NORMALIZED LAPLACIAN SPECTRUM OF SOME Q-CORONAS OF TWO REGULAR GRAPHS

Arpita Das and Pratima Panigrahi
Department of Mathematics
Indian Institute of Technology Kharagpur
India, 721302
e-mail: arpita.das1201@gmail.com pratima@maths.iitkgp.ernet.in

Abstract

In this paper we determine the normalized Laplacian spectrum of the Q vertex corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge neighborhood corona of a connected regular graph with an arbitrary regular graph in terms of normalized Laplacian eigenvalues of the original graphs. Moreover, applying these results we find some non-regular normalized Laplacian co-spectral graphs.

Keywords: normalized Laplacian matrix, Q-vertex corona, Q-edge corona, Q-vertex neighborhood corona, Q-edge neighborhood corona, Kronecker product, Hadamard product.
2010 Mathematics Subject Classification: 05C50; 47A75.

1. Introduction

Spectra of graphs have an important role in determining structural properties of graphs. The normalized Laplacian spectrum of a graph gives [3] bipartiteness, connectedness and many more information of a graph. F. Chung [3] introduced the normalized Laplacian matrix of a simple graph G, denoted by $\mathcal{L}(G)$, which is a square matrix with rows and columns are indexed by vertices of G, and for any two vertices u and v of G the $(u, v)^{t h}$ entry of it is given by,

$$
\mathcal{L}(u, v)=\left\{\begin{array}{cl}
1 & \text { if } u=v \text { and } d_{v} \neq 0 \\
\frac{-1}{\sqrt{d_{u} d_{v}}} & \text { if } u \text { and } v \text { are adjacent } \\
0 & \text { otherwise }
\end{array}\right.
$$

where d_{u} and d_{v} are degree of u and v, respectively. If $D(G)$ is the diagonal matrix of vertex degrees and $A(G)$ is the adjacency matrix of G (where $A(u, v)=1$ if and only if the vertex u is adjacent to the vertex v and 0 otherwise) then we can write,

$$
\begin{equation*}
\mathcal{L}(G)=I-D(G)^{-1 / 2} A(G) D(G)^{-1 / 2} \tag{1}
\end{equation*}
$$

with the convention that $D(G)^{-1}(u, u)=0$ if $d_{u}=0$. We denote the characteristic polynomial $\operatorname{det}(\lambda I-\mathcal{L}(G))$ of $\mathcal{L}(G)$ by $f_{G}(\lambda)$. The roots of $f_{G}(\lambda)$ are known as the normalized Laplacian eigenvalues of G. The multiset of the normalized Laplacian eigenvalues of G is called the normalized Laplacian spectrum of G. Since $\mathcal{L}(G)$ is a symmetric and positive semi-definite matrix, its eigenvalues, denoted by $\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)$, are all real, non-negative and can be arranged in non-decreasing order $\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$. In [3], Chung proved that all normalized Laplacian eigenvalues of a graph lie in the interval $[0,2]$, and 0 is always a normalized Laplacian eigenvalue, that is $\lambda_{1}(G)=0$. She also determined normalized Laplacian spectrum of different kinds of graphs like complete graphs, bipartite graphs, hypercubes etc. Two graphs G and H are called cospectral if $A(G)$ and $A(H)$ have the same spectrum. Similarly, graphs G and H are called normalized Laplacian cospectral or simply \mathcal{L}-cospectral if the spectrum of $\mathcal{L}(G)$ and $\mathcal{L}(H)$ are the same. Banerjee and Jost [1] investigated how the normalized Laplacian spectrum is affected by operations like motif doubling, graph splitting or joining. In [2], Butler and Grout produced (exponentially) large families of non-bipartite, non-regular graphs which are mutually cospectral, and also gave an example of a graph which is cospectral with its complement but is not self-complementary. In [12], Li studied the effect on the second smallest normalized Laplacian eigenvalue by grafting some pendant paths. In [5, 6, 7], Das and Panigrahi computed normalized Laplacian spectrum of coronas, subdivisioncoronas and R-coronas for two regular graphs. The Q-graph $Q(G)[4]$ is the graph obtained from G by inserting a new vertex into every edge of G and then joining by edges those pair of new vertices which lie on adjacent edges of G. The set of such new vertices is denoted by $I(G)$ i.e $I(G)=V(Q(G)) \backslash V(G)$. In this paper we find the normalized Laplacian spectrum of graphs obtained by some corona operations on Q-graphs, which are defined below.
Definition. Let G_{1} and G_{2} be two vertex-disjoint graphs with number of vertices n_{1} and n_{2}, and edges m_{1} and m_{2}, respectively. Then
(i) The Q-vertex corona $[13]$ of G_{1} and G_{2}, denoted by $G_{1} \odot_{Q} G_{2}$, is the graph obtained from vertex disjoint union of $Q\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, and by joining the $i^{\text {th }}$ vertex of $V\left(G_{1}\right)$ to every vertex in the $i^{t h}$ copy of G_{2}. The graph $G_{1} \odot_{Q} G_{2}$ has $n_{1}\left(1+n_{2}\right)+m_{1}$ vertices.
(ii) The Q-edge corona [13] of G_{1} and G_{2}, denoted by $G_{1} \Theta_{Q} G_{2}$, is the graph obtained from vertex disjoint union of $Q\left(G_{1}\right)$ and $\left|I\left(G_{1}\right)\right|$ copies of G_{2}, and
by joining the $i^{\text {th }}$ vertex of $I\left(G_{1}\right)$ to every vertex in the $i^{\text {th }}$ copy of G_{2}. The graph $G_{1} \Theta_{Q} G_{2}$ has $m_{1}\left(1+n_{2}\right)+n_{1}$ vertices.
(iii) The Q-vertex neighborhood corona of G_{1} and G_{2}, denoted by $G_{1} \unlhd_{Q} G_{2}$, is the graph obtained from vertex disjoint union of $Q\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, and by joining the neighbors of the $i^{\text {th }}$ vertex of $V\left(G_{1}\right)$ to every vertex in the $i^{\text {th }}$ copy of G_{2}. The graph $G_{1} \unlhd_{Q} G_{2}$ has $n_{1}\left(1+n_{2}\right)+m_{1}$ vertices.
(iv) The Q-edge neighborhood corona of G_{1} and G_{2}, denoted by $G_{1} \boxminus \boxminus_{Q} G_{2}$, is the graph obtained from vertex disjoint union of $Q\left(G_{1}\right)$ and $\left|I\left(G_{1}\right)\right|$ copies of G_{2}, and by joining the neighbors of the $i^{\text {th }}$ vertex of $I\left(G_{1}\right)$ to every vertex in the $i^{\text {th }}$ copy of G_{2}. The graph $G_{1} \boxminus_{Q} G_{2}$ has $m_{1}\left(1+n_{2}\right)+n_{1}$ vertices.

Example 1. Let us consider two graphs $G_{1}=C_{4}$ and $G_{2}=P_{2}$. The Q-vertex corona and Q-edge corona of G_{1} and G_{2} are given in Figure 1(a) and Figure 1 (b), respectively. The Q-vertex neighborhood corona and Q-edge neighborhood corona of G_{1} and G_{2} are given in Figure 2(a) and Figure 2(b), respectively.

Figure 1. Q-vertex corona and Q-edge corona of C_{4} and P_{2}.

Figure 2. Q-vertex neighborhood corona and Q-edge neighborhood corona of C_{4} and P_{2}.

In [13], Liu et al. determined the resistance distance and Kirchhoff index of $G_{1} \odot_{Q} G_{2}$ and $G_{1} \odot_{Q} G_{2}$ of a regular graph G_{1} and an arbitrary graph G_{2}. Motivated by these works, here we determine the normalized Laplacian spectrum of $G_{1} \odot_{Q} G_{2}, G_{1} \Theta_{Q} G_{2}, G_{1} \oplus_{Q} G_{2}$ and $G_{1} \boxminus_{Q} G_{2}$ for a connected regular graph G_{1} and an arbitrary regular graph G_{2} in terms of the normalized Laplacian eigenvalues of G_{1} and G_{2}. Moreover, applying these results we construct nonregular \mathcal{L}-cospectral graphs.

To prove our results we need the following matrix products and few results on them. Recall that the Kronecker product of matrices $A=\left(a_{i j}\right)$ of size $m \times n$ and B of size $p \times q$, denoted by $A \otimes B$, is defined to be the $m p \times n q$ partitioned matrix $\left(a_{i j} B\right)$. It is known [10] that for matrices M, N, P and Q of suitable sizes, $M N \otimes P Q=(M \otimes P)(N \otimes Q)$. This implies that for nonsingular matrices M and $N,(M \otimes N)^{-1}=M^{-1} \otimes N^{-1}$. It is also known [10] that, for square matrices M and N of order k and s, respectively, $\operatorname{det}(M \otimes N)=(\operatorname{det} M)^{s}(\operatorname{det} N)^{k}$. For two matrices A and B, of same size $m \times n$, the Hadamard product $A \bullet B$ of A and B is a matrix of the same size $m \times n$ with entries given by $(A \bullet B)_{i j}=(A)_{i j} \cdot(B)_{i j}$ (entrywise multiplication). Hadamard product is commutative, that is $A \bullet B=$ $B \bullet A$.

We also need the result given in Lemma 2 below.
Lemma 2 (Schur Complement [4]). Suppose that the order of all four matrices M, N, P and Q satisfy the rules of operations on matrices. Then we have,

$$
\begin{aligned}
\left|\begin{array}{cc}
M & N \\
P & Q
\end{array}\right| & =|Q|\left|M-N Q^{-1} P\right|, \text { if } Q \text { is a non-singular square matrix, } \\
& =|M|\left|Q-P M^{-1} N\right|, \text { if } M \text { is a non-singular square matrix. }
\end{aligned}
$$

For a graph G with n vertices and m edges, the vertex-edge incidence matrix $R(G)[8]$ is a matrix of order $n \times m$, with entry $r_{i j}=1$ if the $i^{t h}$ vertex is incident to the $j^{\text {th }}$ edge, and 0 otherwise. It is well known [4] that $R(G) R(G)^{T}=A(G)+r I_{n}$ and $A(G)=r\left(I_{n}-\mathcal{L}(G)\right)$. So we get that $R(G) R(G)^{T}=r\left(2 I_{n}-\mathcal{L}(G)\right)$.

The line graph [8] of a graph G is the graph $l(G)$, whose vertices are the edges of G and two vertices of $l(G)$ are adjacent if and only if they are incident on a common vertex in G. It is well known [4] that $R(G)^{T} R(G)=A(l(G))+2 I_{m}$.

Lemma 3 [4]. Let G be an r-regular graph. Then the eigenvalues of $A(l(G))$ are the eigenvalues of $A(G)+(r-2) I_{n}$ and -2 repeated $m-n$ times.

If G is an r-regular graph, then obviously $\mathcal{L}(G)=I_{n}-\frac{1}{r} A(G)$. Therefore, by Lemma 3, we have the following.

Lemma 4. For an r-regular graph G, the eigenvalues of $A(l(G))$ are the eigenvalues of $2(r-1) I_{n}-r \mathcal{L}(G)$ and -2 repeated $m-n$ times.

2. OUR RESUlts

Throughout the paper for any integer k, I_{k} denotes the identity matrix of size k. In the lemma below we represent the normalized Laplacian matrix of Q-vertex corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge neighborhood corona of two regular graphs in terms of Kronecker product and Hadamard product of matrices. By considering the graph G_{1} as connected here we prove all the theorems and the lemma below.

Lemma 5. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then we have the following
(i)

$$
\mathcal{L}\left(G_{1} \odot_{Q} G_{2}\right)=\left(\begin{array}{ccc}
I_{n_{1}} & -c R\left(G_{1}\right) & -C_{n_{2}}^{T} \otimes I_{n_{1}} \\
-c R\left(G_{1}\right)^{T} & I_{m_{1}}-\frac{1}{2 r_{1}} A\left(l\left(G_{1}\right)\right) & O_{m_{1} \times n_{1} n_{2}} \\
-C_{n_{2}} \otimes I_{n_{1}} & O_{n_{1} n_{2} \times m_{1}} & \left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) \otimes I_{n_{1}}
\end{array}\right)
$$

where $C_{n_{2}}$ is the column vector of size n_{2} with all entries equal to $\frac{1}{\sqrt{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)}}$, $B\left(G_{2}\right)$ is the $n_{2} \times n_{2}$ matrix whose all diagonal entries are 1 and off-diagonal entries are $\frac{r_{2}}{r_{2}+1}$ and c is the constant whose value is $\frac{1}{\sqrt{2 r_{1}\left(r_{1}+n_{2}\right)}}$.
(ii)

$$
\mathcal{L}\left(G_{1} \Theta_{Q} G_{2}\right)=\left(\begin{array}{ccc}
I_{n_{1}} & -c R\left(G_{1}\right) & O_{n_{1} \times m_{1} n_{2}} \\
-c R\left(G_{1}\right)^{T} & I_{m_{1}}-\frac{1}{2 r_{1}+n_{2}} A\left(l\left(G_{1}\right)\right) & -C_{n_{2}}^{T} \otimes I_{m_{1}} \\
O_{m_{1} n_{2} \times n_{1}} & -C_{n_{2}} \otimes I_{m_{1}} & \left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) \otimes I_{m_{1}}
\end{array}\right)
$$

where $C_{n_{2}}$ is the column vector of size n_{2} with all entries equal to $\frac{1}{\sqrt{\left(2 r_{1}+n_{2}\right)\left(r_{2}+1\right)}}$, $B\left(G_{2}\right)$ is the $n_{2} \times n_{2}$ matrix whose all diagonal entries are 1 and off-diagonal entries are $\frac{r_{2}}{r_{2}+1}$ and c is the constant whose value is $\frac{1}{\sqrt{r_{1}\left(2 r_{1}+n_{2}\right)}}$.

$$
\mathcal{L}\left(G_{1} \mapsto_{Q} G_{2}\right)=\left(\begin{array}{ccc}
I_{n_{1}} & -c R\left(G_{1}\right) & O_{n_{1} \times n_{1} n_{2}} \tag{iii}\\
-c R\left(G_{1}\right)^{T} & I_{m_{1}}-\frac{1}{2\left(r_{1}+n_{2}\right)} A\left(l\left(G_{1}\right)\right) & -R\left(G_{1}\right)^{T} \otimes C_{n_{2}}^{T} \\
O_{n_{1} n_{2} \times n_{1}} & -R\left(G_{1}\right) \otimes C_{n_{2}} & I_{n_{1}} \otimes\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)
\end{array}\right)
$$

where $C_{n_{2}}$ is the column vector of size n_{2} with all entries equal to $\frac{1}{\sqrt{2\left(r_{1}+n_{2}\right)\left(r_{2}+r_{1}\right)}}$, $B\left(G_{2}\right)$ is the $n_{2} \times n_{2}$ matrix whose all diagonal entries are 1 and off-diagonal entries are $\frac{r_{2}}{r_{2}+r_{1}}$ and c is the constant whose value is $\frac{1}{\sqrt{2 r_{1}\left(r_{1}+n_{2}\right)}}$.
(iv)
$\mathcal{L}\left(G_{1} \boxminus_{Q} G_{2}\right)=\left(\begin{array}{ccc}I_{n_{1}} & -c R\left(G_{1}\right) & -R\left(G_{1}\right) \otimes C_{n_{2}}^{T} \\ -c R\left(G_{1}\right)^{T} & I_{m_{1}}-\frac{1}{2 r_{1}\left(1+n_{2}\right)-2 n_{2}} A\left(l\left(G_{1}\right)\right) & -A\left(l\left(G_{1}\right)\right) \otimes E_{n_{2}}^{T} \\ -R\left(G_{1}\right)^{T} \otimes C_{n_{2}} & -A\left(l\left(G_{1}\right)\right) \otimes E_{n_{2}} & I_{m_{1}} \otimes\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\end{array}\right)$
where $C_{n_{2}}$ is the column vector of size n_{2} with all entries equal to $\frac{1}{\sqrt{r_{1}\left(1+n_{2}\right)\left(r_{2}+2 r_{1}\right)}}$, $E_{n_{2}}$ is the column vector of size n_{2} with all entries equal to $\frac{1}{\sqrt{\left(2 r_{1}+2 r_{1} n_{2}-2 n_{2}\right)\left(r_{2}+2 r_{1}\right)}}$, $B\left(G_{2}\right)$ is the $n_{2} \times n_{2}$ matrix whose all diagonal entries are 1 and off-diagonal entries are $\frac{r_{2}}{r_{2}+2 r_{1}}$ and c is the constant whose value is $\frac{1}{\sqrt{r_{1}\left(2 r_{1}+2 r_{1} n_{2}-2 n_{2}\right)\left(1+n_{2}\right)}}$.

Proof. To obtain the required normalized Laplacian matrices we label the vertices of the graphs in the following way. We take $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$, $I\left(G_{1}\right)=\left\{e_{1}, e_{2}, \ldots, e_{m_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$. For $i=1,2, \ldots, n_{1}$, let $V^{i}\left(G_{2}\right)=\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{2}}^{i}\right\}$ be the vertex set of the $i^{t h}$ copy of G_{2}. Then $V\left(G_{1}\right) \cup I\left(G_{1}\right) \cup\left\{W_{1} \cup W_{2} \cup \cdots \cup W_{n_{2}}\right\}$ is a partition of both $V\left(G_{1} \odot_{Q} G_{2}\right)$ and $V\left(G_{1} \odot_{Q} G_{2}\right)$, where $W_{j}=\left\{u_{j}^{1}, u_{j}^{2}, \ldots, u_{j}^{n_{1}}\right\}$ for $V\left(G_{1} \odot_{Q} G_{2}\right)$ and $W_{j}=$ $\left\{u_{j}^{1}, u_{j}^{2}, \ldots, u_{j}^{m_{1}}\right\}$ for $V\left(G_{1} \Theta_{Q} G_{2}\right), j=1,2, \ldots, n_{2}$.

Similarly, $V\left(G_{1}\right) \cup I\left(G_{1}\right) \cup\left\{V^{1}\left(G_{2}\right) \cup V^{2}\left(G_{2}\right) \cup \cdots \cup V^{l}\left(G_{2}\right)\right\}$ is a partition of both $V\left(G_{1} \unlhd_{Q} G_{2}\right)$ and $V\left(G_{1} \boxminus_{Q} G_{2}\right)$, where $l=n_{1}$ for the former and $l=m_{1}$ for the latter.

The degrees of the vertices in the different Q-coronas are as given below:

$$
\begin{aligned}
& d_{G_{1} \odot_{Q} G_{2}}(v)= \begin{cases}n_{2}+d_{G_{1}}(v) & \text { if } v \in V\left(G_{1}\right), \\
2 d_{G_{1}}(v) & \text { if } v \in I\left(G_{1}\right), \\
1+d_{G_{2}}\left(u_{j}\right) & \text { if } v=u_{j}^{i}, i=1,2, \ldots, n_{1}, j=1,2, \ldots, n_{2} .\end{cases} \\
& d_{G_{1} \ominus_{Q} G_{2}}(v)= \begin{cases}d_{G_{1}}(v) & \text { if } v \in V\left(G_{1}\right), \\
2 d_{G_{1}}(v)+n_{2} & \text { if } v \in I\left(G_{1}\right), \\
1+d_{G_{2}}\left(u_{j}\right) & \text { if } v=u_{j}^{i}, i=1,2, \ldots, m_{1}, j=1,2, \ldots, n_{2} .\end{cases} \\
& d_{G_{1} \unrhd_{Q} G_{2}}(v)= \begin{cases}d_{G_{1}}(v) & \text { if } v \in V\left(G_{1}\right), \\
2\left(d_{G_{1}}(v)+n_{2}\right) & \text { if } v \in I\left(G_{1}\right), \\
d_{G_{1}}\left(v_{i}\right)+d_{G_{2}}\left(u_{j}\right) & \text { if } v=u_{j}^{i}, i=1,2, \ldots, n_{1}, j=1,2, \ldots, n_{2} .\end{cases} \\
& d_{G_{1} \boxminus \boxminus_{Q} G_{2}}(v)= \begin{cases}\left(1+n_{2}\right) d_{G_{1}}(v) & \text { if } v \in V\left(G_{1}\right), \\
2 d_{G_{1}}(v)\left(1+n_{2}\right)-2 n_{2} & \text { if } v \in I\left(G_{1}\right) \\
2 d_{G_{1}}\left(v_{i}\right)+d_{G_{2}}\left(u_{j}\right) & \text { if } v=u_{j}^{i}, i=1,2, \ldots, m_{1}, j=1,2, \ldots, n_{2} .\end{cases}
\end{aligned}
$$

Then the Lemma follows from (1), considering the ordering of the vertices as given in the above partitions of the vertex sets.

Notation. Let G be a graph on n vertices, B and C be matrices of size $n \times n$ and $n \times 1$, respectively. For any parameter λ, we have the notation: $\chi_{G}(B, C, \lambda)=$ $C^{T}\left(\lambda I_{n}-(\mathcal{L}(G) \bullet B)\right)^{-1} C$. We note that the notation is similar to the notion 'coronal' which was introduced by McLeman[14].

Theorem 6. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the normalized Laplacian spectrum of $G_{1} \odot_{Q} G_{2}$ consists of:
(i) The eigenvalue $\frac{1+r_{2} \delta_{j}}{r_{2}+1}$ with multiplicity n_{1} for every eigenvalue $\delta_{j}(j=2$, $\left.3, \ldots, n_{2}\right)$ of $\mathcal{L}\left(G_{2}\right)$,
(ii) The eigenvalue $\frac{1+r_{1}}{r_{1}}$ with multiplicity $m_{1}-n_{1}$,
(iii) Three roots of the equation
$2 r_{1}\left(r_{1}+n_{2}+r_{1} r_{2}+r_{2} n_{2}\right) \lambda^{3}-\left(2 r_{1}^{2} r_{2}+4 r_{1}^{2}+2 r_{1} r_{2} n_{2}+2 r_{1}+2 r_{1} r_{2}+2 n_{2}+\right.$ $\left.2 r_{2} n_{2}+4 r_{1} n_{2}+r_{1}^{2} \mu_{i}+r_{1}^{2} r_{2} \mu_{i}+r_{1} r_{2} n_{2} \mu_{i}+r_{1} n_{2} \mu_{i}\right) \lambda^{2}+\left(2 r_{1}^{2}+2 n_{2} r_{2}+2 r_{1}+\right.$ $\left.4 n_{2}+r_{1} r_{2} \mu_{i}+r_{1} \mu_{i}+r_{1}^{2} r_{2} \mu_{i}+2 r_{1}^{2} \mu_{i}+r_{1} r_{2} n_{2} \mu_{i}+2 r_{1} n_{2} \mu_{i}\right) \lambda-r_{1}^{2} \mu_{i}-r_{1} \mu_{i}=0$, for each eigenvalue $\mu_{i}\left(i=1,2, \ldots, n_{1}\right)$ of $\mathcal{L}\left(G_{1}\right)$.

Proof. The normalized Laplacian characteristic polynomial of $G_{1} \odot_{Q} G_{2}$ is

$$
\begin{aligned}
& f_{G_{1} \odot_{Q} G_{2}}(\lambda)=\operatorname{det}\left(\lambda I_{n_{1}\left(n_{2}+1\right)+m_{1}}-\mathcal{L}\left(G_{1} \odot_{Q} G_{2}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
(\lambda-1) I_{n_{1}} & c R\left(G_{1}\right) \\
c R\left(G_{1}\right)^{T} & (\lambda-1) I_{m_{1}}+\frac{1}{2 r_{1}} A\left(l\left(G_{1}\right)\right) \\
C_{n_{2}} \otimes I_{n_{1}} & O_{n_{1} n_{2} \times m_{1}}
\end{array} O_{m_{1} \times n_{1} n_{2}}\right. \\
& \left.=\operatorname{det}\left(\left(\lambda I_{n_{2}}-\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\right) \otimes I_{n_{1}}-\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\right) \otimes I_{n_{1}}\right) \operatorname{det}(S),
\end{aligned}
$$

where

$$
\begin{aligned}
& S=\left(\begin{array}{cc}
(\lambda-1) I_{n_{1}} & c R\left(G_{1}\right) \\
c R\left(G_{1}\right)^{T} & (\lambda-1) I_{m_{1}}+\frac{1}{2 r_{1}} A\left(l\left(G_{1}\right)\right)
\end{array}\right) \\
&-\binom{C_{n_{2}}^{T} \otimes I_{n_{1}}}{O_{m_{1} \times n_{1} n_{2}}}\left(\left(\lambda I_{n_{2}}-\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\right) \otimes I_{n_{1}}\right)^{-1}\left(C_{n_{2}} \otimes I_{n_{1}}\right. \\
&\left.O_{n_{1} n_{2} \times m_{1}}\right) \\
&=\left(\begin{array}{cc}
\left(\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)\right) I_{n_{1}} & c R\left(G_{1}\right) \\
c R\left(G_{1}\right)^{T} & (\lambda-1) I_{m_{1}}+\frac{1}{2 r_{1}} A\left(l\left(G_{1}\right)\right)
\end{array}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \operatorname{det}(S)=\operatorname{det}\left(\left(\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)\right) I_{n_{1}}\right) \\
& \operatorname{det}\left((\lambda-1) I_{m_{1}}+\frac{1}{2 r_{1}} A\left(l\left(G_{1}\right)\right)-\frac{c^{2}}{\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)} R\left(G_{1}\right)^{T} R\left(G_{1}\right)\right) \\
& =\left(\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)\right)^{n_{1}} \\
& \operatorname{det}\left(\left(\lambda-1-\frac{2 c^{2}}{\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)}\right) I_{m_{1}}+\left(\frac{1}{2 r_{1}}-\frac{c^{2}}{\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)}\right) A\left(l\left(G_{1}\right)\right)\right. \\
& =\left(\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)\right)^{n_{1}}\left(\lambda-1-\frac{1}{r_{1}}\right)^{m_{1}-n_{1}} \\
& \operatorname{det}\left(\left(\lambda-1-\frac{2 c^{2}}{\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)}\right) I_{n_{1}}\right. \\
& \left.+\left(\frac{1}{2 r_{1}}-\frac{c^{2}}{\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)}\right)\left(2\left(r_{1}-1\right) I_{n_{1}}-r_{1} \mathcal{L}\left(G_{1}\right)\right)\right) \\
& =\left(\lambda-1-\frac{1}{r_{1}}\right)^{m_{1}-n_{1}} \operatorname{det}^{\left((\lambda-1)\left(\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)\right) I_{n_{1}}-c^{2} r_{1}\left(2 I_{n_{1}}-\mathcal{L}\left(G_{1}\right)\right)\right.} \\
& \left.+\frac{1}{2 r_{1}}\left(\left(2 r_{1}-2\right) I_{n_{1}}-r_{1} \mathcal{L}\left(G_{1}\right)\right)\left(\lambda-1-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)\right)\right) .
\end{aligned}
$$

Since $\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)=I_{n_{2}}-\frac{1}{r_{2}+1} A\left(G_{2}\right)$, we get, $\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)=\frac{1}{r_{2}+1}\left(I_{n_{2}}+\right.$ $\left.r_{2} \mathcal{L}\left(G_{2}\right)\right)$.

As G_{2} is regular, the sum of all entries on every row of its normalized Laplacian matrix is zero. That means, $\mathcal{L}\left(G_{2}\right) C_{n_{2}}=\left(1-\frac{r_{2}}{r_{2}}\right) C_{n_{2}}=0 C_{n_{2}}$. Then $\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) C_{n_{2}}=\left(1-\frac{r_{2}}{r_{2}+1}\right) C_{n_{2}}=\frac{1}{r_{2}+1} C_{n_{2}}$ and $\left(\lambda I_{n_{2}}-\left(\mathcal{L}\left(G_{2}\right) \bullet\right.\right.$ $\left.\left.B\left(G_{2}\right)\right)\right) C_{n_{2}}=\left(\lambda-\frac{1}{r_{2}+1}\right) C_{n_{2}}$. Also, $C_{n_{2}}^{T} C_{n_{2}}=\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)}$.

Now, $\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)=C_{n_{2}}^{T}\left(\lambda I_{n_{2}}-\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\right)^{-1} C_{n_{2}}=\frac{C_{n_{2}}^{T} C_{n_{2}}}{\left(\lambda-\frac{1}{r_{2}+1}\right)}=$ $\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(\lambda-\frac{1}{r_{2}+1}\right)}$.

Thus, if δ_{j} is an eigenvalue of $\mathcal{L}\left(G_{2}\right)$ and μ_{i} is an eigenvalue of $\mathcal{L}\left(G_{1}\right)$, then

$$
\begin{aligned}
f_{G_{1} \odot_{Q} G_{2}}(\lambda)= & \left(\lambda-1-\frac{1}{r_{1}}\right)^{m_{1}-n_{1}} \prod_{j=1}^{n_{2}}\left(\lambda-\frac{1+r_{2} \delta_{j}}{r_{2}+1}\right)^{n_{1}} \\
& \prod_{i=1}^{n_{1}}\left\{(\lambda-1)\left(\lambda-1-\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(\lambda-\frac{1}{r_{2}+1}\right)}\right)+\frac{r_{1}\left(\mu_{i}-2\right)}{2 r_{1}\left(r_{1}+n_{2}\right)}\right. \\
+ & \left.\frac{1}{2 r_{1}}\left(2 r_{1}-2-r_{1} \mu_{i}\right)\left(\lambda-1-\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(\lambda-\frac{1}{r_{2}+1}\right)}\right)\right\} .
\end{aligned}
$$

(i) Since the only pole of $\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right)$ is $\lambda=\frac{1}{r_{2}+1}$ and 0 is an eigenvalue of $\mathcal{L}\left(G_{2}\right), \frac{1+r_{2} \delta_{j}}{r_{2}+1}$ is an eigenvalue of $\mathcal{L}\left(G_{1} \odot_{Q} G_{2}\right)$ with multiplicity n_{1}, for $j=$ $2,3, \ldots, n_{2}$.
(ii) Immediate from the characteristic polynomial.
(iii) We get the remaining eigenvalues from the following equation:

$$
\begin{aligned}
& (\lambda-1)\left(\lambda-1-\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(\lambda-\frac{1}{r_{2}+1}\right)}\right)+\frac{r_{1}\left(\mu_{i}-2\right)}{2 r_{1}\left(r_{1}+n_{2}\right)} \\
& +\frac{1}{2 r_{1}}\left(2 r_{1}-2-r_{1} \mu_{i}\right)\left(\lambda-1-\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(\lambda-\frac{1}{r_{2}+1}\right)}\right)=0,
\end{aligned}
$$

that is, $2 r_{1}\left(r_{1}+n_{2}+r_{1} r_{2}+r_{2} n_{2}\right) \lambda^{3}-\left(2 r_{1}^{2} r_{2}+4 r_{1}^{2}+2 r_{1} r_{2} n_{2}+2 r_{1}+2 r_{1} r_{2}+2 n_{2}+\right.$ $\left.2 r_{2} n_{2}+4 r_{1} n_{2}+r_{1}^{2} \mu_{i}+r_{1}^{2} r_{2} \mu_{i}+r_{1} r_{2} n_{2} \mu_{i}+r_{1} n_{2} \mu_{i}\right) \lambda^{2}+\left(2 r_{1}^{2}+2 n_{2} r_{2}+2 r_{1}+4 n_{2}+\right.$ $\left.r_{1} r_{2} \mu_{i}+r_{1} \mu_{i}+r_{1}^{2} r_{2} \mu_{i}+2 r_{1}^{2} \mu_{i}+r_{1} r_{2} n_{2} \mu_{i}+2 r_{1} n_{2} \mu_{i}\right) \lambda-r_{1}^{2} \mu_{i}-r_{1} \mu_{i}=0$
for $i=1,2, \ldots, n_{1}$.
In the similar way we can prove the Theorem 7, 8 and 9 .
Theorem 7. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the normalized Laplacian spectrum of $G_{1} \Theta_{Q} G_{2}$ consists of:
(i) The eigenvalue $\frac{1+r_{2} \delta_{j}}{r_{2}+1}$ with multiplicity m_{1} for every eigenvalue $\delta_{j}(j=$ $\left.2,3, \ldots, n_{2}\right)$ of $\mathcal{L}\left(G_{2}\right)$,
(ii) Two roots of the equation
$\left(r_{2} n_{2}+2 r_{1} r_{2}+n_{2}+2 r_{1}\right) \lambda^{2}-\left(2+2 r_{2}+r_{2} n_{2}+2 n_{2}+2 r_{1} r_{2}+4 r_{1}\right) \lambda+2=0$,
where each root repeats $m_{1}-n_{1}$ times,
(iii) Three roots of the equation
$\left(r_{2} n_{2}+2 r_{1} r_{2}+n_{2}+2 r_{1}\right) \lambda^{3}-\left(2 r_{1} r_{2}+2 r_{2} n_{2}+3 n_{2}+2 r_{2}+2+4 r_{1}+r_{1} r_{2} \mu_{i}+\right.$ $\left.r_{1} \mu_{i}\right) \lambda^{2}+\left(2 r_{1}+r_{2} n_{2}+2 n_{2}+2+2 r_{1} \mu_{i}+r_{2} \mu_{i}+r_{1} r_{2} \mu_{i}+\mu_{i}\right) \lambda-\mu_{i}-r_{1} \mu_{i}=0$, for each eigenvalue $\mu_{i}\left(i=1,2, \ldots, n_{1}\right)$ of $\mathcal{L}\left(G_{1}\right)$.

Theorem 8. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the normalized Laplacian spectrum of $G_{1} \unlhd_{Q} G_{2}$ consists of:
(i) The eigenvalue $\frac{r_{1}+r_{2} \delta_{j}}{r_{2}+r_{1}}$ with multiplicity n_{1} for every eigenvalue $\delta_{j}(j=$ $\left.2,3, \ldots, n_{2}\right)$ of $\mathcal{L}\left(G_{2}\right)$,
(ii) The eigenvalue $\frac{r_{1}+n_{2}+1}{r_{1}+n_{2}}$ with multiplicity $m_{1}-n_{1}$,
(iii) Three roots of the equation
$2\left(r_{1} n_{2}+r_{2} n_{2}+r_{1}^{2}+r_{1} r_{2}\right) \lambda^{3}-\left(6 r_{1} n_{2}+4 r_{2} n_{2}+4 r_{1}^{2}+2 r_{1}+2 r_{2}+2 r_{1} r_{2}+\right.$ $\left.r_{1}^{2} \mu_{i}+r_{1} r_{2} \mu_{i}\right) \lambda^{2}+\left(4 r_{1} n_{2}+2 r_{2} n_{2}+2 r_{1}+2 r_{1}^{2}+r_{1} n_{2} \mu_{i}+r_{1} \mu_{i}+r_{2} \mu_{i}+2 r_{1}^{2} \mu_{i}+\right.$ $\left.r_{1} r_{2} \mu_{i}\right) \lambda-r_{1} n_{2} \mu_{i}-r_{1}^{2} \mu_{i}-r_{1} \mu_{i}=0$, for each eigenvalue $\mu_{i}\left(i=1,2, \ldots, n_{1}\right)$ of $\mathcal{L}\left(G_{1}\right)$.

Theorem 9. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the normalized Laplacian spectrum of $G_{1} \boxminus_{Q} G_{2}$ consists of:
(i) The eigenvalue $\frac{2 r_{1}+r_{2} \delta_{j}}{r_{2}+2 r_{1}}$ with multiplicity m_{1} for every eigenvalue $\delta_{j}(j=$ $\left.2,3, \ldots, n_{2}\right)$ of $\mathcal{L}\left(G_{2}\right)$,
(ii) Two roots of the equation
$\left(2 r_{1}+r_{2}+2 r_{1} n_{2}+r_{2} n_{2}\right) \lambda^{2}-\left(4 r_{1}+r_{2}+4 r_{1} n_{2}+r_{2} n_{2}\right) \lambda+2 r_{1}+2 r_{1} n_{2}-$ $2 n_{2}+n_{2} \mu_{i}=0$
for each eigenvalue $\mu_{i}\left(i=1,2, \ldots, n_{1}\right)$ of $\mathcal{L}\left(G_{1}\right)$ and
(iii) The eigenvalues of the matrix

$$
\left(\begin{array}{c}
(\lambda-1) I_{m_{1}}+\frac{1}{2 r_{1}\left(1+n_{2}\right)-2 n_{2}}
\end{array} A\left(l\left(G_{1}\right)\right)-\chi_{G_{2}}\left(B\left(G_{2}\right), E_{n_{2}}, \lambda\right) A\left(l\left(G_{1}\right)\right)^{2}\right)\left(\begin{array}{c}
r_{1}\left(+n_{2}\right) \\
-\left\{c-\sqrt{2 r_{1}+2 r_{1} n_{2}-2 n_{2}}\right. \\
\left.\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right) A\left(l\left(G_{1}\right)\right)\right\} R\left(G_{1}\right)^{T} \\
\cdot\left((\lambda-1) I_{n_{1}}-\chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right) R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right)^{-1} \\
\cdot R\left(G_{1}\right)\left\{c-\sqrt{\frac{r_{1}\left(1+n_{2}\right)}{2 r_{1}+2 r_{1} n_{2}-2 n_{2}}} \chi_{G_{2}}\left(B\left(G_{2}\right), C_{n_{2}}, \lambda\right) A\left(l\left(G_{1}\right)\right)\right\}
\end{array}\right)
$$

Remark 10. If G_{1} and G_{2} are two regular graphs then we find from Theorems 6, 7,8 and 9 , that the normalized Laplacian spectrum of all the Q-coronas depend only on the degrees of regularities, number of vertices, number of edges, and normalized Laplacian eigenvalues of G_{1} and G_{2}. Thus for $i=1,2$, if G_{i} and H_{i} are \mathcal{L}-cospectral regular graphs then $G_{1} \odot_{Q} G_{2}$ (respectively, $G_{1} \ominus_{Q} G_{2}, G_{1} \square_{Q} G_{2}$ and $G_{1} \boxminus_{Q} G_{2}$) is \mathcal{L}-cospectral with $H_{1} \odot_{Q} H_{2}$ (respectively, $H_{1} \oplus_{Q} H_{2}, H_{1} \square_{Q} H_{2}$ and $H_{1} \boxminus_{Q} H_{2}$).

Now we apply the results of the paper and determine some normalized Laplacian cospectral graphs. Since for an r-regular graph G we have $\mathcal{L}(G)=$ $I_{n}-\frac{1}{r} A(G)$, the Lemma below is immediate.
Lemma 11. Two regular graphs are \mathcal{L}-cospectral if and only if they are cospectral.
In the literature there are several regular cospectral graphs, for example see [15]. In Theorem 12 below we construct non-regular \mathcal{L}-cospectral graphs using Q-coronas. Proof of this theorem follows from Remark 10 and Lemma 11.
Theorem 12. If G_{1} and H_{1} (not necessarily distinct) are \mathcal{L}-cospectral regular graphs, and G_{2} and H_{2} (not necessarily distinct) are \mathcal{L}-cospectral regular graphs, then $G_{1} \odot_{Q} G_{2}$ (respectively, $G_{1} \odot_{Q} G_{2}, G_{1} \odot_{Q} G_{2}$ and $G_{1} \boxminus_{Q} G_{2}$) and $H_{1} \odot_{Q} H_{2}$ (respectively, $H_{1} \ominus_{Q} H_{2}, H_{1} \unlhd_{Q} H_{2}$ and $H_{1} \boxminus_{Q} H_{2}$) are \mathcal{L}-cospectral graphs.
Example 13. Let us consider regular \mathcal{L}-cospectral graphs G_{1} and $H_{1}[15]$ as given in Figure 3.

We also consider graphs G_{2} and H_{2} both of which are copies of K_{2}. Now by Theorem 12 the graph $G_{1} \odot_{Q} K_{2}$ will be \mathcal{L}-cospectral with the graph $H_{1} \odot_{Q} K_{2}$.

Figure 3. Two cospectral regular graphs

References

[1] A. Banerjee and J. Jost, On the spectrum of the normalized graph Laplacian, Linear Algebra Appl. 428 (2008) 3015-3022. doi:10.1016/j.laa.2008.01.029
[2] S. Butler and J. Grout, A construction of cospectral graphs for the normalized Laplacian, Electr. J. Combin. 18 (2011) 231pp.
[3] F.R.K. Chung, Spectral Graph Theory (CBMS. Reg. Conf. Ser. Math. 92, AMS, providence, RI, 1997).
[4] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, 2009).
[5] A. Das and P. Panigrahi, Normalized Laplacian spectrum of different type of coronas of two regular graphs, Kragujevac J. Math. 41 (2017) 57-69.
[6] A. Das and P. Panigrahi, Normalized Laplacian spectrum of some subdivisioncoronas of two regular graphs, Linear and Multilinear Algebra 65 (2017) 962-972. doi:10.1080/03081087.2016.1217976
[7] A. Das and P. Panigrahi, Normalized Laplacian spectrum of some R-coronas of two regular graphs, South. Asian Bull. Math. 42 (2018) 833-844.
[8] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001).
[9] F. Harary, Graph Theory (Addison-Wesley, Reading, PA, 1969).
[10] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991).
[11] J. Huang and S.C. Li, On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs, Bull. Aust. Math. Soc. 91 (2015) 353-367. doi:10.1017/S0004972715000027
[12] H.H. Li and J.S. Li, A note on the normalized Laplacian spectra, Taiwanese J. Math. 15 (2011) 129-139.
[13] Q. Liu, J.B. Liu and J. Cao, Further results on resistance distance and Kirchhoff index in electric networks (Discrete Dynamics in Nature and Society, 2016). doi:10.1155/2016/4682527
[14] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998-1007.
doi:10.1016/j.laa.2011.02.007
[15] E.R. Vandam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272.
doi:10.1016/S0024-3795(03)00483-X
Received 28 January 2019
Revised 19 September 2019
Accepted 11 October 2020

