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Abstract

A generalized cohypersubstitution of type τ is a mapping σ which maps
every ni-ary cooperation symbol fi to the coterm σ(f) of type τ = (ni)i∈I .
Denote by CohypG(τ) the set of all generalized cohypersubstitutions of type
τ . Define the binary operation ◦CG on CohypG(τ) by σ1◦CGσ2 := σ̂1◦σ2 for
all σ1, σ2 ∈ CohypG(τ) and σid(fi) := fi for all i ∈ I. Then CohypG(τ) :=
{CohypG(τ), ◦CG, σid} is a monoid. In [5], the monoid CohypG(2) was stud-
ied. They characterized and presented the idempotent and regular elements
of this monoid. In this present paper, we consider the set of all idempotent
elements of the monoid CohypG(2) and determine all maximal idempotent
submonoids of this monoid.
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1. Introduction

The concept of cohypersubstitutions of type τ was first introduced by Denecke
and Saengsura in 2009 [1]. They defined terms for coalgebras, coidentities, cohy-
peridentities and applied all the concepts to give a new solution of the complete-
ness problem for clones of cooperations. In 2013, Jermjitpornchai and Saengsura
[3] generalized the concepts of [1] by studying genearalized cohypersubstitutions
of type τ = (ni)i∈I . They introduced the coterms, generalized superpositions,
and some algebraic-structural properties of the generalized cohypersubstitutions
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of type τ = (ni)i∈I . After that, in the same year, Saengsura and Jermjitporn-
chai [5] studied the generalized cohypersubstitutions of type τ = (2), CohypG(2),
by defining the binary operation on CohypG(2) and showed that it is a monoid.
They also characterized all idempotent and regular elements of CohypG(2).

In the study of theory of semigroups, the concept of maximal subsemigroup
plays an important role. It is useful to the study of algebraic-structural properties
of semigroup. In the monoid of generalized hypersubstitutions of type τ = (2),
in 2015, Wongpinit and Leeratanavalee [6] studied the set of all idempotent ele-
ments. They determined all maximal idempotent submonoids and some maximal
compatible idempotent submonoids of this monoid. In the same year, they also
determined all of maximal idempotent submonoids in the monoid of generalized
hypersubstitutions of type τ = (n)[7].

In this research, we consider the set of all idempotent elements of the monoid
of generalized cohypersubstitutions of type τ = (2) which were characterized in
[5], and use the concepts in [6] and [7] to determine all maximal idempotent
submonoids.

2. Monoid of all generalized cohypersubstitutions

In this section, we give the concept of the monoid of all generalized cohypersub-
stitutions which is very useful to this research.

Let A be a non-empty set and n ∈ N. Define the union of n disjoint copies of
A by A⊔n := n×A where n = {1, 2, . . . , n}, so it is called the n-th copower of A.
An element (i, a) in this copower corresponds to the element a in the i-th copy
of A where i ∈ n. A mapping fA : A → A⊔n for some n ≥ 1 is a co-operation on
A; the natural number n is called the arity of the co-operation fA. Every n-ary
co-operation fA on the set A can be uniquely expressed as the pair of mappings
(fA

1 , fA
2 ) where fA

1 : A → n gives the labelling used by fA in mapping elements to
copies of A, and fA

2 : A → A tells us what element of A any element is mapped
to, so fA(a) = (fA

1 (a), fA
2 (a)). We denoted the set of all n-ary co-operations

defined on A by cO
(n)
A =

{

fA : A → A⊔n
}

.
Let τ = (ni)i∈I and (fi)i∈I be an indexed set of co-operation symbols which

fi has arity ni for each i ∈ I. Let
⋃

{enj |n ≥ 1, n ∈ N, 0 ≤ j ≤ n − 1} be a
set of symbols which disjoint from {fi | i ∈ I} such that enj has arity n for each
0 ≤ j ≤ n− 1. The coterms of type τ are defined as follows:

(i) For every i ∈ I the co-operation symbol fi is an ni-ary coterm of type τ .

(ii) For every n ≥ 1 and 0 ≤ j ≤ n − 1 the symbol enj is an n-ary coterm of
type τ .

(iii) If t1, . . . , tni
are n-ary coterms of type τ , then for every i ∈ I, fi[t1, . . . , tni

]
is an n-ary coterm of type τ , and if t0, . . . , tn−1 are m-ary coterm of type τ ,
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then enj [t0, . . . , tn−1] is an m-ary coterm of type τ for every 0 ≤ j ≤ n− 1.

Denoted by CT
(n)
τ the set of all n-ary coterms of type τ , and CTτ :=

⋃

n≥1 CT
(n)
τ the set of all coterms of type τ .

Definition 1 [3]. Let m ∈ N
∗. A generalized superposition of a coterms

Sm : CTm
τ × CTτ → CTτ defined inductively by the following steps:

(i) If t = eni and 0 ≤ i ≤ m− 1, then Sm(eni , t0, . . . , tm−1) = ti,
where t0, . . . , tm−1 ∈ CTτ .

(ii) If t = eni and 0 < m ≤ i ≤ m− 1, then Sm(eni , t0, . . . , tm−1) = eni ,
where t0, . . . , tm−1 ∈ CTτ .

(iii) If t = fi[s1, . . . , sni
], then

Sm(t, t1, . . . , tm) = fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)),
where Sm(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm) ∈ CTτ .

The above definition can be written as the following forms:

(i) If t = eni and 0 ≤ i ≤ m− 1, then eni [t0, . . . , tm−1] = ti,
where t0, . . . , tm−1 ∈ CTτ .

(ii) If t = eni and 0 < m ≤ i ≤ m− 1, then eni [t0, . . . , tm−1] = eni ,
where t0, . . . , tm−1 ∈ CTτ .

(iii) If t = fi[s1, . . . , sni
], then

(fi[s1, . . . , sni
])[t1, . . . , tm] = fi(s1[t1, . . . , tm], . . . , sni

[t1, . . . , tm]),
where s1[t1, . . . , tm], . . . , sni

[t1, . . . , tm] ∈ CTτ .

Definition 2 [3]. A generalized cohypersubstitution of type τ is a mapping σ :
{fi | i ∈ I} → CTτ . The extension of σ is a mapping σ̂ : CTτ → CTτ which is
inductively defined by the following steps:

(i) σ̂(enj ) := enj for every n ≥ 1 and 0 ≤ j ≤ n− 1,

(ii) σ̂(fi) := σ(fi) for every i ∈ I,

(iii) σ̂(fi[t1, . . . , tni
]) := σ(fi)[σ̂[t1], . . . , σ̂[tni

]] for t1, . . . tni
∈ CT

(n)
τ .

Denoted by CohypG(τ) the set of all generalized cohypersubstitutions of
type τ .

Definition 3 [3]. If t, t1, . . . , tn ∈ CTτ and σ ∈ CohypG(τ), then

σ̂(t[t1, . . . , tn]) = σ̂(t)[σ̂(t1), . . . , σ̂(tn)].

Define a binary operation ◦CG : CohypG(τ) × CohypG(τ) → CohypG(τ) on
the set of all generalized cohypersubstitutions, CohypG(τ), by σ1◦CGσ2 := σ̂1◦σ2
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for all σ1, σ2 ∈ CohypG(τ) where ◦ is the usual composition of mappings. Let σid
be the generalized cohypersubstitution such that σid(fi) := fi for all i ∈ I. Then
σid is an identity element in CohypG(τ). So, CohypG(τ) := (CohypG(τ), ◦CG, σid)
is a monoid and called the monoid of generalized cohypersubstitutions of type τ .
The algebraic structural-properties of the monoid CohypG(τ) can see in [3].

3. All maximal idempotent submonoids of generalized

cohypersubstitutions of type τ = (2)

In this section, we consider the set of all idempotent elements in the monoid
CohypG(2) and determine all maximal idempotent submonoids of it. Firstly, we
recall the definition of an idempotent element of a semigroup and introduce some
notations that use in this research.

Let S be a semigroup. An element a ∈ S is called idempotent if aa = a.
Denoted by E(S) the set of all idempotent elements of S. Throughout this re-
search, we denote:

σt := the generalized cohypersubstitution σ of type τ which maps f to the

coterm t,

enj := the injection symbol for all 0 ≤ j ≤ n− 1, n ∈ N,

E(t) := the set of all injection symbols which occur in the coterm t,

leftmostinj(t) := the first injection symbol (from the left) which occur in the
coterm t,

rightmostinj(t) := the last injection symbol which occur in the coterm t.

Next, we will determine all maximal idempotent submonoids of the monoid
CohypG(2).

Let σt ∈ CohypG(2), we denote

E0 :=
{

σe2
0

, σe2
1

, σid
}

E1 :=
{

σt| t = f [e20, s] where E(t) ∩ {e20, e
2
1} = {e20}, s ∈ CT(2)

}

E2 :=
{

σt| t = f [s, e21] where E(t) ∩ {e20, e
2
1} = {e21}, s ∈ CT(2)

}

E3 :=
{

σt|E(t) ∩ {e20, e
2
1} = ∅

}

.

In 2013, Saengsura and Jermjitpornchai [5] showed that:
⋃3

n=0En is the set
of all idempotent elements of CohypG(2), but it is not a submonoid of CohypG(2)
as the following example.
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Example 1. Let σt ∈ E1 and σr ∈ E2 such that t = f [e20, f [e
2
3, e

2
0]] and r =

f [f [e21, e
2
5], e

2
1]. Consider

(σt ◦CG σr)(f) = σ̂t
(

f [f [e21, e
2
5], e

2
1]
)

= (σt(f))
[

σ̂t(f [e
2
1, e

2
5]), e

2
1

]

=
(

f
[

e20, f [e
2
3, e

2
0]
])[(

f
[

e20, f [e
2
3, e

2
0]
])

[e21, e
2
5], e

2
1

]

=
(

f
[

e20, f [e
2
3, e

2
0]
])[

f [e21, f [e
2
3, e

2
1]], e

2
1

]

= f
[

f
[

e21, f [e
2
3, e

2
1]
]

, f
[

e23, f [e
2
1, f [e

2
3, e

2
1]]
]]

.

So σt ◦CG σr /∈
⋃3

n=0En. Thus
⋃3

n=0En is not a submonoid of CohypG(2).

Now, we denote

E′
1 :=

{

σt| t = f [e20, s] where E(t) ∩ {e20, e
2
1} = {e20}, s ∈ CT(2) and

rightmostinj(s) 6= e20
}

and

E′
2 :=

{

σt| t = f [s, e21] where E(t) ∩ {e20, e
2
1} = {e21}, s ∈ CT(2) and

leftmostinj(s) 6= e21
}

.

Then we can see that E′
1 ⊂ E1, E

′
2 ⊂ E2 and we also have the following

proposition.

Proposition 2. E′
1 ∪ {σid} and E′

2 ∪ {σid} are submonoids of CohypG(2).

Proof. Obviously, we can see that E′
1 ⊂ CohypG(2). Next, we prove that E′

1 is
closed under the binary operation ◦CG. Let σt, σr ∈ E′

1. Then t = f [e20, s] where
E(t)∩{e20, e

2
1} = {e20}, s ∈ CT(2) and rightmostinj(s) 6= e20 and r = f [e20, s

′] where
E(r) ∩ {e20, e

2
1} = {e20}, s

′ ∈ CT(2) and rightmostinj(s
′) 6= e20.

Consider

(σt ◦CG σr)(f) = σ̂t(f [e
2
0, s

′])

= (σt(f))[e
2
0, σ̂t(s

′)]

= (f [e20, s])[e
2
0, σ̂t(s

′)]

= f [e20, s] since E(r) ∩ {e20, e
2
1} = {e20}

= σf [e2
0
,s](f).

and

(σr ◦CG σt)(f) = σ̂r(f [e
2
0, s])

= (σr(f))[e
2
0, σ̂r(s)]

= (f [e20, s
′])[e20, σ̂r(s)]

= f [e20, s
′] since E(r) ∩ {e20, e

2
1} = {e20}

= σf [e2
0
,s′](f).
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Hence σt ◦CG σr, σr ◦CG σt ∈ E′
1. Therefore, E′

1 ∪ {σid} is a submonoid of
CohypG(2).

Similarly, we can proof that E′
2 ∪ {σid} is a submonoid of CohypG(2).

For determine all idempotent submonoids of CohypG(2), we denote

ME(CohypG(2)) := E0 ∪ E′
1 ∪ E′

2 ∪ E3,

ME1(CohypG(2)) := E0 ∪E1 ∪ E3, and

ME2(CohypG(2)) := E0 ∪E2 ∪ E3.

Then we have the following results.

Theorem 3. ME(CohypG(2)) is an idempotent submonoid of CohypG(2).

Proof. It is easy to see that ME(CohypG(2)) ⊂ CohypG(2) and every element
in ME(CohypG(2)) is an idempotent. Next, we will show that ME(CohypG(2))
is a submonoid of CohypG(2).

Case 1. Let σt ∈ E′
1. Then t = f [e20, s] where E(t)∩{e20, e

2
1} = {e20}, s ∈ CT(2)

and rightmostinj(s) 6= e20. Let σr ∈ ME(CohypG(2)).

Case 1.1. If σr ∈ E′
1, then, by Proposition 2, we have σt ◦CG σr, σr ◦CG σt ∈

E′
1 ⊂ ME(CohypG(2)).

Case 1.2. If σr ∈ E′
2, then r = f [s′, e21] where E(r) ∩ {e20, e

2
1} = {e21}, s

′ ∈
CT(2) and leftmostinj(s

′) 6= e21.

Consider

(σt ◦CG σr)(f) = σ̂t(f [s
′, e21])

= (σt(f))[σ̂t(s
′), e21]

= (f [e20, s])[σ̂t(s
′), e21]

= f [e20[σ̂t(s
′), e21], s[σ̂t(s

′), e21]].

Since E(r)∩{e20, e
2
1} = {e21} and leftmostinj(s

′) 6= e21, then e20, e
2
1 /∈ E(σ̂t(s

′)).
Since E(t)∩{e20, e

2
1} = {e20} and e20, e

2
1 /∈ E(σ̂t(s

′)), we have e20, e
2
1 /∈ E(s[σ̂t(s

′), e21]).
So σt ◦CG σr ∈ E3 ⊂ ME(CohypG(2)).

Consider

(σr ◦CG σt)(f) = σ̂r(f [e
2
0, s])

= (σt(f))[e
2
0, σ̂t(s)]

= (f [s′, e21])[e
2
0, σ̂t(s)]

= f [s′[e20, σ̂t(s)], e
2
1[e

2
0, σ̂t(s)]].
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Since E(t)∩{e20, e
2
1} = {e20} and rightmostinj(s) 6= e20, then e20, e

2
1 /∈ E(σ̂r(s)).

Since E(r)∩{e20, e
2
1} = {e21} and e20, e

2
1 /∈ E(σ̂r(s)), we have e

2
0, e

2
1 /∈ E(s′[e20, σ̂t(s)]).

So σr ◦CG σt ∈ E3 ⊂ ME(CohypG(2)). Therefore, σt ◦CG σr, σr ◦CG σt ∈ E3 ⊂
ME(CohypG(2)).

Case 1.3. If σr ∈ E0, then r = e20 or r = e21 or r = f [e20, e
2
1]. If r = e20, then

(σt◦CGσr)(f) = σ̂t(e
2
0) = e20 and (σr◦CGσt)(f) = σ̂r(f [e

2
0, s]) = e20[e

2
0, σ̂r(s)] = e20.

If r = e21, then (σt◦CGσr)(f) = σ̂t(e
2
1) = e21 and (σr◦CGσt)(f) = σ̂r(f [e

2
0, s]) =

e21[e
2
0, σ̂r(s)]. Since E(t) ∩ {e20, e

2
1} = {e20} and rightmostinj(s) 6= e20, we have

e21[e
2
0, σ̂r(s)] = e2i ; i > 2. If r = f [e20, e

2
1], then σt ◦CG σr = σt = σr ◦CG σt.

Hence σt ◦CG σr, σr ◦CG σt ∈ ME(CohypG(2)).

Case 1.4. If σr ∈ E3, then r = f [r1, r2] where E(r) ∩ {e20, e
2
1} = ∅.

Consider

(σt ◦CG σr)(f) = σ̂t(f [r1, r2])

= (σt(f))[σ̂t(r1), σ̂t(r2)]

= (f [e20, s])[σ̂t(r1), σ̂t(r2)]

= f [e20[σ̂t(r1), σ̂t(r2)], s[σ̂t(r1), σ̂t(r2)]].

Since E(r)∩{e20, e
2
1} = ∅, we obtain that e20, e

2
1 /∈ E(σ̂t(r1))∪E(σ̂t(r2)). This

force that e20, e
2
1 /∈ s[σ̂t(r1), σ̂t(r2)], so σt ◦CG σr ∈ E3 ⊂ ME(CohypG(2)).

Consider

(σr ◦CG σt)(f) = σ̂r(f [e
2
0, s])

= (σt(f))[e
2
0, σ̂r(s)]

= (f [r1, r2])[e
2
0, σ̂r(s)]

= f [r1, r2] since E(r) ∩ {e20, e
2
1} = ∅.

Thus σr ◦CG σt ∈ E3 ⊂ ME(CohypG(2)).

Case 2. Let σt ∈ E′
2 and σr ∈ E0∪E′

2∪E3. We can proof similarly to Case 1.
that σt ◦CG σr, σr ◦CG σt ∈ ME(CohypG(2)).

Case 3. Let σt ∈ E0 and σr ∈ E0 ∪ E3. By the same proof of the Case 1.3,
we obtain that σt ◦CG σr, σr ◦CG σt ∈ ME(CohypG(2)).

Case 4. Let σt, σr ∈ E3. Then σt ◦CG σr = σt and σr ◦CG σt = σr. So,
σt ◦CG σr, σr ◦CG σt ∈ ME(CohypG(2)). Hence, ME(CohypG(2)) is a sub-
monoid of CohypG(2). Therefore, ME(CohypG(2)) is an idempotent submonoid
of CohypG(2).

Theorem 4. ME1(CohypG(2)) and ME2(CohypG(2)) are idempotent submono-

ids of CohypG(2).
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Proof. Obviously, we can see thatME1(CohypG(2)) := E0∪E1∪E3⊂CohypG(2)
and every element in ME1(CohypG(2)) is an idempotent. We next to show that
ME1(CohypG(2)) is a submonoid of CohypG(2). Let σt, σr ∈ ME1(CohypG(2)).

Case 1. If σt ∈ E1, then t = f [e20, s] where E(t) ∩ {e20, e
2
1} = {e20}, s ∈ CT(2).

Case 1.1. If σr ∈ E1, then it is obviously that σt ◦CG σr, σr ◦CG σt ∈ E1 ⊂
ME1(CohypG(2)).

Case 1.2. If σr ∈ E0, then r = e20 or r = e21 or r = f [e20, e
2
1]. If r =

e20, then (σt ◦CG σr)(f) = σ̂t(e
2
0) = e20 and (σr ◦CG σt)(f) = σ̂r(f [e

2
0, s]) =

(σ̂r(f))[e
2
0, σ̂r(s)]=e20[e

2
0, σ̂r(s)]=e20. Thus σt◦CGσr, σr◦CGσt ∈ ME1(CohypG(2)).

If r = e21, then, by the same proof of the case r = e20, we have σt ◦CG σr,
σr ◦CG σt ∈ E1 ⊂ ME1(CohypG(2)).

If r = σid, then (σt ◦CG σr)(f) = σt(f) = (σr ◦CG σt)(f). Thus σt ◦CG σr,
σr ◦CG σt ∈ E1 ⊂ ME1(CohypG(2)).

Case 1.3. If σr ∈ E3, then r = f [r1, r2] where E(r) ∩ {e20, e
2
1} = ∅.

Consider

(σt ◦CG σr)(f) = σ̂t(f [r1, r2])

= (σt(f))[σ̂t(r1), σ̂t(r2)]

= (f [e20, s])[σ̂t(r1), σ̂t(r2)]

= f [e20[σ̂t(r1), σ̂t(r2)], s[σ̂t(r1), σ̂t(r2)]].

Since E(r) ∩ {e20, e
2
1} = ∅, then e20, e

2
1 /∈ E(σ̂t(r1)) ∪ E(σ̂t(r2)). This implies

that σt ◦CG σr ∈ E3 ⊂ ME1(CohypG(2)).
Similarly, we have σr ◦CG σt ∈ E3 ⊂ ME1(CohypG(2)).

Case 2. If σt ∈ E0 and σr ∈ E3, then we can proof similarly to the Case 1.2.
So σt ◦CG σr, σr ◦CG σt ∈ ME1(CohypG(2)).

Case 3. If σt, σr ∈ E3, then it is easy to see that σt ◦CG σr, σr ◦CG σt ∈
E3 ⊂ ME1(CohypG(2)). Thus, ME1(CohypG(2)) is an idempotent submonoid
of CohypG(2). By the same way, we can proof that ME2(CohypG(2)) is an
idempotent submonoid of CohypG(2).

Theorem 5. ME(CohypG(2)) is a maximal idempotent submonoid of CohypG(2).

Proof. Let M be a proper idempotent submonoid of CohypG(2) such that
ME(CohypG(2)) ⊆ M ⊂ CohypG(2). Let σt ∈ M. Then σt is an idempotent
element.

Case 1. If σt ∈ E1 \ E′
1, then t = f [e20, s] where E(t) ∩ {e20, e

2
1} = {e20},

s ∈ CT(2) and rightmostinj(s) = e20. We choose σr ∈ E′
2 ⊆ M, then r = f [s′, e21]

where E(r) ∩ {e20, e
2
1} = {e21},s

′ ∈ CT(2) and leftmostinj(s
′) 6= e21.
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Consider

(σr ◦CG σt)(f) = σ̂r(f [e
2
0, s])

= (σr(f))[e
2
0, σ̂r(s)]

= (f [s′, e21])[e
2
0, σ̂r(s)]

= f [s′[e20, σ̂r(s)], e
2
1[e

2
0, σ̂r(s)]].

Since E(r) ∩ {e20, e
2
1} = {e21} and rightmostinj(s) = e20, then we obtain that

e20 ∈ E(σ̂r(s)) and the number of operation symbols which occure in the coterm
s′[e20, σ̂r(s)] is greater than or equal to 1. Since e20 ∈ E(σ̂r(s)), we have σr ◦CG σt
is not idempotent. So σt ∈ E′

1.

Case 2. If σt ∈ E2 \ E′
2, then t = f [s, e21] where E(t) ∩ {e20, e

2
1} = {e21},

s ∈ CT(2) and leftmostinj(s) = e21. We choose σr ∈ E′
1 ⊆ M, then r = f [e20, s

′]
where E(r) ∩ {e20, e

2
1} = {e20},s

′ ∈ CT(2) and rightmostinj(s
′) 6= e20.

Consider

(σr ◦CG σt)(f) = σ̂r(f [s, e
2
1])

= (σr(f))[σ̂r(s), e
2
1]

= (f [e20, s
′])[σ̂r(s), e

2
1]

= f [e20[σ̂r(s), e
2
1], s

′[σ̂r(s), e
2
1]].

Since E(r)∩{e20, e
2
1} = {e20} and leftmostinj(s) = e21, then e21 ∈ E(σ̂r(s)) and the

number of operation symbols which occure in the coterm s′[σ̂r(s), e
2
1] is greater

than or equal to 1. Since e21 ∈ E(σ̂r(s)), we have σr ◦CG σt is not idempotent. So
σt ∈ E′

2. Thus M ⊆ ME(CohypG(2)). Hence, M = ME(CohypG(2)). There-
fore, ME(CohypG(2)) is a maximal idempotent submonoid of CohypG(2).

Theorem 6. ME1(CohypG(2)) and ME2(CohypG(2)) are maximal idempotent

submonoids of CohypG(2).

Proof. Let M be a proper idempotent submonoid of CohypG(2) such that
ME1(CohypG(2)) ⊆ M ⊂ CohypG(2). Let σt ∈ M. Then σt is an idempotent
element. If σt ∈ E2, then t = f [s, e21] where E(t)∩{e20, e

2
1} = {e21}, s ∈ CT(2). We

choose σr ∈ E1, so r = f [e20, s
′] where E(r)∩{e20, e

2
1} = {e20},s

′ ∈ CT(2) such that
the number of operation symbols which occur in the coterm s′ is greater than or
equal to 1 and rightmostinj(s

′) = e20.
Consider

(σt ◦CG σr)(f) = σ̂t(f [e
2
0, s

′])

= (σt(f))[e
2
0, σ̂t(s

′)]

= (f [s, e21])[e
2
0, σ̂t(s

′)]

= f [s[e20, σ̂t(s
′)], e21[e

2
0, σ̂t(s

′)]].
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Since E(t) ∩ {e20, e
2
1} = {e21} and rightmostinj(s

′) = e20, we obtain that e20 ∈
E(σ̂t(s

′)) and the number of operation symbols which occure in the coterm
s[e20, σ̂t(s

′)] is greater than or equal to 1. Since e20 ∈ E(σ̂t(s
′)), we have σt ◦CG σr

is not idempotent. So σt ∈ ME1(CohypG(2)). Hence M = ME1(CohypG(2)).
Therefore, ME1(CohypG(2)) is a maximal idempotent submonoid of CohypG(2).

Similarly, we can show that ME2(CohypG(2)) is a maximal idempotent sub-
monoid of CohypG(2).

Corollary 7. {ME(CohypG(2)),ME1(CohypG(2)),ME2(CohypG(2))} is the set

of all maximal idempotent submonoids of CohypG(2).
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