NORMALIZED LAPLACIAN SPECTRUM OF SOME Q-CORONAS OF TWO REGULAR GRAPHS

Arpita Das and Pratima Panigrahi

Department of Mathematics Indian Institute of Technology Kharagpur India, 721302

e-mail: arpita.das1201@gmail.com pratima@maths.iitkgp.ernet.in

Abstract

In this paper we determine the normalized Laplacian spectrum of the Q-vertex corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge neighborhood corona of a connected regular graph with an arbitrary regular graph in terms of normalized Laplacian eigenvalues of the original graphs. Moreover, applying these results we find some non-regular normalized Laplacian co-spectral graphs.

Keywords: normalized Laplacian matrix, Q-vertex corona, Q-edge corona, Q-vertex neighborhood corona, Q-edge neighborhood corona, Kronecker product, Hadamard product.

2010 Mathematics Subject Classification: 05C50; 47A75.

1. Introduction

Spectra of graphs have an important role in determining structural properties of graphs. The normalized Laplacian spectrum of a graph gives [3] bipartiteness, connectedness and many more information of a graph. F. Chung [3] introduced the normalized Laplacian matrix of a simple graph G, denoted by $\mathcal{L}(G)$, which is a square matrix with rows and columns are indexed by vertices of G, and for any two vertices u and v of G the $(u, v)^{th}$ entry of it is given by,

$$\mathcal{L}(u,v) = \begin{cases} 1 & \text{if } u = v \text{ and } d_v \neq 0, \\ \frac{-1}{\sqrt{d_u d_v}} & \text{if } u \text{ and } v \text{ are adjacent,} \\ 0 & \text{otherwise,} \end{cases}$$

where d_u and d_v are degree of u and v, respectively. If D(G) is the diagonal matrix of vertex degrees and A(G) is the adjacency matrix of G (where A(u,v)=1 if and only if the vertex u is adjacent to the vertex v and 0 otherwise) then we can write,

(1)
$$\mathcal{L}(G) = I - D(G)^{-1/2} A(G) D(G)^{-1/2}$$

with the convention that $D(G)^{-1}(u,u)=0$ if $d_u=0$. We denote the characteristic polynomial $det(\lambda I - \mathcal{L}(G))$ of $\mathcal{L}(G)$ by $f_G(\lambda)$. The roots of $f_G(\lambda)$ are known as the normalized Laplacian eigenvalues of G. The multiset of the normalized Laplacian eigenvalues of G is called the normalized Laplacian spectrum of G. Since $\mathcal{L}(G)$ is a symmetric and positive semi-definite matrix, its eigenvalues, denoted by $\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)$, are all real, non-negative and can be arranged in non-decreasing order $\lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_n(G)$. In [3], Chung proved that all normalized Laplacian eigenvalues of a graph lie in the interval [0,2], and 0 is always a normalized Laplacian eigenvalue, that is $\lambda_1(G)=0$. She also determined normalized Laplacian spectrum of different kinds of graphs like complete graphs, bipartite graphs, hypercubes etc. Two graphs G and H are called cospectral if A(G) and A(H) have the same spectrum. Similarly, graphs G and H are called normalized Laplacian cospectral or simply \mathcal{L} -cospectral if the spectrum of $\mathcal{L}(G)$ and $\mathcal{L}(H)$ are the same. Banerjee and Jost [1] investigated how the normalized Laplacian spectrum is affected by operations like motif doubling, graph splitting or joining. In [2], Butler and Grout produced (exponentially) large families of non-bipartite, non-regular graphs which are mutually cospectral, and also gave an example of a graph which is cospectral with its complement but is not self-complementary. In [12], Li studied the effect on the second smallest normalized Laplacian eigenvalue by grafting some pendant paths. In [5, 6, 7], Das and Panigrahi computed normalized Laplacian spectrum of coronas, subdivisioncoronas and R-coronas for two regular graphs. The Q-qraph Q(G) [4] is the graph obtained from G by inserting a new vertex into every edge of G and then joining by edges those pair of new vertices which lie on adjacent edges of G. The set of such new vertices is denoted by I(G) i.e $I(G) = V(Q(G)) \setminus V(G)$. In this paper we find the normalized Laplacian spectrum of graphs obtained by some corona operations on Q-graphs, which are defined below.

Definition. Let G_1 and G_2 be two vertex-disjoint graphs with number of vertices n_1 and n_2 , and edges m_1 and m_2 , respectively. Then

- (i) The Q-vertex corona [13] of G_1 and G_2 , denoted by $G_1 \odot_Q G_2$, is the graph obtained from vertex disjoint union of $Q(G_1)$ and $|V(G_1)|$ copies of G_2 , and by joining the i^{th} vertex of $V(G_1)$ to every vertex in the i^{th} copy of G_2 . The graph $G_1 \odot_Q G_2$ has $n_1(1+n_2) + m_1$ vertices.
- (ii) The Q-edge corona [13] of G_1 and G_2 , denoted by $G_1 \odot_Q G_2$, is the graph obtained from vertex disjoint union of $Q(G_1)$ and $|I(G_1)|$ copies of G_2 , and

- by joining the i^{th} vertex of $I(G_1)$ to every vertex in the i^{th} copy of G_2 . The graph $G_1 \ominus_Q G_2$ has $m_1(1+n_2)+n_1$ vertices.
- (iii) The Q-vertex neighborhood corona of G_1 and G_2 , denoted by $G_1 \square_Q G_2$, is the graph obtained from vertex disjoint union of $Q(G_1)$ and $|V(G_1)|$ copies of G_2 , and by joining the neighbors of the i^{th} vertex of $V(G_1)$ to every vertex in the i^{th} copy of G_2 . The graph $G_1 \square_Q G_2$ has $n_1(1 + n_2) + m_1$ vertices.
- (iv) The Q-edge neighborhood corona of G_1 and G_2 , denoted by $G_1 \boxminus_Q G_2$, is the graph obtained from vertex disjoint union of $Q(G_1)$ and $|I(G_1)|$ copies of G_2 , and by joining the neighbors of the i^{th} vertex of $I(G_1)$ to every vertex in the i^{th} copy of G_2 . The graph $G_1 \boxminus_Q G_2$ has $m_1(1 + n_2) + n_1$ vertices.

Example 1. Let us consider two graphs $G_1 = C_4$ and $G_2 = P_2$. The Q-vertex corona and Q-edge corona of G_1 and G_2 are given in Figure 1(a) and Figure 1(b), respectively. The Q-vertex neighborhood corona and Q-edge neighborhood corona of G_1 and G_2 are given in Figure 2(a) and Figure 2(b), respectively.

Figure 1. Q-vertex corona and Q-edge corona of C_4 and P_2 .

Figure 2. Q-vertex neighborhood corona and Q-edge neighborhood corona of C_4 and P_2 .

In [13], Liu et al. determined the resistance distance and Kirchhoff index of $G_1 \odot_Q G_2$ and $G_1 \odot_Q G_2$ of a regular graph G_1 and an arbitrary graph G_2 . Motivated by these works, here we determine the normalized Laplacian spectrum of $G_1 \odot_Q G_2$, $G_1 \odot_Q G_2$, $G_1 \odot_Q G_2$ and $G_1 \boxminus_Q G_2$ for a connected regular graph G_1 and an arbitrary regular graph G_2 in terms of the normalized Laplacian eigenvalues of G_1 and G_2 . Moreover, applying these results we construct non-regular \mathcal{L} -cospectral graphs.

To prove our results we need the following matrix products and few results on them. Recall that the Kronecker product of matrices $A=(a_{ij})$ of size $m\times n$ and B of size $p\times q$, denoted by $A\otimes B$, is defined to be the $mp\times nq$ partitioned matrix $(a_{ij}B)$. It is known [10] that for matrices M, M, M and M of suitable sizes, M and M of M and M of M and M of order M and M of order M and M of order M and M of same size M and M is a matrix of the same size M and M with entries given by $(A \bullet B)_{ij} = (A)_{ij} \cdot (B)_{ij}$ (entrywise multiplication). Hadamard product is commutative, that is $M \bullet M = B \bullet A$.

We also need the result given in Lemma 2 below.

Lemma 2 (Schur Complement [4]). Suppose that the order of all four matrices M, N, P and Q satisfy the rules of operations on matrices. Then we have,

$$\begin{vmatrix} M & N \\ P & Q \end{vmatrix} = |Q||M - NQ^{-1}P|, if Q is a non-singular square matrix,$$
$$= |M||Q - PM^{-1}N|, if M is a non-singular square matrix.$$

For a graph G with n vertices and m edges, the vertex-edge incidence matrix R(G) [8] is a matrix of order $n \times m$, with entry $r_{ij} = 1$ if the i^{th} vertex is incident to the j^{th} edge, and 0 otherwise. It is well known [4] that $R(G)R(G)^T = A(G) + rI_n$ and $A(G) = r(I_n - \mathcal{L}(G))$. So we get that $R(G)R(G)^T = r(2I_n - \mathcal{L}(G))$.

The line graph [8] of a graph G is the graph l(G), whose vertices are the edges of G and two vertices of l(G) are adjacent if and only if they are incident on a common vertex in G. It is well known [4] that $R(G)^T R(G) = A(l(G)) + 2I_m$.

Lemma 3 [4]. Let G be an r-regular graph. Then the eigenvalues of A(l(G)) are the eigenvalues of $A(G) + (r-2)I_n$ and -2 repeated m-n times.

If G is an r-regular graph, then obviously $\mathcal{L}(G) = I_n - \frac{1}{r}A(G)$. Therefore, by Lemma 3, we have the following.

Lemma 4. For an r-regular graph G, the eigenvalues of A(l(G)) are the eigenvalues of $2(r-1)I_n - r\mathcal{L}(G)$ and -2 repeated m-n times.

2. Our results

Throughout the paper for any integer k, I_k denotes the identity matrix of size k. In the lemma below we represent the normalized Laplacian matrix of Q-vertex corona, Q-edge corona, Q-vertex neighborhood corona, and Q-edge neighborhood corona of two regular graphs in terms of Kronecker product and Hadamard product of matrices. By considering the graph G_1 as connected here we prove all the theorems and the lemma below.

Lemma 5. For i = 1, 2, let G_i be an r_i -regular graph with n_i vertices and m_i edges. Then we have the following

$$\mathcal{L}(G_1 \odot_Q G_2) = \begin{pmatrix} I_{n_1} & -cR(G_1) & -C_{n_2}^T \otimes I_{n_1} \\ -cR(G_1)^T & I_{m_1} - \frac{1}{2r_1} A(l(G_1)) & O_{m_1 \times n_1 n_2} \\ -C_{n_2} \otimes I_{n_1} & O_{n_1 n_2 \times m_1} & (\mathcal{L}(G_2) \bullet B(G_2)) \otimes I_{n_1} \end{pmatrix}$$

where C_{n_2} is the column vector of size n_2 with all entries equal to $\frac{1}{\sqrt{(r_1+n_2)(r_2+1)}}$, $B(G_2)$ is the $n_2 \times n_2$ matrix whose all diagonal entries are 1 and off-diagonal entries are $\frac{r_2}{r_2+1}$ and c is the constant whose value is $\frac{1}{\sqrt{2r_1(r_1+n_2)}}$.

(ii)

(11)
$$\mathcal{L}(G_1 \ominus_Q G_2) = \begin{pmatrix} I_{n_1} & -cR(G_1) & O_{n_1 \times m_1 n_2} \\ -cR(G_1)^T & I_{m_1} - \frac{1}{2r_1 + n_2} A(l(G_1)) & -C_{n_2}^T \otimes I_{m_1} \\ O_{m_1 n_2 \times n_1} & -C_{n_2} \otimes I_{m_1} & (\mathcal{L}(G_2) \bullet B(G_2)) \otimes I_{m_1} \end{pmatrix}$$

where C_{n_2} is the column vector of size n_2 with all entries equal to $\frac{1}{\sqrt{(2r_1+n_2)(r_2+1)}}$, $B(G_2)$ is the $n_2 \times n_2$ matrix whose all diagonal entries are 1 and off-diagonal entries are $\frac{r_2}{r_2+1}$ and c is the constant whose value is $\frac{1}{\sqrt{r_1(2r_1+n_2)}}$.

(iii)

$$\mathcal{L}(G_1 \boxdot_Q G_2) = \begin{pmatrix} I_{n_1} & -cR(G_1) & O_{n_1 \times n_1 n_2} \\ -cR(G_1)^T & I_{m_1} - \frac{1}{2(r_1 + n_2)} A(l(G_1)) & -R(G_1)^T \otimes C_{n_2}^T \\ O_{n_1 n_2 \times n_1} & -R(G_1) \otimes C_{n_2} & I_{n_1} \otimes (\mathcal{L}(G_2) \bullet B(G_2)) \end{pmatrix}$$

where C_{n_2} is the column vector of size n_2 with all entries equal to $\frac{1}{\sqrt{2(r_1+n_2)(r_2+r_1)}}$, $B(G_2)$ is the $n_2 \times n_2$ matrix whose all diagonal entries are 1 and off-diagonal entries are $\frac{r_2}{r_2+r_1}$ and c is the constant whose value is $\frac{1}{\sqrt{2r_1(r_1+n_2)}}$.

$$\mathcal{L}(G_1 \boxminus_Q G_2) = \begin{pmatrix} I_{n_1} & -cR(G_1) & -R(G_1) \otimes C_{n_2}^T \\ -cR(G_1)^T & I_{m_1} - \frac{1}{2r_1(1+n_2)-2n_2} A(l(G_1)) & -A(l(G_1)) \otimes E_{n_2}^T \\ -R(G_1)^T \otimes C_{n_2} & -A(l(G_1)) \otimes E_{n_2} & I_{m_1} \otimes (\mathcal{L}(G_2) \bullet B(G_2)) \end{pmatrix}$$

where C_{n_2} is the column vector of size n_2 with all entries equal to $\frac{1}{\sqrt{r_1(1+n_2)(r_2+2r_1)}}$, E_{n_2} is the column vector of size n_2 with all entries equal to $\frac{1}{\sqrt{(2r_1+2r_1n_2-2n_2)(r_2+2r_1)}}$, $B(G_2)$ is the $n_2 \times n_2$ matrix whose all diagonal entries are 1 and off-diagonal entries are $\frac{r_2}{r_2+2r_1}$ and c is the constant whose value is $\frac{1}{\sqrt{r_1(2r_1+2r_1n_2-2n_2)(1+n_2)}}$.

Proof. To obtain the required normalized Laplacian matrices we label the vertices of the graphs in the following way. We take $V(G_1) = \{v_1, v_2, \dots, v_{n_1}\},\$ $I(G_1) = \{e_1, e_2, \dots, e_{m_1}\}$ and $V(G_2) = \{u_1, u_2, \dots, u_{n_2}\}$. For $i = 1, 2, \dots, n_1$, let $V^i(G_2) = \{u_1^i, u_2^i, \dots, u_{n_2}^i\}$ be the vertex set of the i^{th} copy of G_2 . Then $V(G_1) \cup I(G_1) \cup \{W_1 \cup W_2 \cup \cdots \cup W_{n_2}\}\$ is a partition of both $V(G_1 \odot_Q G_2)$ and $V(G_1 \odot_Q G_2)$, where $W_j = \{u_j^1, u_j^2, \dots, u_j^{n_1}\}\$ for $V(G_1 \odot_Q G_2)$ and $W_j = \{u_j^1, u_j^2, \dots, u_j^{n_1}\}\$ for $V(G_1 \odot_Q G_2)$ and $V(G_1 \odot_Q G_2)$ $\{u_j^1, u_j^2, \dots, u_j^{m_1}\}\$ for $V(G_1 \ominus_Q G_2), \ j = 1, 2, \dots, n_2.$ Similarly, $V(G_1) \cup I(G_1) \cup \{V^1(G_2) \cup V^2(G_2) \cup \dots \cup V^l(G_2)\}\$ is a partition

of both $V(G_1 \boxtimes_Q G_2)$ and $V(G_1 \boxtimes_Q G_2)$, where $l = n_1$ for the former and $l = m_1$ for the latter.

The degrees of the vertices in the different Q-coronas are as given below:

The degrees of the vertices in the different Q-coronas are as given below.
$$d_{G_1 \odot_Q G_2}(v) = \begin{cases} n_2 + d_{G_1}(v) & \text{if } v \in V(G_1), \\ 2d_{G_1}(v) & \text{if } v \in I(G_1), \\ 1 + d_{G_2}(u_j) & \text{if } v \in V(G_1), \end{cases}$$

$$d_{G_1 \odot_Q G_2}(v) = \begin{cases} d_{G_1}(v) & \text{if } v \in V(G_1), \\ 2d_{G_1}(v) + n_2 & \text{if } v \in I(G_1), \\ 1 + d_{G_2}(u_j) & \text{if } v = u_j^i, \ i = 1, 2, \dots, m_1, \ j = 1, 2, \dots, n_2. \end{cases}$$

$$d_{G_1 \odot_Q G_2}(v) = \begin{cases} d_{G_1}(v) & \text{if } v \in V(G_1), \\ 2(d_{G_1}(v) + n_2) & \text{if } v \in I(G_1), \\ d_{G_1}(v_i) + d_{G_2}(u_j) & \text{if } v = u_j^i, \ i = 1, 2, \dots, n_1, \ j = 1, 2, \dots, n_2. \end{cases}$$

$$d_{G_1 \odot_Q G_2}(v) = \begin{cases} (1 + n_2)d_{G_1}(v) & \text{if } v \in V(G_1), \\ 2d_{G_1}(v)(1 + n_2) - 2n_2 & \text{if } v \in I(G_1), \\ 2d_{G_1}(v) + d_{G_2}(u_j) & \text{if } v = u_j^i, \ i = 1, 2, \dots, m_1, \ j = 1, 2, \dots, n_2. \end{cases}$$

Then the Lemma follows from (1), considering the ordering of the vertices as given in the above partitions of the vertex sets.

Notation. Let G be a graph on n vertices, B and C be matrices of size $n \times n$ and $n \times 1$, respectively. For any parameter λ , we have the notation: $\chi_G(B, C, \lambda) = C^T(\lambda I_n - (\mathcal{L}(G) \bullet B))^{-1}C$. We note that the notation is similar to the notion 'coronal' which was introduced by McLeman[14].

Theorem 6. For i = 1, 2, let G_i be an r_i -regular graph with n_i vertices and m_i edges. Then the normalized Laplacian spectrum of $G_1 \odot_Q G_2$ consists of:

- (i) The eigenvalue $\frac{1+r_2\delta_j}{r_2+1}$ with multiplicity n_1 for every eigenvalue δ_j $(j=2, 3, \ldots, n_2)$ of $\mathcal{L}(G_2)$,
- (ii) The eigenvalue $\frac{1+r_1}{r_1}$ with multiplicity $m_1 n_1$,

Proof. The normalized Laplacian characteristic polynomial of $G_1 \odot_Q G_2$ is

$$f_{G_1 \odot_Q G_2}(\lambda) = \det(\lambda I_{n_1(n_2+1)+m_1} - \mathcal{L}(G_1 \odot_Q G_2))$$

$$= \det \begin{pmatrix} (\lambda - 1)I_{n_1} & cR(G_1) & C_{n_2}^T \otimes I_{n_1} \\ cR(G_1)^T & (\lambda - 1)I_{m_1} + \frac{1}{2r_1}A(l(G_1)) & O_{m_1 \times n_1 n_2} \\ C_{n_2} \otimes I_{n_1} & O_{n_1 n_2 \times m_1} & (\lambda I_{n_2} - (\mathcal{L}(G_2) \bullet B(G_2))) \otimes I_{n_1} \end{pmatrix}$$

$$= \det ((\lambda I_{n_2} - (\mathcal{L}(G_2) \bullet B(G_2))) \otimes I_{n_1}) \det(S),$$

where

$$S = \begin{pmatrix} (\lambda - 1)I_{n_1} & cR(G_1) \\ cR(G_1)^T & (\lambda - 1)I_{m_1} + \frac{1}{2r_1}A(l(G_1)) \end{pmatrix}$$

$$- \begin{pmatrix} C_{n_2}^T \otimes I_{n_1} \\ O_{m_1 \times n_1 n_2} \end{pmatrix} ((\lambda I_{n_2} - (\mathcal{L}(G_2) \bullet B(G_2))) \otimes I_{n_1})^{-1} \begin{pmatrix} C_{n_2} \otimes I_{n_1} & O_{n_1 n_2 \times m_1} \end{pmatrix}$$

$$= \begin{pmatrix} (\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda))I_{n_1} & cR(G_1) \\ cR(G_1)^T & (\lambda - 1)I_{m_1} + \frac{1}{2r_1}A(l(G_1)) \end{pmatrix}.$$

Then

$$\det(S) = \det\left((\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda))I_{n_1}\right)$$

$$\det\left((\lambda - 1)I_{m_1} + \frac{1}{2r_1}A(l(G_1)) - \frac{c^2}{\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda)}R(G_1)^T R(G_1)\right)$$

$$= \left(\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda)\right)^{n_1}$$

$$\det\left(\left(\lambda - 1 - \frac{2c^2}{\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda)}\right)I_{m_1} + \left(\frac{1}{2r_1} - \frac{c^2}{\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda)}\right)A(l(G_1))$$

$$= \left(\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda)\right)^{n_1}\left(\lambda - 1 - \frac{1}{r_1}\right)^{m_1 - n_1}$$

$$\det\left(\left(\lambda - 1 - \frac{2c^2}{\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda)}\right)I_{n_1}$$

$$+ \left(\frac{1}{2r_1} - \frac{c^2}{\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda)}\right)(2(r_1 - 1)I_{n_1} - r_1\mathcal{L}(G_1))\right)$$

$$= \left(\lambda - 1 - \frac{1}{r_1}\right)^{m_1 - n_1} \det\left((\lambda - 1)(\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda))I_{n_1} - c^2r_1(2I_{n_1} - \mathcal{L}(G_1))\right)$$

$$+ \frac{1}{2r_1}\left((2r_1 - 2)I_{n_1} - r_1\mathcal{L}(G_1)\right)(\lambda - 1 - \chi_{G_2}(B(G_2), C_{n_2}, \lambda))\right).$$

Since $\mathcal{L}(G_2) \bullet B(G_2) = I_{n_2} - \frac{1}{r_2+1}A(G_2)$, we get, $\mathcal{L}(G_2) \bullet B(G_2) = \frac{1}{r_2+1}(I_{n_2} + r_2\mathcal{L}(G_2))$.

As G_2 is regular, the sum of all entries on every row of its normalized Laplacian matrix is zero. That means, $\mathcal{L}(G_2)C_{n_2} = \left(1 - \frac{r_2}{r_2}\right)C_{n_2} = 0C_{n_2}$. Then $(\mathcal{L}(G_2) \bullet B(G_2))C_{n_2} = \left(1 - \frac{r_2}{r_2+1}\right)C_{n_2} = \frac{1}{r_2+1}C_{n_2}$ and $(\lambda I_{n_2} - (\mathcal{L}(G_2) \bullet B(G_2)))C_{n_2} = \left(\lambda - \frac{1}{r_2+1}\right)C_{n_2}$. Also, $C_{n_2}^T C_{n_2} = \frac{n_2}{(r_1+n_2)(r_2+1)}$.

Now,
$$\chi_{G_2}(B(G_2), C_{n_2}, \lambda) = C_{n_2}^T (\lambda I_{n_2} - (\mathcal{L}(G_2) \bullet B(G_2)))^{-1} C_{n_2} = \frac{C_{n_2}^T C_{n_2}}{(\lambda - \frac{1}{r_2 + 1})} = \frac{n_2}{(r_1 + n_2)(r_2 + 1)(\lambda - \frac{1}{r_2 + 1})}.$$

Thus, if δ_j is an eigenvalue of $\mathcal{L}(G_2)$ and μ_i is an eigenvalue of $\mathcal{L}(G_1)$, then

$$f_{G_1 \odot_Q G_2}(\lambda) = \left(\lambda - 1 - \frac{1}{r_1}\right)^{m_1 - n_1} \prod_{j=1}^{n_2} \left(\lambda - \frac{1 + r_2 \delta_j}{r_2 + 1}\right)^{n_1}$$

$$\prod_{i=1}^{n_1} \left\{ (\lambda - 1) \left(\lambda - 1 - \frac{n_2}{(r_1 + n_2)(r_2 + 1)(\lambda - \frac{1}{r_2 + 1})}\right) + \frac{r_1(\mu_i - 2)}{2r_1(r_1 + n_2)} + \frac{1}{2r_1} \left(2r_1 - 2 - r_1\mu_i\right) \left(\lambda - 1 - \frac{n_2}{(r_1 + n_2)(r_2 + 1)(\lambda - \frac{1}{r_2 + 1})}\right) \right\}.$$

- (i) Since the only pole of $\chi_{G_2}(B(G_2), C_{n_2}, \lambda)$ is $\lambda = \frac{1}{r_2+1}$ and 0 is an eigenvalue of $\mathcal{L}(G_2)$, $\frac{1+r_2\delta_j}{r_2+1}$ is an eigenvalue of $\mathcal{L}(G_1 \odot_Q G_2)$ with multiplicity n_1 , for $j = 2, 3, \ldots, n_2$.
 - (ii) Immediate from the characteristic polynomial.
 - (iii) We get the remaining eigenvalues from the following equation:

$$(\lambda - 1) \left(\lambda - 1 - \frac{n_2}{(r_1 + n_2)(r_2 + 1) \left(\lambda - \frac{1}{r_2 + 1} \right)} \right) + \frac{r_1(\mu_i - 2)}{2r_1(r_1 + n_2)} + \frac{1}{2r_1} (2r_1 - 2 - r_1\mu_i) \left(\lambda - 1 - \frac{n_2}{(r_1 + n_2)(r_2 + 1) \left(\lambda - \frac{1}{r_2 + 1} \right)} \right) = 0,$$

that is, $2r_1(r_1+n_2+r_1r_2+r_2n_2)\lambda^3 - (2r_1^2r_2+4r_1^2+2r_1r_2n_2+2r_1+2r_1r_2+2n_2+2r_2n_2+4r_1n_2+r_1^2\mu_i+r_1^2r_2\mu_i+r_1r_2n_2\mu_i+r_1n_2\mu_i)\lambda^2 + (2r_1^2+2n_2r_2+2r_1+4n_2+r_1r_2\mu_i+r_1\mu_i+r_1^2r_2\mu_i+2r_1^2\mu_i+r_1r_2n_2\mu_i+2r_1n_2\mu_i)\lambda - r_1^2\mu_i - r_1\mu_i = 0$ for $i=1,2,\ldots,n_1$.

In the similar way we can prove the Theorem 7, 8 and 9.

Theorem 7. For i = 1, 2, let G_i be an r_i -regular graph with n_i vertices and m_i edges. Then the normalized Laplacian spectrum of $G_1 \ominus_Q G_2$ consists of:

- (i) The eigenvalue $\frac{1+r_2\delta_j}{r_2+1}$ with multiplicity m_1 for every eigenvalue δ_j $(j=2,3,\ldots,n_2)$ of $\mathcal{L}(G_2)$,
- (ii) Two roots of the equation $(r_2n_2 + 2r_1r_2 + n_2 + 2r_1)\lambda^2 (2 + 2r_2 + r_2n_2 + 2r_1r_2 + 4r_1)\lambda + 2 = 0,$ where each root repeats $m_1 n_1$ times,
- (iii) Three roots of the equation $(r_2n_2 + 2r_1r_2 + n_2 + 2r_1)\lambda^3 (2r_1r_2 + 2r_2n_2 + 3n_2 + 2r_2 + 2 + 4r_1 + r_1r_2\mu_i + r_1\mu_i)\lambda^2 + (2r_1 + r_2n_2 + 2n_2 + 2 + 2r_1\mu_i + r_2\mu_i + r_1r_2\mu_i + \mu_i)\lambda \mu_i r_1\mu_i = 0,$ for each eigenvalue μ_i $(i = 1, 2, ..., n_1)$ of $\mathcal{L}(G_1)$.

Theorem 8. For i = 1, 2, let G_i be an r_i -regular graph with n_i vertices and m_i edges. Then the normalized Laplacian spectrum of $G_1 \square_Q G_2$ consists of:

- (i) The eigenvalue $\frac{r_1+r_2\delta_j}{r_2+r_1}$ with multiplicity n_1 for every eigenvalue δ_j $(j=2,3,\ldots,n_2)$ of $\mathcal{L}(G_2)$,
- (ii) The eigenvalue $\frac{r_1+n_2+1}{r_1+n_2}$ with multiplicity m_1-n_1 ,
- (iii) Three roots of the equation $2(r_1n_2 + r_2n_2 + r_1^2 + r_1r_2)\lambda^3 (6r_1n_2 + 4r_2n_2 + 4r_1^2 + 2r_1 + 2r_2 + 2r_1r_2 + r_1^2\mu_i + r_1r_2\mu_i)\lambda^2 + (4r_1n_2 + 2r_2n_2 + 2r_1 + 2r_1^2 + r_1n_2\mu_i + r_1\mu_i + r_2\mu_i + 2r_1^2\mu_i + r_1r_2\mu_i)\lambda r_1n_2\mu_i r_1^2\mu_i r_1\mu_i = 0, \text{ for each eigenvalue } \mu_i \ (i = 1, 2, \dots, n_1) \text{ of } \mathcal{L}(G_1).$

Theorem 9. For i = 1, 2, let G_i be an r_i -regular graph with n_i vertices and m_i edges. Then the normalized Laplacian spectrum of $G_1 \boxminus_Q G_2$ consists of:

- (i) The eigenvalue $\frac{2r_1+r_2\delta_j}{r_2+2r_1}$ with multiplicity m_1 for every eigenvalue δ_j $(j=2,3,\ldots,n_2)$ of $\mathcal{L}(G_2)$,
- (ii) Two roots of the equation $(2r_1 + r_2 + 2r_1n_2 + r_2n_2)\lambda^2 (4r_1 + r_2 + 4r_1n_2 + r_2n_2)\lambda + 2r_1 + 2r_1n_2 2n_2 + n_2\mu_i = 0$ for each eigenvalue μ_i $(i = 1, 2, ..., n_1)$ of $\mathcal{L}(G_1)$ and
- (iii) The eigenvalues of the matrix

$$\begin{pmatrix} (\lambda - 1)I_{m_1} + \frac{1}{2r_1(1+n_2)-2n_2}A(l(G_1)) - \chi_{G_2}(B(G_2), E_{n_2}, \lambda)A(l(G_1))^2 \\ -\{c - \sqrt{\frac{r_1(1+n_2)}{2r_1+2r_1n_2-2n_2}}\chi_{G_2}(B(G_2), C_{n_2}, \lambda)A(l(G_1))\}R(G_1)^T \\ \cdot ((\lambda - 1)I_{n_1} - \chi_{G_2}(B(G_2), C_{n_2}, \lambda)R(G_1)R(G_1)^T)^{-1} \\ \cdot R(G_1)\{c - \sqrt{\frac{r_1(1+n_2)}{2r_1+2r_1n_2-2n_2}}\chi_{G_2}(B(G_2), C_{n_2}, \lambda)A(l(G_1))\} \end{pmatrix}$$

Remark 10. If G_1 and G_2 are two regular graphs then we find from Theorems 6, 7, 8 and 9, that the normalized Laplacian spectrum of all the Q-coronas depend only on the degrees of regularities, number of vertices, number of edges, and normalized Laplacian eigenvalues of G_1 and G_2 . Thus for i = 1, 2, if G_i and H_i are \mathcal{L} -cospectral regular graphs then $G_1 \odot_Q G_2$ (respectively, $G_1 \odot_Q G_2$, $G_1 \boxdot_Q G_2$ and $G_1 \boxminus_Q G_2$) is \mathcal{L} -cospectral with $H_1 \odot_Q H_2$ (respectively, $H_1 \odot_Q H_2$, $H_1 \boxdot_Q H_2$ and $H_1 \boxminus_Q H_2$).

Now we apply the results of the paper and determine some normalized Laplacian cospectral graphs. Since for an r-regular graph G we have $\mathcal{L}(G) = I_n - \frac{1}{r}A(G)$, the Lemma below is immediate.

Lemma 11. Two regular graphs are \mathcal{L} -cospectral if and only if they are cospectral.

In the literature there are several regular cospectral graphs, for example see [15]. In Theorem 12 below we construct non-regular \mathcal{L} -cospectral graphs using Q-coronas. Proof of this theorem follows from Remark 10 and Lemma 11.

Theorem 12. If G_1 and H_1 (not necessarily distinct) are \mathcal{L} -cospectral regular graphs, and G_2 and H_2 (not necessarily distinct) are \mathcal{L} -cospectral regular graphs, then $G_1 \odot_Q G_2$ (respectively, $G_1 \odot_Q G_2$, $G_1 \odot_Q G_2$ and $G_1 \odot_Q G_2$) and $H_1 \odot_Q H_2$ (respectively, $H_1 \odot_Q H_2$, $H_1 \odot_Q H_2$ and $H_1 \odot_Q H_2$) are \mathcal{L} -cospectral graphs.

Example 13. Let us consider regular \mathcal{L} -cospectral graphs G_1 and H_1 [15] as given in Figure 3.

We also consider graphs G_2 and H_2 both of which are copies of K_2 . Now by Theorem 12 the graph $G_1 \odot_Q K_2$ will be \mathcal{L} -cospectral with the graph $H_1 \odot_Q K_2$.

Figure 3. Two cospectral regular graphs

References

- A. Banerjee and J. Jost, On the spectrum of the normalized graph Laplacian, Linear Algebra Appl. 428 (2008) 3015–3022.
 doi:10.1016/j.laa.2008.01.029
- [2] S. Butler and J. Grout, A construction of cospectral graphs for the normalized Laplacian, Electr. J. Combin. 18 (2011) 231pp.
- [3] F.R.K. Chung, Spectral Graph Theory (CBMS. Reg. Conf. Ser. Math. 92, AMS, providence, RI, 1997).
- [4] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, 2009).
- [5] A. Das and P. Panigrahi, Normalized Laplacian spectrum of different type of coronas of two regular graphs, Kragujevac J. Math. 41 (2017) 57–69.
- [6] A. Das and P. Panigrahi, Normalized Laplacian spectrum of some subdivisioncoronas of two regular graphs, Linear and Multilinear Algebra 65 (2017) 962–972. doi:10.1080/03081087.2016.1217976
- [7] A. Das and P. Panigrahi, Normalized Laplacian spectrum of some R-coronas of two regular graphs, South. Asian Bull. Math. 42 (2018) 833–844.
- [8] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001).
- [9] F. Harary, Graph Theory (Addison-Wesley, Reading, PA, 1969).
- [10] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991).
- [11] J. Huang and S.C. Li, On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs, Bull. Aust. Math. Soc. 91 (2015) 353–367. doi:10.1017/S0004972715000027
- [12] H.H. Li and J.S. Li, A note on the normalized Laplacian spectra, Taiwanese J. Math. 15 (2011) 129–139.

- [13] Q. Liu, J.B. Liu and J. Cao, Further results on resistance distance and Kirchhoff index in electric networks (Discrete Dynamics in Nature and Society, 2016). doi:10.1155/2016/4682527
- [14] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998–1007. doi:10.1016/j.laa.2011.02.007
- [15] E.R. Vandam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241–272. doi:10.1016/S0024-3795(03)00483-X

Received 28 January 2019 Revised 19 September 2019 Accepted 11 October 2020