∨ aea2)2 = aea2. Thus we get a ≤ aea2 ≤ aea, ea2 and so S is
regular and left regular.
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In a similar way we prove the following theorem.

Theorem 2.2. A ∨e-semigroup S is both regular and right regular if and only if

for every a ∈ I(2,1) we have a = a2ea.

By Theorems 2.1 and 2.2, we immediately have the following theorem.

Theorem 2.3. A ∨e-semigroup S is completely regular if and only if the following

two conditions are satisfied:

(1) a = aea2 for every a ∈ I(1,2) and

(2) a = a2ea for every a ∈ I(2,1).

Theorem 2.4. A ∨e-semigroup S is completely regular if and only

for every a ∈ I(2,2) we have a = a2ea2.

Proof. =⇒ Let a be a (2, 2)-ideal element of S. Then a2ea2 ≤ a. Since S is
regular, left regular and right regular, we have

a ≤ aea ≤ (a2e)e(ea2) ≤ a2ea2.

Thus we have a = a2ea2.

⇐= Let a ∈ S. Since < a >(2,2) is an ideal element of S containing a, by
hypothesis, we have

a ≤< a >(2,2) = < a >2
(2,2) e < a >2

(2,2) .

As < a >(2,2)= a ∨ a2ea2, we have

a ≤ (a ∨ a2ea2)(a ∨ a2ea2)e(a ∨ a2ea2)(a ∨ a2ea2)

= (a ∨ a2ea2)(a ∨ a2ea2)(ea ∨ ea2ea2)(a ∨ a2ea2)

= (a2 ∨ a2ea3 ∨ a3ea2 ∨ a2ea4ea2)(ea2 ∨ ea2ea3 ∨ ea3ea2 ∨ ea2ea4ea2)

= a2ea2.

Thus we get a ≤ a2ea2 ≤ aea, ea2, a2e and so S is completely regular.

We illustrate the results of this section by the following example.

Example 2.5. The ∨e-semigroup S = {a, b, c, d, e} given by the table and the
figure below is completely regular. The elements b, d, e are the (1, 2)-ideal ele-
ments of S and we have beb2 = b, ded2 = d, eee2 = e. The elements b, d, e are
also (2, 2)-ideal elements of S and we have b2eb2 = b, d2ed2 = d, e2ee2 = e.
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· a b c d e

a e b a d e

b b b b b b

c a b c d e

d d b d d d

e e b e d e

Table 1

e

c

b

da

Figure 1

3. From ∨e-semigroups to hypersemigroups

Denote by P∗(S) the set of all nonempty subsets of S. An hypersemigroup is
a nonempty set S with an “operation” ◦ : S × S → P∗(S) | (a, b) → a ◦ b

on S called hyperoperation (as it assigns to each couple a, b of elements of S a
nonempty subset of S) and an operation ∗ : P∗(S)× P∗(S) → P∗(S) | (A,B) →
A ∗B :=

⋃

a∈A, b∈B a ◦ b on P∗(S) such that (a ◦ b) ∗ {c} = {a} ∗ (b ◦ c) for every
a, b, c ∈ S.

The following property plays an essential role in the investigation: If x ∈
A ∗ B, then there exist a ∈ A and b ∈ B such that x ∈ a ◦ b; and if a ∈ A and
b ∈ B, then a ◦ b ⊆ A ∗B. We also have {x}∗{y} = x ◦ y for any x, y ∈ S; A ⊆ B

implies A ∗ C ⊆ B ∗ C and C ∗ A ⊆ C ∗ B for any nonempty subsets A,B,C of
S; (A ∪ B) ∗ C = (A ∗ C) ∪ (B ∗ C) and A ∗ (B ∪ C) = (A ∗ B) ∪ (A ∗ C) for
any nonempty subsets A,B,C of S; and the operation “∗” is associative [12],[15],
that allows us to put parentheses in any expression of the form A1 ∗A2 ∗ · · · ∗An

(n natural number).
An hypersemigroup (S, ◦) is called regular if for every a ∈ S there exists

x ∈ S such that a ∈ (a ◦ x) ∗ {a}
(

= {a} ∗ (x ◦ a)
)

or if A ⊆ A ∗ S ∗ A for every
nonempty subset A of S. This means that for every t ∈ A there exist x ∈ A ∗ S
and y ∈ A such that t ∈ x ◦ y; that is, for every t ∈ A there exist a, y ∈ A, s ∈ S
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and x ∈ a ◦ s such that t ∈ x ◦ y. An hypersemigroup (S, ◦) is called left regular if
for every a ∈ S there exists x ∈ S such that a ∈ {x} ∗ (a ◦ a) or if A ⊆ S ∗ (A ∗A)
for every nonempty subset A of S. This means that for every t ∈ A there exist
s ∈ S and x ∈ A ∗ A such that t ∈ s ◦ x; that is, for every t ∈ A there exist
s ∈ S, a, b ∈ A and x ∈ a ◦ b such that t ∈ s ◦ x. It is called right regular if
for every a ∈ S there exists x ∈ S such that a ∈ (a ◦ a) ∗ {x}. Equivalently, if
A ⊆ (A ∗A) ∗ S for every nonempty subset A of S [12, 13, 15].

Given an hypersemigroup (S, ◦), a nonempty subset A of S is called a (1, 2)-
ideal of S if A ∗ S ∗ A ∗ A ⊆ A. This means that: If t ∈ x ◦ y for some x ∈ A ∗ S
and y ∈ A ∗A, then t ∈ A. In other words, if t ∈ x ◦ y, x ∈ a ◦ s and y ∈ c ◦ d for
some a, c, d ∈ A and s ∈ S, then t ∈ A.

A nonempty subset A of S is called a (2, 1)-ideal of S if A ∗ A ∗ S ∗ A ⊆ A.
That is, if t ∈ x ◦ y for some x ∈ A ∗A and y ∈ S ∗A, then t ∈ A. In other words,
if t ∈ x ◦ y, x ∈ a ◦ b and y ∈ s ◦ c for some a, b, c ∈ A and s ∈ S, then t ∈ A.

A nonempty subset A of S is called a (2, 2)-ideal of S if A∗A∗S ∗A∗A ⊆ A,
that is (A ∗A ∗ S) ∗ (A ∗A) ⊆ A. This means that if t ∈ x ◦ y, x ∈ u ◦ s, u ∈ a ◦ b
and y ∈ c ◦ d for some a, b, c, d ∈ A, s ∈ S, then t ∈ A.

Denote by I(1,2), I(2,1), I(2,2) the set of all (1, 2)-ideals, (2, 1)-ideals and
(2, 2)-ideals of S, respectively. Denote by < A >(1,2), < A >(2,1), < A >(2,2), the
(1, 2)-ideal, (2, 1)-ideal and the (2, 2)-ideal of S, respectively, generated by the
set A; and, working on the line of section 1, we have

(1) < A >(1,2)= A ∪A ∗ S ∗ A ∗ A

(2) < A >(2,1)= A ∪A ∗ A ∗ S ∗ A

(3) < A >(2,2)= A ∪A ∗ A ∗ S ∗ A ∗ A.

Taking into account that for an hypersemigroup (S, ◦), the set P∗(S) of all
nonempty subsets of S with the operation “∗” on P∗(S) (induced by “◦”) and
the inclusion relation “⊆” is a ∨e-semigroup, using the methodology described
in [18], the theorems of section 2 can be applied to hypersemigroups and the
following corollaries can be obtained.

From Theorem 2.1 we get the following corollary.

Corollary 3.1. An hypersemigroup (S, ◦) is both regular and left regular if and

only if

for every A ∈ I(1,2) we have A = A ∗ S ∗A ∗A.

From Theorem 2.2 we get the following corollary.

Corollary 3.2. An hypersemigroup (S, ◦) is both regular and right regular if and

only if

for every A ∈ I(2,1) we have A = A ∗ A ∗ S ∗ A.



120 N. Kehayopulu

From Theorem 2.3 we get the following corollary.

Corollary 3.3. An hypersemigroup S is completely regular if and only if the

following two conditions are satisfied:

(1) A = A ∗ S ∗ A ∗ A for every A ∈ I(1,2) and

(2) A = A ∗ A ∗ S ∗ A for every A ∈ I(2,1).

From Theorem 2.4 we get the following corollary.

Corollary 3.4 An hypersemigroup S is completely regular if and only

for every A ∈ I(2,2) we have A = A ∗ A ∗ S ∗ A ∗ A.

4. On ordered semigroups

For nonempty subsets A, B of S, define AB0 = B0A = A. If (S, ·,≤) is an
ordered semigroup and m,n integers such that m ≥ 0, n ≥ 1 or n ≥ 0, m ≥ 1, a
nonempty subset A of S is called an (m,n)-ideal of S if

(1) AmSAn ⊆ A and

(2) if a ∈ A and S ∋ b ≤ a, then b ∈ A (that is (A] = A).

Denote by I(m,n) the set of all (m,n)-ideals of S and by < A >(m,n) the
(m,n)-ideal of S generated by A (that is, < A >(m,n) is an (m,n)-ideal of S
containing A and if T is an (m,n)-ideal of S containing A, then < A >(m,n)⊆ T ).

For an ordered semigroup S, the set (A∪ASA2] is a (1, 2)-ideal of S generated
by A. Indeed:

(A ∪ASA2]S(A ∪ASA2](A ∪ASA2]

= (A ∪ASA2](S](A ∪ASA2](A ∪ASA2]

⊆ (AS ∪ASA2S](A2 ∪ASA3 ∪A2SA2 ∪ASA3SA2]

⊆ (ASA2 ∪ASASA3 ∪ASA2SA2 ∪ASASA3SA2 ∪

ASA2SA2 ∪ASA2SASA3 ∪ASA2SA2SA2 ∪ASA2SASA3SA2]

= (ASA2] ⊆ (A ∪ASA2],

and
(

(A ∪ ASA2]
]

= (A ∪ ASA2] (as it holds for any φ 6= X ⊆ S), that is
(A ∪ ASA2] is a (1, 2)-ideal of S. Moreover, (A ∪ ASA2] ⊇ A; and if T is a
(1, 2)-ideal of S such that T ⊇ A, then (A ∪ASA2] ⊆ (T ∪ TST 2] = (T ] = T .

In a similar way, we prove that the set (A ∪ A2SA] is the (2, 1)-ideal of S
generated by A and the set (A ∪ A2SA2] is a (2, 2)-ideal of S generated by A.
Thus we have
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(1) < A >(1,2)= (A ∪ASA2]

(2) < A >(2,1)= (A ∪A2SA]

(3) < A >(2,2)= (A ∪A2SA2].

The theorem on ordered semigroups that corresponds to Theorem 2.1 is the
following one.

Theorem 4.1. An ordered semigroup (S, ·,≤) is both regular and left regular if

and only if

for every A ∈ I(1,2) we have A = (ASA2].

Proof. =⇒ Let A be a (1, 2)-ideal of S. Then ASA2 ⊆ A and so (ASA2] ⊆
(A] = A. Since S is regular, we have A ⊆ (ASA] and since S is left regular, we
have A ⊆ (SA2]. Then we have

A ⊆
(

(AS)A
]

⊆
(

(AS)(SA2]
]

=
(

(AS](SA2]
]

⊆
(

(AS2A2]
]

⊆
(

(ASA2]
]

= (ASA2].

Thus we have A = (ASA2].

⇐= Let A ⊆ S. Since < A >(1,2) is a (1, 2)-ideal of S containing A, by hypothesis,
we have

A ⊆< A >(1,2)=< A >(1,2) S < A >2
(1,2) .

As < A >(1,2)= (A ∪ ASA2], we have A ⊆ (A ∪ ASA2]S(A ∪ ASA2]2. We have
seen that (A ∪ ASA2]S(A ∪ ASA2]2 ⊆ (ASA2]. Thus we have A ⊆ (ASA2] ⊆
(ASA], (SA2] and so S is regular and left regular.

In a similar way we prove the following theorem that corresponds to Theorem
2.2.

Theorem 4.2. An ordered semigroup S is both regular and right regular if and

only if

for every A ∈ I(2,1) we have A = (A2SA].

By Theorems 4.1 and 4.2, we immediately have the following theorem that cor-
responds to Theorem 2.3.

Theorem 4.3. An ordered semigroup S is completely regular if and only if the

following two conditions are satisfied:

(1) A = (ASA2] for every A ∈ I(1,2) and

(2) A = (A2SA] for every A ∈ I(2,1).
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The theorem on ordered semigroups that corresponds to Theorem 2.4 is the
following.

Theorem 4.4. An ordered semigroup (S, ·,≤) is completely regular if and only

for every A ∈ I(2,2) we have A = (A2SA2].

Proof. =⇒ Let A be a (2, 2)-ideal of S. Then A2SA2 ⊆ A and (A2SA2] ⊆ (A] =
A. Since S is regular, left regular and right regular, we have

A ⊆ (ASA] ⊆
(

(A2S]S(SA2]
]

=
(

(A2S](S](SA2]
]

⊆
(

(A2S3A2]
]

= (A2S3A2] ⊆ (A2SA2].

Thus we have A = (A2SA2].

⇐= Let A ⊆ S. Since < A >(2,2) is an ideal of S containing A, by hypothesis,
we have

A ⊆< A >(2,2)=
(

< A >2
(2,2) S < A >2

(2,2)

]

.

As < A >(2,2)= (A ∪A2SA2], we have

A ⊆
(

(A ∪A2SA2](A ∪A2SA2]S(A ∪A2SA2](A ∪A2SA2]
]

=
(

(A ∪A2SA2](A ∪A2SA2](S](A ∪A2SA2](A ∪A2SA2]
]

⊆
(

(A ∪A2SA2](A ∪A2SA2](SA ∪ SA2SA2](A ∪A2SA2]
]

=
(

(A ∪A2SA2)(A ∪A2SA2)(SA ∪ SA2SA2)(A ∪A2SA2)
]

= (A2SA2].

Thus we get A ⊆ (A2SA2] ⊆ (ASA], (SA2], (A2S] and so S is completely regu-
lar.

Example 4.5. The ordered semigroup S = {a, b, c, d, e} of the Example 3 in [10]
given by Table 2 and Figure 2 is completely regular. The results of this section
can be applied.

· a b c d e

a a b a a a

b a b a a a

c a b c a a

d a b a a d

e a b a a e

Table 2
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b

e

a

c d

Figure 2

5. From ordered semigroups to ordered hypersemigroups

An ordered hypersemigroup is an hypersemigroup (S, ◦) with an order relation
“≤” on S such that a ≤ b implies a◦c � b◦c and c◦a � c◦b for every c ∈ S, in the
sense that for every x ∈ a ◦ c there exists y ∈ b ◦ c such that x ≤ y and for every
x ∈ c ◦ a there exists y ∈ c ◦ b such that x ≤ y. In an ordered hypersemigroup,
if a ≤ b and c ≤ d, then a ◦ c � b ◦ d. Since this plays the main role in the
investigation, we will repeat the short proof that was already given in [17]:

Let x ∈ a ◦ c. Since a ≤ b, we have a ◦ c � b ◦ c, then there exists y ∈ b ◦ c
such that x ≤ y. Since c ≤ d, we have b ◦ c � b ◦ d and then there exists z ∈ b ◦ d
such that y ≤ z. We have z ∈ b ◦ d and x ≤ z, and the proof is complete.

An ordered hypersemigroup (S, ◦,≤) is said to be regular if for every a ∈ S

there exist x, t ∈ S such that t ∈ (a ◦ x) ∗ {a} and a ≤ t. This is equivalent to
saying the A ⊆ (A ∗ H ∗ A] for any nonempty subset A of S [17]. It is called
left regular if for every a ∈ S there exist x, t ∈ S such that t ∈ {x} ∗ (a ◦ a) (=
(x ◦ a) ∗ {a}) and a ≤ t, that is if A ⊆ (H ∗ A ∗ A] for every nonempty subset
A of S. It is called right regular if for every a ∈ S there exist x, t ∈ S such that
t ∈ (a ◦ a) ∗ {x} (= {a} ∗ (a ◦ x)) and a ≤ t or if A ⊆ (A ∗ A ∗ H] for every
nonempty subset A of S. An ordered hypersemigroup that is at the same time
right regular, left regular and regular is called completely regular.

For an ordered hypersemigroup (S, ◦,≤) and a nonempty subset A of S we
say that A is a (1, 2)-ideal of (S, ◦,≤) if

(1) A is a (1, 2)-ideal of (S, ◦) and

(2) if a ∈ A and S ∋ b ≤ a, then b ∈ A.

In a similar way, a nonempty subset A of S is called a (2, 1)-ideal of (S, ◦,≤)
if (1) it is a (2, 1)-ideal of (S, ◦) and (2) if a ∈ A and S ∋ b ≤ a imply b ∈ A; it
is called (2, 2)-ideal of (S, ◦,≤) if (1) it is a (2, 2)-ideal of (S, ◦) and (2) if a ∈ A

and S ∋ b ≤ a imply b ∈ A.
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Denote if I(1,2), I(2,1), I(2,2) the set of all (1, 2)-ideals, (2, 1)-ideals and (2, 2)-
ideals of S, respectively. Denote by < A >(1,2), < A >(2,1), < A >(2,2) the
(1, 2)-ideal, (2, 1)-ideal and the (2, 2)-ideal of S, respectively, generated by A.

The properties (1), (2), (5), (6) regarding the ordered semigroups mentioned
in section 1, for ordered hypersemigroups also hold (as the operation “∗” does
not play any role in them). So the analogous of (3) and (4) is necessary. The
properties on ordered hypersemigroups that correspond to (3) and (4) are the
following:

(A] ∗ (B] ⊆ (A ∗B] and
(

A ∗ (B]
]

=
(

(A] ∗B
]

=
(

(A] ∗ (B]
]

= (A ∗B],

respectively. These two properties play the main role in the investigation as they
are the only part in which the order of the hypersemigroups plays a role. If we
have them, then the results of the previous section on ordered semigroups hold for
ordered hypersemigroups as well just replacing, in proofs, the multiplication “·” of
the ordered semigroup by the operation “∗” of the ordered hypersemigroups. The
first of the above two properties has been first appeared in [14] and, for the second
one, see [16]. These two properties are essential for ordered hypersemigroups and
play the main role in studying the theorems of the present section (and not only).

Let us prove that
(

A ∗ (B]
]

=
(

(A] ∗B
]

.

Let x ∈
(

A ∗ (B]
]

. Then x ≤ t for some t ∈ A ∗ (B] and t ∈ a ◦ u for some
a ∈ A, u ∈ (B]. We have u ≤ b for some b ∈ B, a ◦ u � a ◦ b and t ∈ a ◦ u. Then
there exists z ∈ a ◦ b such that t ≤ z. We have x ≤ z ∈ a ◦ b ⊆ A ∗ B ⊆ (A] ∗ B
and so x ∈

(

(A] ∗B
]

, thus we have
(

A ∗ (B]
]

⊆
(

(A] ∗B
]

. Let now x ∈
(

(A] ∗B
]

.
Then x ≤ t for some t ∈ (A] ∗B, t ∈ u ◦ b for some u ∈ (A], b ∈ B and u ≤ a for
some a ∈ A. Since t ∈ u ◦ b � a ◦ b, there exists z ∈ a ◦ b such that t ≤ z. We
have x ≤ z ∈ a ◦ b ⊆ A ∗B ⊆ A ∗ (B] and so x ∈

(

A ∗ (B]
]

.

So, we get the results of section 4, delete the “·” and put “∗” in the proofs,
and we have the results given in the rest of the paper.

(1) < A >(1,2)= (A ∪A ∗ S ∗ A ∗A]

(2) < A >(2,1)= (A ∪A ∗A ∗ S ∗A]

(3) < A >(2,2)= (A ∪A ∗A ∗ S ∗A ∗A].

The theorem on ordered hypersemigroups that corresponds to Theorem 4.1 is the
following.

Theorem 5.1. An ordered hypersemigroup (S, ◦,≤) is both regular and left reg-

ular if and only if

for every A ∈ I(1,2) we have A = (A ∗ S ∗A ∗A].

The theorem on ordered hypersemigroups that corresponds to Theorem 4.2 is the
following.
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Theorem 5.2. An ordered hypersemigroup (S, ◦,≤) is both regular and right

regular if and only if

for every A ∈ I(2,1) we have A = (A ∗A ∗ S ∗A].

The theorem on ordered hypersemigroups that corresponds to Theorem 4.3 is the
following.

Theorem 5.3. An ordered hypersemigroup (S, ◦,≤) is completely regular if and

only if the following two conditions are satisfied:

(1) A = (A ∗ S ∗ A ∗ A] for every A ∈ I(1,2) and

(2) A = (A ∗A ∗ S ∗ A] for every A ∈ I(2,1).

The theorem on ordered hypersemigroups that corresponds to Theorem 4.4 is the
following.

Theorem 5.4. An ordered hypersemigroup (S, ◦,≤) is completely regular if and

only

for every A ∈ I(2,2) we have A = (A ∗A ∗ S ∗A ∗A].

Exactly as in the case of ordered semigroups, from the results on ordered
hypersemigroups we can also obtain the results on hypersemigroups (without
order), as every hypersemigroup S with the order on S defined by ≤:= {(a, b) |
a = b} is an ordered hypersemigroup (see, for example [9]).

Note. The sets in the proofs of sections 3–5 show the pointless character of the
results; that is a further indication that the results of sections 3, 4 and 5 are
based on ∨e-semigroups.

I thank the referee for reading the paper carefully, his/her comments and
prompt reply. I acknowledge with many thanks the useful discussions with the
Chief Editor of the journal Professor Klaus Denecke we had after the report.
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