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Abstract

In this paper we determine the normalized Laplacian spectrum of the Q-
vertex corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge
neighborhood corona of a connected regular graph with an arbitrary regular
graph in terms of normalized Laplacian eigenvalues of the original graphs.
Moreover, applying these results we find some non-regular normalized Lapla-
cian co-spectral graphs.
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1. Introduction

Spectra of graphs have an important role in determining structural properties of
graphs. The normalized Laplacian spectrum of a graph gives [3] bipartiteness,
connectedness and many more information of a graph. F. Chung [3] introduced
the normalized Laplacian matrix of a simple graph G, denoted by L(G), which
is a square matrix with rows and columns are indexed by vertices of G, and for
any two vertices u and v of G the (u, v)th entry of it is given by,

L(u, v) =







1 if u = v and dv 6= 0,
−1√
dudv

if u and v are adjacent,

0 otherwise,
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where du and dv are degree of u and v, respectively. IfD(G) is the diagonal matrix
of vertex degrees and A(G) is the adjacency matrix of G (where A(u, v) = 1 if
and only if the vertex u is adjacent to the vertex v and 0 otherwise) then we can
write,

(1) L(G) = I −D(G)−1/2A(G)D(G)−1/2

with the convention that D(G)−1(u, u) = 0 if du = 0. We denote the charac-
teristic polynomial det(λI − L(G)) of L(G) by fG(λ). The roots of fG(λ) are
known as the normalized Laplacian eigenvalues of G. The multiset of the nor-
malized Laplacian eigenvalues of G is called the normalized Laplacian spectrum

of G. Since L(G) is a symmetric and positive semi-definite matrix, its eigenval-
ues, denoted by λ1(G), λ2(G), . . . , λn(G), are all real, non-negative and can be
arranged in non-decreasing order λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G). In [3], Chung
proved that all normalized Laplacian eigenvalues of a graph lie in the interval
[0, 2], and 0 is always a normalized Laplacian eigenvalue, that is λ1(G) = 0. She
also determined normalized Laplacian spectrum of different kinds of graphs like
complete graphs, bipartite graphs, hypercubes etc. Two graphs G and H are
called cospectral if A(G) and A(H) have the same spectrum. Similarly, graphs
G and H are called normalized Laplacian cospectral or simply L-cospectral if the
spectrum of L(G) and L(H) are the same. Banerjee and Jost [1] investigated how
the normalized Laplacian spectrum is affected by operations like motif doubling,
graph splitting or joining. In [2], Butler and Grout produced (exponentially)
large families of non-bipartite, non-regular graphs which are mutually cospectral,
and also gave an example of a graph which is cospectral with its complement but
is not self-complementary. In [12], Li studied the effect on the second smallest
normalized Laplacian eigenvalue by grafting some pendant paths. In [5, 6, 7], Das
and Panigrahi computed normalized Laplacian spectrum of coronas, subdivision-
coronas and R-coronas for two regular graphs. The Q-graph Q(G) [4] is the graph
obtained from G by inserting a new vertex into every edge of G and then joining
by edges those pair of new vertices which lie on adjacent edges of G. The set of
such new vertices is denoted by I(G) i.e I(G) = V (Q(G))\V (G). In this paper
we find the normalized Laplacian spectrum of graphs obtained by some corona
operations on Q-graphs, which are defined below.

Definition. Let G1 and G2 be two vertex-disjoint graphs with number of vertices
n1 and n2, and edges m1 and m2, respectively. Then

(i) The Q-vertex corona [13] of G1 and G2, denoted by G1 ⊙QG2, is the graph
obtained from vertex disjoint union of Q(G1) and |V (G1)| copies of G2, and
by joining the ith vertex of V (G1) to every vertex in the ith copy of G2. The
graph G1 ⊙Q G2 has n1(1 + n2) +m1 vertices.

(ii) The Q-edge corona [13] of G1 and G2, denoted by G1 ⊖Q G2, is the graph
obtained from vertex disjoint union of Q(G1) and |I(G1)| copies of G2, and
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by joining the ith vertex of I(G1) to every vertex in the ith copy of G2. The
graph G1 ⊖Q G2 has m1(1 + n2) + n1 vertices.

(iii) The Q-vertex neighborhood corona of G1 and G2, denoted by G1 ⊡Q G2, is
the graph obtained from vertex disjoint union of Q(G1) and |V (G1)| copies
of G2, and by joining the neighbors of the ith vertex of V (G1) to every
vertex in the ith copy of G2. The graph G1 ⊡Q G2 has n1(1 + n2) + m1

vertices.

(iv) The Q-edge neighborhood corona of G1 and G2, denoted by G1⊟QG2, is the
graph obtained from vertex disjoint union of Q(G1) and |I(G1)| copies of
G2, and by joining the neighbors of the ith vertex of I(G1) to every vertex
in the ith copy of G2. The graph G1 ⊟Q G2 has m1(1 + n2) + n1 vertices.

Example 1. Let us consider two graphs G1 = C4 and G2 = P2. The Q-vertex
corona and Q-edge corona of G1 and G2 are given in Figure 1(a) and Figure
1(b), respectively. The Q-vertex neighborhood corona and Q-edge neighborhood
corona of G1 and G2 are given in Figure 2(a) and Figure 2(b), respectively.

Figure 1. Q-vertex corona and Q-edge corona of C4 and P2.

Figure 2. Q-vertex neighborhood corona and Q-edge neighborhood corona of C4 and P2.
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In [13], Liu et al. determined the resistance distance and Kirchhoff index
of G1 ⊙Q G2 and G1 ⊖Q G2 of a regular graph G1 and an arbitrary graph G2.
Motivated by these works, here we determine the normalized Laplacian spectrum
of G1 ⊙Q G2, G1 ⊖Q G2, G1 ⊡Q G2 and G1 ⊟Q G2 for a connected regular graph
G1 and an arbitrary regular graph G2 in terms of the normalized Laplacian
eigenvalues of G1 and G2. Moreover, applying these results we construct non-
regular L-cospectral graphs.

To prove our results we need the following matrix products and few results
on them. Recall that the Kronecker product of matrices A = (aij) of size m× n

and B of size p× q, denoted by A⊗B, is defined to be the mp× nq partitioned
matrix (aijB). It is known [10] that for matrices M , N , P and Q of suitable sizes,
MN ⊗ PQ = (M ⊗ P )(N ⊗ Q). This implies that for nonsingular matrices M

and N , (M ⊗N)−1 = M−1⊗N−1. It is also known [10] that, for square matrices
M and N of order k and s, respectively, det(M ⊗N) = (detM)s(detN)k. For two
matrices A and B, of same size m× n, the Hadamard product A •B of A and B

is a matrix of the same size m× n with entries given by (A •B)ij = (A)ij · (B)ij
(entrywise multiplication). Hadamard product is commutative, that is A • B =
B • A.

We also need the result given in Lemma 2 below.

Lemma 2 (Schur Complement [4]). Suppose that the order of all four matrices

M , N , P and Q satisfy the rules of operations on matrices. Then we have,

∣

∣

∣

∣

M N

P Q

∣

∣

∣

∣

= |Q||M −NQ−1P |, if Q is a non-singular square matrix,

= |M ||Q− PM−1N |, if M is a non-singular square matrix.

For a graph G with n vertices and m edges, the vertex-edge incidence matrix

R(G) [8] is a matrix of order n×m, with entry rij = 1 if the ith vertex is incident to
the jth edge, and 0 otherwise. It is well known [4] that R(G)R(G)T = A(G)+rIn
and A(G) = r(In − L(G)). So we get that R(G)R(G)T = r(2In − L(G)).

The line graph [8] of a graph G is the graph l(G), whose vertices are the
edges of G and two vertices of l(G) are adjacent if and only if they are incident
on a common vertex in G. It is well known [4] that R(G)TR(G) = A(l(G))+2Im.

Lemma 3 [4]. Let G be an r-regular graph. Then the eigenvalues of A(l(G)) are
the eigenvalues of A(G) + (r − 2)In and −2 repeated m− n times.

If G is an r-regular graph, then obviously L(G) = In − 1
rA(G). Therefore,

by Lemma 3, we have the following.

Lemma 4. For an r-regular graph G, the eigenvalues of A(l(G)) are the eigen-

values of 2(r − 1)In − rL(G) and −2 repeated m− n times.



Normalized Laplacian spectrum of some Q-coronas of ... 131

2. Our results

Throughout the paper for any integer k, Ik denotes the identity matrix of size k.
In the lemma below we represent the normalized Laplacian matrix of Q-vertex
corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge neighborhood
corona of two regular graphs in terms of Kronecker product and Hadamard prod-
uct of matrices. By considering the graph G1 as connected here we prove all the
theorems and the lemma below.

Lemma 5. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then we have the following

(i)

L(G1 ⊙Q G2) =













In1
−cR(G1) −CT

n2
⊗ In1

−cR(G1)
T Im1

− 1
2r1

A(l(G1)) Om1×n1n2

−Cn2
⊗ In1

On1n2×m1
(L(G2) •B(G2))⊗ In1













where Cn2
is the column vector of size n2 with all entries equal to 1√

(r1+n2)(r2+1)
,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal

entries are r2
r2+1 and c is the constant whose value is 1√

2r1(r1+n2)
.

(ii)

L(G1 ⊖Q G2) =













In1
−cR(G1) On1×m1n2

−cR(G1)
T Im1

− 1
2r1+n2

A(l(G1)) −CT
n2

⊗ Im1

Om1n2×n1
−Cn2

⊗ Im1
(L(G2) •B(G2))⊗ Im1













where Cn2
is the column vector of size n2 with all entries equal to 1√

(2r1+n2)(r2+1)
,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal

entries are r2
r2+1 and c is the constant whose value is 1√

r1(2r1+n2)
.

(iii)

L(G1 ⊡Q G2) =













In1
−cR(G1) On1×n1n2

−cR(G1)
T Im1

− 1
2(r1+n2)

A(l(G1)) −R(G1)
T ⊗ CT

n2

On1n2×n1
−R(G1)⊗ Cn2

In1
⊗ (L(G2) •B(G2))
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where Cn2
is the column vector of size n2 with all entries equal to 1√

2(r1+n2)(r2+r1)
,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal

entries are r2
r2+r1

and c is the constant whose value is 1√
2r1(r1+n2)

.

(iv)

L(G1⊟QG2)=













In1
−cR(G1) −R(G1)⊗ CT

n2

−cR(G1)
T Im1

− 1
2r1(1+n2)−2n2

A(l(G1)) −A(l(G1))⊗ ET
n2

−R(G1)
T⊗ Cn2

−A(l(G1))⊗ En2
Im1

⊗ (L(G2) •B(G2))













where Cn2
is the column vector of size n2 with all entries equal to 1√

r1(1+n2)(r2+2r1)
,

En2
is the column vector of size n2 with all entries equal to 1√

(2r1+2r1n2−2n2)(r2+2r1)
,

B(G2) is the n2×n2 matrix whose all diagonal entries are 1 and off-diagonal en-

tries are r2
r2+2r1

and c is the constant whose value is 1√
r1(2r1+2r1n2−2n2)(1+n2)

.

Proof. To obtain the required normalized Laplacian matrices we label the ver-
tices of the graphs in the following way. We take V (G1) = {v1, v2, . . . , vn1

},
I(G1) = {e1, e2, . . . , em1

} and V (G2) = {u1, u2, . . . , un2
}. For i = 1, 2, . . . , n1,

let V i(G2) =
{

ui1, u
i
2, . . . , u

i
n2

}

be the vertex set of the ith copy of G2. Then
V (G1) ∪ I(G1) ∪ {W1 ∪ W2 ∪ · · · ∪ Wn2

} is a partition of both V (G1 ⊙Q G2)
and V (G1 ⊖Q G2), where Wj =

{

u1j , u
2
j , . . . , u

n1

j

}

for V (G1 ⊙Q G2) and Wj =
{

u1j , u
2
j , . . . , u

m1

j

}

for V (G1 ⊖Q G2), j = 1, 2, . . . , n2.

Similarly, V (G1) ∪ I(G1) ∪
{

V 1(G2) ∪ V 2(G2) ∪ · · · ∪ V l(G2)
}

is a partition
of both V (G1 ⊡Q G2) and V (G1 ⊟Q G2), where l = n1 for the former and l = m1

for the latter.
The degrees of the vertices in the different Q-coronas are as given below:

dG1⊙QG2
(v) =







n2 + dG1
(v) if v ∈ V (G1),

2dG1
(v) if v ∈ I(G1),

1 + dG2
(uj) if v = uij, i = 1, 2, . . . , n1, j = 1, 2, . . . , n2.

dG1⊖QG2
(v) =







dG1
(v) if v ∈ V (G1),

2dG1
(v) + n2 if v ∈ I(G1),

1 + dG2
(uj) if v = uij , i = 1, 2, . . . ,m1, j = 1, 2, . . . , n2.

dG1⊡QG2
(v) =







dG1
(v) if v ∈ V (G1),

2(dG1
(v) + n2) if v ∈ I(G1),

dG1
(vi) + dG2

(uj) if v = uij, i = 1, 2, . . . , n1, j = 1, 2, . . . , n2.

dG1⊟QG2
(v) =







(1 + n2)dG1
(v) if v ∈ V (G1),

2dG1
(v)(1 + n2)− 2n2 if v ∈ I(G1),

2dG1
(vi) + dG2

(uj) if v=uij , i=1, 2, . . . ,m1, j=1, 2, . . . , n2.
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Then the Lemma follows from (1), considering the ordering of the vertices as
given in the above partitions of the vertex sets.

Notation. Let G be a graph on n vertices, B and C be matrices of size n×n and
n × 1, respectively. For any parameter λ, we have the notation: χG(B,C, λ) =
CT (λIn − (L(G) • B))−1C. We note that the notation is similar to the notion
‘coronal’ which was introduced by McLeman[14].

Theorem 6. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of G1 ⊙Q G2 consists of:

(i) The eigenvalue
1+r2δj
r2+1 with multiplicity n1 for every eigenvalue δj (j = 2,

3, . . . , n2) of L(G2),

(ii) The eigenvalue 1+r1
r1

with multiplicity m1 − n1,

(iii) Three roots of the equation

2r1(r1 +n2 + r1r2 + r2n2)λ
3 − (2r21r2 +4r21 +2r1r2n2 +2r1 +2r1r2 +2n2 +

2r2n2+4r1n2+ r21µi+ r21r2µi+ r1r2n2µi+ r1n2µi)λ
2+(2r21 +2n2r2+2r1+

4n2+r1r2µi+r1µi+r21r2µi+2r21µi+r1r2n2µi+2r1n2µi)λ−r21µi−r1µi = 0,
for each eigenvalue µi (i = 1, 2, . . . , n1) of L(G1).

Proof. The normalized Laplacian characteristic polynomial of G1 ⊙Q G2 is

fG1⊙QG2
(λ) = det(λIn1(n2+1)+m1

− L(G1 ⊙Q G2))

= det













(λ− 1)In1
cR(G1) CT

n2
⊗ In1

cR(G1)
T (λ− 1)Im1

+ 1
2r1

A(l(G1)) Om1×n1n2

Cn2
⊗ In1

On1n2×m1
(λIn2

−(L(G2) •B(G2))) ⊗ In1













= det ((λIn2
− (L(G2) •B(G2)))⊗ In1

) det(S),

where

S =

(

(λ− 1)In1
cR(G1)

cR(G1)
T (λ− 1)Im1

+ 1
2r1

A(l(G1))

)

−
(

CT
n2

⊗ In1

Om1×n1n2

)

((λIn2
− (L(G2) •B(G2)))⊗ In1

)−1
(

Cn2
⊗ In1

On1n2×m1

)

=

(

(λ− 1− χG2
(B(G2), Cn2

, λ))In1
cR(G1)

cR(G1)
T (λ− 1)Im1

+ 1
2r1

A(l(G1))

)

.
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Then

det(S) = det
(

(λ− 1− χG2
(B(G2), Cn2

, λ))In1

)

det
(

(λ− 1)Im1
+ 1

2r1
A(l(G1))− c2

λ−1−χG2
(B(G2),Cn2

,λ)R(G1)
TR(G1)

)

=
(

λ− 1− χG2
(B(G2), Cn2

, λ)
)n1

det
((

λ− 1− 2c2

λ−1−χG2
(B(G2),Cn2

,λ)

)

Im1
+
(

1
2r1

− c2

λ−1−χG2
(B(G2),Cn2

,λ)

)

A(l(G1))

=
(

λ− 1− χG2
(B(G2), Cn2

, λ)
)n1

(

λ− 1− 1
r1

)m1−n1

det
((

λ− 1− 2c2

λ−1−χG2
(B(G2),Cn2

,λ)

)

In1

+
(

1
2r1

− c2

λ−1−χG2
(B(G2),Cn2

,λ)

)

(2(r1 − 1)In1
− r1L(G1))

)

=
(

λ−1− 1
r1

)m1−n1

det((λ−1)(λ−1−χG2
(B(G2), Cn2

, λ))In1
−c2r1(2In1

−L(G1))

+ 1
2r1

(

(2r1 − 2)In1
− r1L(G1)

)

(λ− 1− χG2
(B(G2), Cn2

, λ))
)

.

Since L(G2) • B(G2) = In2
− 1

r2+1A(G2), we get, L(G2) • B(G2) = 1
r2+1(In2

+
r2L(G2)).

As G2 is regular, the sum of all entries on every row of its normalized
Laplacian matrix is zero. That means, L(G2)Cn2

=
(

1 − r2
r2

)

Cn2
= 0Cn2

.

Then (L(G2) • B(G2))Cn2
=

(

1 − r2
r2+1

)

Cn2
= 1

r2+1Cn2
and (λIn2

− (L(G2) •
B(G2)))Cn2

=
(

λ− 1
r2+1

)

Cn2
. Also, CT

n2
Cn2

= n2

(r1+n2)(r2+1) .

Now, χG2
(B(G2), Cn2

, λ) = CT
n2
(λIn2

−(L(G2)•B(G2)))
−1Cn2

=
CT

n2
Cn2

(

λ− 1

r2+1

) =

n2

(r1+n2)(r2+1)
(

λ− 1

r2+1

) .

Thus, if δj is an eigenvalue of L(G2) and µi is an eigenvalue of L(G1), then

fG1⊙QG2
(λ) =

(

λ− 1− 1
r1

)m1−n1 n2
∏

j=1

(

λ− 1+r2δj
r2+1

)n1

n1
∏

i=1

{

(λ− 1)

(

λ− 1− n2

(r1+n2)(r2+1)(λ− 1

r2+1
)

)

+ r1(µi−2)
2r1(r1+n2)

+ 1
2r1

(

2r1 − 2− r1µi

)

(

λ− 1− n2

(r1+n2)(r2+1)
(

λ− 1

r2+1

)

)}

.
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(i) Since the only pole of χG2
(B(G2), Cn2

, λ) is λ = 1
r2+1 and 0 is an eigenvalue

of L(G2),
1+r2δj
r2+1 is an eigenvalue of L(G1 ⊙Q G2) with multiplicity n1, for j =

2, 3, . . . , n2.
(ii) Immediate from the characteristic polynomial.
(iii) We get the remaining eigenvalues from the following equation:

(λ− 1)

(

λ− 1− n2

(r1+n2)(r2+1)
(

λ− 1

r2+1

)

)

+ r1(µi−2)
2r1(r1+n2)

+ 1
2r1

(2r1 − 2− r1µi)

(

λ− 1− n2

(r1+n2)(r2+1)
(

λ− 1

r2+1

)

)

= 0,

that is, 2r1(r1+n2+ r1r2+ r2n2)λ
3− (2r21r2+4r21+2r1r2n2+2r1+2r1r2+2n2+

2r2n2+4r1n2+ r21µi+ r21r2µi+ r1r2n2µi+ r1n2µi)λ
2+(2r21 +2n2r2+2r1+4n2+

r1r2µi + r1µi + r21r2µi + 2r21µi + r1r2n2µi + 2r1n2µi)λ− r21µi − r1µi = 0
for i = 1, 2, . . . , n1.

In the similar way we can prove the Theorem 7, 8 and 9.

Theorem 7. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of G1 ⊖Q G2 consists of:

(i) The eigenvalue
1+r2δj
r2+1 with multiplicity m1 for every eigenvalue δj (j =

2, 3, . . . , n2) of L(G2),

(ii) Two roots of the equation

(r2n2 +2r1r2 + n2 +2r1)λ
2 − (2 + 2r2 + r2n2 +2n2 +2r1r2 +4r1)λ+2 = 0,

where each root repeats m1 − n1 times,

(iii) Three roots of the equation

(r2n2+2r1r2+n2+2r1)λ
3 − (2r1r2+2r2n2+3n2+2r2 +2+4r1 + r1r2µi+

r1µi)λ
2+(2r1+ r2n2+2n2+2+2r1µi+ r2µi+ r1r2µi+µi)λ−µi− r1µi = 0,

for each eigenvalue µi (i = 1, 2, . . . , n1) of L(G1).

Theorem 8. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of G1 ⊡Q G2 consists of:

(i) The eigenvalue
r1+r2δj
r2+r1

with multiplicity n1 for every eigenvalue δj (j =
2, 3, . . . , n2) of L(G2),

(ii) The eigenvalue r1+n2+1
r1+n2

with multiplicity m1 − n1,

(iii) Three roots of the equation

2(r1n2 + r2n2 + r21 + r1r2)λ
3 − (6r1n2 + 4r2n2 + 4r21 + 2r1 + 2r2 + 2r1r2 +

r21µi+ r1r2µi)λ
2+(4r1n2+2r2n2+2r1+2r21+ r1n2µi+ r1µi+ r2µi+2r21µi+

r1r2µi)λ− r1n2µi − r21µi − r1µi = 0, for each eigenvalue µi (i = 1, 2, . . . , n1)
of L(G1).



136 A. Das and P. Panigrahi

Theorem 9. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of G1 ⊟Q G2 consists of:

(i) The eigenvalue
2r1+r2δj
r2+2r1

with multiplicity m1 for every eigenvalue δj (j =
2, 3, . . . , n2) of L(G2),

(ii) Two roots of the equation

(2r1 + r2 + 2r1n2 + r2n2)λ
2 − (4r1 + r2 + 4r1n2 + r2n2)λ + 2r1 + 2r1n2 −

2n2 + n2µi = 0
for each eigenvalue µi (i = 1, 2, . . . , n1) of L(G1) and

(iii) The eigenvalues of the matrix


















(λ− 1)Im1
+ 1

2r1(1+n2)−2n2
A(l(G1))− χG2

(B(G2), En2
, λ)A(l(G1))

2

−{c−
√

r1(1+n2)
2r1+2r1n2−2n2

χG2
(B(G2), Cn2

, λ)A(l(G1))}R(G1)
T

· ((λ− 1)In1
− χG2

(B(G2), Cn2
, λ)R(G1)R(G1)

T )−1

·R(G1){c −
√

r1(1+n2)
2r1+2r1n2−2n2

χG2
(B(G2), Cn2

, λ)A(l(G1))}



















Remark 10. If G1 and G2 are two regular graphs then we find from Theorems 6,
7, 8 and 9, that the normalized Laplacian spectrum of all the Q-coronas depend
only on the degrees of regularities, number of vertices, number of edges, and
normalized Laplacian eigenvalues of G1 and G2. Thus for i = 1, 2, if Gi and Hi

are L-cospectral regular graphs then G1⊙QG2 (respectively, G1⊖QG2, G1⊡QG2

and G1⊟QG2) is L-cospectral with H1⊙QH2 (respectively, H1⊖QH2, H1⊡QH2

and H1 ⊟Q H2).

Now we apply the results of the paper and determine some normalized
Laplacian cospectral graphs. Since for an r-regular graph G we have L(G) =
In − 1

rA(G), the Lemma below is immediate.

Lemma 11. Two regular graphs are L-cospectral if and only if they are cospectral.

In the literature there are several regular cospectral graphs, for example see
[15]. In Theorem 12 below we construct non-regular L-cospectral graphs using
Q-coronas. Proof of this theorem follows from Remark 10 and Lemma 11.

Theorem 12. If G1 and H1 (not necessarily distinct) are L-cospectral regular
graphs, and G2 and H2 (not necessarily distinct) are L-cospectral regular graphs,

then G1 ⊙QG2 (respectively, G1 ⊖QG2, G1 ⊡QG2 and G1 ⊟QG2) and H1⊙QH2

(respectively, H1 ⊖Q H2, H1 ⊡Q H2 and H1 ⊟Q H2) are L-cospectral graphs.
Example 13. Let us consider regular L-cospectral graphs G1 and H1 [15] as
given in Figure 3.

We also consider graphs G2 and H2 both of which are copies of K2. Now by
Theorem 12 the graph G1 ⊙Q K2 will be L-cospectral with the graph H1 ⊙Q K2.



Normalized Laplacian spectrum of some Q-coronas of ... 137

G1 H1 

Figure 3. Two cospectral regular graphs
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