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Abstract

Let R be a finite commutative ring with unity. In this paper, we con-
sider set of additive and mutual additive inverses of group units of R and
obtain interrelations between them. In general ϕ(Zn) is even, however we
demonstrate that ϕ(R) is odd for any finite commutative ring with unity
of Char(R) 6= 2. Further, we present unitary invertible graph related with
self and mutual additive inverses of group units. At long last, we establish
a formula for counting the total number of basic and non-basic triangles in
the unitary invertible graph.
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1. Introduction

Relating a simple graph to an algebraic structure provides a mutual and connect-
ing method of visualizing the algebraic structure and develops two important
branches in modern mathematics namely; arithmetic graph theory and unitary
graph theory. Unitary graph theory gives a modern design review of group units
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of a finite ring and their interrelations through simple unitary graphical represen-
tations. Also, unitary graph theory is one of the new research fields in modern
mathematics mainly because of its concrete applications in Unitary Symmetry
[16] and quantum chemistry [24].

Group units of a ring are the main mathematical tools for studying reciproc-
ities of an object and their symmetries, which are usually related to graph and
group Automorphisms. The characterization of the group units of any finite ring
has not been done in general. But in recent years, the interplay between group
units of ring structure and graph structures is studied by many researchers. For
such kind of study, researchers define unitary graphs whose vertices are set of
elements of a finite ring and edges are defined with respect to a condition on
the group units of a ring. In 1990, the author Ralph Grimladi [23] defined a
graph G(Zn) based on the elements and units of the ring Zn of integers modulo
n. Actually, the graph G(Zn) is the undirected simple graph whose vertices are
the elements in Zn and two distinct vertices x and y are defined to be adjacent if
and only if x+y is a unit of Zn. In [4], Ashraf et al. generalized the graph G(Zn)
to G(R), the unit graph of R, where R is an arbitrary finite ring with non-zero
unity. The unit graph and many variants of the unitgraph have been studied in
[15] to [17].

Another class of algebraic graphs, called Cayley graphs [26]. A Cayley graph
is the undirected simple graph whose vertex set is a finite group G and two
vertices are adjacent through the symmetric set S of G. In 1995, Dejtr and
Giudice [13] launched a systematic study of a class {Xn} of undirected unitary
Cayley graphs Xn, defined as its vertex set V (Xn) = Zn and any two vertices
a and b are adjacent if and only if | a − b |∈ Un, units of the ring Zn. Several
properties of cycles in Xn were studied by the authors Berrizbeita and Giudice
in [9]. The cycle structure of these graphs has many applications in computer
science and communication networks. In this sequel many researchers studied
unitary Cayley graphs, for instance [5] to [20].

Recently, in [10] the authors introduced and studied the graphs associated
to finite Neutrosophic rings, which are called Neutrosophic invertible graphs
and similarly the authors Alfuraidana and Zakariya [3] introduced the invertible
graphs on non-self invertible elements over a finite group. Currently, Chalapathi,
Sajana and Bharathi introduced and studied the Classical pairs of elements of the
ring Zn in [12] by using units and zero divisors of Zn. Classical pair is a pair of
elements whose least common multiple is zero in Zn. In this view we concentrate
on the structure of unitary invertible graphs over finite commutative rings. For
ring theoretic and graph theoretic preliminaries and notations we referred [6] to
[27].

In this paper, we study additive and mutual inverses of group units of a finite
commutative ring with unity, and introduced invertible graphs of these group
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units. The organization of this paper is a follows. In Section 2, we discuss the
various properties of additive involutions A(R×) and mutual additive inverses
M(R×) of the group units R× of R. In Section 3, we prove certain concrete
properties of the unitary invertible graph of R× for | R× |> 1. Finally, in Section
4, we evaluate a formula for enumerating the total number of triangles in the
unitary invertible graph.

2. Properties of A(R×) and M(R×)

In this section, we give some properties of additive involutions and mutual addi-
tive inverses of group units of a finite commutative ring with unity and obtained
some preliminaries of the additive involutions of the rings Zn, Zm×Zn and Zn[i]
for positive integers m,n > 1.

Let R be a finite commutative ring with unity. An element u of R is a group
unit if u has a multiplicative inverse in R, and the set of all group units of R
forms a multiplicative group, which is denoted by R×. Note that, an element u
in R× is an additive involution of R× if u = −u, otherwise u is called mutual
additive inverse. Now begin disjoint subsets of R× and their several properties.

Definition. Let R× be the set of all group units of R. Then the set of all their
additive involutions and mutual additive inverses defined by A(R×) = {u ∈ R× :
u = −u} and M(R×) = {u ∈ R× : u 6= −u}.

Theorem 1. For any |R×| ≥ 2, we have either R× = A(R×) or R× = M(R×).

Proof. Let u ∈ R×. Then by the definition of M(R×), u ∈ M(R×) ⇔ there
exists u

′

6= u in R× such that u + u
′

6= 0 ⇔ 2u = u − u
′

6= 0 ⇔ 2u 6= 0 ⇔
u /∈ A(R×). This bi-implication concludes that either R× = A(R×) or R× =
M(R×).

Theorem 2. If Char(R) = 2, then R× = A(R×) and if Char(R) 6= 2, then
R× = M(R×).

Proof. If Char(R) = 2, then trivially A(R×) ⊂ R×. In the other direction, we
shall show that R× ⊂ A(R×). We have R× ⊂ R and R = A(R), this implies that
A(R×) ⊂ A(R) = R. Then 2A(R×) ⊂ 2R ⇒ 2A(R×) ⊂ {0}, since Char(R) =
2 ⇒ 2u = 0 for every u ∈ R× ⇒ u = −u for every u ∈ R× ⇒ u ∈ A(R×).
This means that, if u ∈ R× then u ∈ A(R×), and then R× ⊂ A(R×). Hence
R× = A(R×).

If Char(R) 6= 2, then for m ∈ R we have m+m 6= 0. So, in this case, for any
m ∈ R× there exists −m with −m 6= m which is also in R×. Thus, the group R×

is composed of pairs (m,−m) whose sum is zero, that is, m ∈ M(R×). Hence
R× = M(R×).
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If R ∼=
Z2[x]
(xk)

, then R is a finite commutative polynomial ring with unity over

the ring Zn and M(R×) = φ. It is clear that the following result is true.

Proposition 3. Let R ∼=
Z2[x]
(xk)

, k > 1. Then |R×| = |A(R×)| = |R|
2 .

Proof. For any positive integer k > 1, group units of the ring R ∼=
Z2[x]
(xk)

is

of the form 1 + f(x), where f(x) ∈ Z2[x]. This implies that 1, 1 + x, 1 + x +

x2, . . . , 1 + x+ x2 + · · ·+ xk−2 are the group units of the ring Z2[x]
(xk)

, which are in

total 2k−1 = 2k

2 = |R|
2 = |A(R×)|, since 2(1 + f(x)) = 0 for every f(x) ∈ Z2[x].

Recall that Z×
n is the set of group units of the ring Zn, where n > 1. It is

also clear that the Cartesian product Zm × Zn of the rings Zm and Zn is also
a commutative ring with unity under component wise addition and multiplica-
tion. Next, for any positive integer n > 1, Zn[i] denotes the ring of Gaussian
integers modulo n. In 2005, the authors Dresdey and Dymack [14] proved that

the quotient ring Z[i]
(n) is isomorphic to Zn[i], but group units of Zn[i] and Z[i]

are not equal. Recently, Roy and Patra [18] investigated enumeration formulae
for enumerating total number of group units of Zn[i] for various values of n > 1.
However, A(Z2[i]

×) = {1, i} and M(Z2[i]
×) = φ.

We are now going to investigate self and mutual additive inverse elements of
Z×
n , (Zm × Zn)

× and Zn[i]
× for positive integers m,n > 1. First we state the

following theorem which will be used in proving the Theorem 5.

Theorem 4 [11]. For each n > 1, we have

A(Z×
n ) =

{

1, if n is odd

2, if n is even.

Theorem 5. For each n > 2, A(Z×
n ) is empty. In particular, M(Z×

n ) = Z×
n .

Proof. By the Theorem 4, A(Zn) = {0}, if n is odd and A(Zn) = {0, n2 }, if n
is even. Consequently, gcd(n2 , n) 6= 1, for every even number n > 2 and which
implies that n

2 is additive involution of Zn but not in Z×
n since Char(R) 6= 2.

Therefore, A(Z×
n ) is empty. Hence by the Theorem 1, M(Z×

n ) = Z×
n .

Example 6. From the ring Z8, we have A(Z8) = {0, 4}, M(Z8) = {1, 2, 3, 5, 6, 7}.
Also, the group units of Z8 is Z×

8 = {1, 3, 5, 7}, it is clear that A(Z×
8 ) = φ and

M(Z×
8 ) = {1, 3, 5, 7} = Z×

8 .

The following result associates the set of group units of the ring Zm ×Zn to
groups units of rings Zm and Zn. The proofs of the following results are clear.

Lemma 7. Let m,n > 1 be any two positive integers and (0, 0) 6= (u, u
′

) ∈
Zm × Zn. Then (u, u

′

) ∈ (Zm × Zn)
× if and only if u ∈ Z×

m and u
′

∈ Z×
n .
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Lemma 8. Let m,n > 1 be any two positive integers and (Zm×Zn)
× ∼= Z×

m×Z×
n

if and only if gcd(m,n) = 1.

In light of the Lemma 7 and 8, the following theorem is clear.

Theorem 9. Let m,n > 1 be any two positive integers. Then

|A(Zm × Zn)| =











1, if m and n are odd

4, if m and n are even

2, if either of m and n are even

and |A(Zm × Zn)
×| = φ, if m,n > 2.

Theorem 10. Let n 6= 2 be any positive integer. Then A(Zn[i]
×) is empty.

Proof. Suppose A(Zn[i]
×) is non-empty for each n 6= 2. Then there exist at least

one Gaussian integer a+ bi with a+ b 6≡ 0 (modn) such that 2(a+ bi) = 0 ⇔ (a+
bi) = −(a+ bi) ⇔ a = −a and b = −b ⇔ 2(a + b) ≡ 0 (mod n) ⇔ 2 ≡ 0 (modn),
since a+ b 6≡ 0 (modn) ⇔ n = 2, which is a contradiction to the hypothesis that
n 6= 2. Hence A(Zn[i]

×) is empty.

Remark 11. For n = 2 then there exists a unique commutative ring Z2[i] =
{0, 1, i, 1 + i} such that Z2[i]

× = {1, i} and A(Z2[i]
×) = Z2[i]

×.

We know that the Euler totient function ϕ : N → N maps a positive integer
n to the number of positive integers that are less than are equal to n and relatively
prime to n. In particular, the number of group units of the ring Zn is ϕ(n). Now
we consider an extension of an Euler totient function to a finite commutative
ring R with unity, defining ϕ(R) is the number of group units of R. Note that
ϕ(R) = |R×|. Thus, ϕ(Zn) = ϕ(n) for all n ∈ N . In [25], the author Telang
prove that ϕ(n) is even for each positive integer n > 2 and we shall now derive
an important result about ϕ(R) for a finite commutative ring R with unity.

Theorem 12 [6]. Let R be a finite commutative ring with unity. If a ∈ R, then
either a is a unit or zero divisor of R. In particular, ϕ(R) = |R| − |Z(R)|.

Theorem 13. Let |R| > 2 and R 6∼= Z2[i]. Then ϕ(R) is odd, if Char(R) = 2
and is even if Char(R) 6= 2.

Proof. Let R be a finite commutative ring with unity. Then we consider the
following two cases on characteristic of R.

Case 1. Suppose Char(R) = 2. Then |R| is even and |Z(R)| = 1. Hence, by
the Theorem 12, ϕ(R) = |R| − |Z(R)| = |R| − 1, which is odd.
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Case 2. Suppose Char(R) 6= 2. Then there exist the following two subcases
on the group (R×, ·).

Subcase 1. Let (R×, ·) be not a cyclic group. If u ∈ R×, then u = −u ⇒
u + u = 0 ⇒ Char(R) = 2, a contradiction. It follows that u 6= −u for every
u ∈ R×. Therefore, R× is composed by the pairs u and −u whose sum is zero.
Thus, ϕ(R) = |R×| = |{u,−u : u ∈ R×}|, which is even.

Subcase 2. Let (R×, ·) be a cyclic group. Then there exist a generator u 6= 1
of R× such that un = 1 for some least positive integer n. Then clearly, (1−u)(1+
u+ u2 + · · · + un−1) = 0. This implies that (1 + u+ u2 + · · · + un−1) = 0. This

means that 1 + un−1 = 0, u+ un−2 = 0, . . . , u
n−2
2 + u

n
2 = 0, so that ϕ(R) = |R×|

must be even.

Remark 14. The Theorem 13 fails for the unique ring Z2[i].

3. Unitary invertible graphs

This section introduces the notion and definition of invertible graphs of finite
rings and fields. Basic properties of these graphs are investigated and character-
ization results regarding connectedness, regularity, completeness and symmetry
are given. We begin with the following definition.

Definition. Let R× be the set of all units of a finite commutative ring R with
unity eR. Then the unitary invertible graph of R, denoted by UI(R), is defined
to be the undirected simple graph whose vertex set is R× and vertices u, u

′

∈ R×

are adjacent in UI(R) if and only if u + u
′

6= 0, where 0 is the additive identity
in R.

For any finite commutative ring R with unity eR, we observe that the follow-
ing.

1. |R×| = 1 if and only if UI(R) ∼= N1.

2. |R×| = 2 and A(R×) 6= R× if and only if UI(R) ∼= N2.

3. |R×| = 2 and A(R×) = R× if and only if UI(R) ∼= K2.

So, throughout the text, we consider |R×| ≥ 2.

Example 15. Figure 1 shows that the unitary invertible graphs of rings Z4,
Z2[x]
(x2+1)

and Z2[x]
(x2+x+1)

whose vertex sets are {1, 3}, {1, x} and {1, x, 1 + x}, respec-

tively.

We are now beginning to investigate the degree of each vertex, enumeration
of number of edges, regularity and symmetry of UI(R). Recall that vertex set
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Figure 1. The graphs UI(Z4), UI
(

Z2[x]
(x2+1)

)

and UI
(

Z2[x]
(x2+x+1)

)

.

of the graph UI(R) is R× with |R×| = ϕ(R). Now we state the fundamental
theorem of graph theory and which will be used in for enumerating the size of
UI(R).

Theorem 16 [8]. The sum of degrees of all the vertices of a graph is twice the
number of edges.

Theorem 17. For ϕ(R) > 2, the unitary invertible graph is connected.

Proof. It is obvious, since eR is a unit for any finite commutative ring R with
unity eR, so the vertex eR is adjacent with remaining all the vertices of the graph
UI(R) except its mutual inverse.

An important consequence of Theorem 17 is the following immediate result,
which we state as a theorem in view of its importance throughout our study.

Theorem 18. The degree of each vertex in the graph UI(R) is ϕ(R) − 2 if
A(R×) 6= R× or ϕ(R)− 1 if A(R×) = R×.

Proof. Let R× =
{

1, u2, u3, . . . , uϕ(R)

}

be the vertex set of the graph UI(R).
Then R× is an abelian group with respect to multiplication over R. So there
exist two cases on self-additive inverse units of R×.

Case 1. Suppose A(R×) 6= R×. Then by the Theorem 13, ϕ(R) must be

even and thus the pairs of vertices
(

1, uϕ(R)

)

,
(

u2, uϕ(R)−1

)

, . . . ,
(

uϕ(R)
2

, uϕ(R)
2

+1

)

in UI(R) each of which produces a zero sum, since A(R×) 6= R× if and only if
M(R×) = R×. This implies that all these vertices in UI(R) have same degree,
which is less than ϕ(R)−1. But each vertex in the above pairs exactly once, and
hence the degree of each vertex in UI(R) is (ϕ(R)− 1)− 1, that is, ϕ(R) − 2.

Case 2. Suppose A(R×) = R×. Then, obviously M(R×) = φ. In view of
Theorem 13, ϕ(R) must be odd. So for any u, u

′

∈ R× we have u + u = 0 and
u

′

+ u
′

= 0 ⇒ 2(u + u
′

) = 0 ⇒ u + u
′

6= 0. This means that any two distinct
vertices in UI(R) are adjacent, and hence deg(u) = deg(u

′

) = ϕ(R)− 1.

Theorem 19. The size of the unitary invertible graph UI(R) is either 1
2ϕ(R)

(ϕ(R) − 1) or 1
2ϕ(R)(ϕ(R) − 2).
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Proof. It is clear from Theorem 16 and Theorem 18.

Now we establish a necessary and sufficient condition for which the graph
UI(R) is complete.

Theorem 20. The unitary invertible graph UI(R) is a complete graph if and
only if A(R×) = R×.

Proof. Necessity. Suppose that UI(R) is complete. Then any two vertices ui
and uj in R× are adjacent in UI(R), i 6= j. This implies that either ui 6= −uj or
uj 6= −ui for all i 6= j. Consequently, ui + uj 6= 0 for all i 6= j. That is ui and uj
are not mutually additive units of R×. By the fact that R× = A(R×) ∪M(R×),
A(R×) ∩ M(R×) = φ, we have ui, uj ∈ A(R×). This shows that R× ⊆ A(R×)
and similarly we can show that A(R×) ⊆ R×. Hence A(R×) = R×.

Sufficient. Let A(R×) = R×. Suppose the graph UI(R) is not complete.
Then there exist at least two vertices ui, uj in R× such that ui + uj = 0. That is
ui and uj are mutually additive inverse elements in R×. Therefore M(R×) 6= φ
and M(R×) = R×. By the Theorem 1, A(R×) 6= R×, this is a contradiction to
our hypothesis. Hence the graph UI(R) is complete.

Remark 21. The completeness of the graph UI(R) depends only on the condi-
tion A(R×) = R× but not orders of the corresponding rings. This point illustrates
the following example.

Example 22. Let R be any finite commutative local ring with non-zero unity.
Then their unitary invertible graphs may or may not be complete. For instance
UI(Z4) ∼= N2 and UI(Z2[i]) ∼= K2, see Figure 2.

Figure 2. The graphs UI(Z4) and UI(Z2[i]).

Some easy consequences of the Theorem 20 are proved as follows.

Corollary 23. Let n > 1 be a positive integer. Then the unitary invertible graph
of a filed F2n is complete.

Proof. Since F2n is a field of order 2n, n > 1 and A(F×
2n) = F×

2n . So by the
Theorem 20, the graph UI(F2n) is complete.

Corollary 24. Let p > 2 and n > 1. Then the unitary invertible graph of a field
is never complete.
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Proof. Since Fpn is a field of order pn. But |F×
pn | = pn− 1 is even, characteristic

of Fpn is p > 2 and thus by the Theorem 1, M(F×
pn) = F×

pn . This implies that

A(F×
pn) = φ. So by the Theorem 20, the graph UI(Fpn) is never complete.

The foregoing dealt with regularity and symmetry of the unitary invertible
graphs of a finite ring. First we recall that a simple undirected graph X is
regular if the degree of each vertex in X is non-zero positive integer. Further, if
deg(x) = r > 0 for each x ∈ X, then X is called r− regular graph. In [7], the
author Biggs introduced symmetric graph, which is defined as follows:

Definition. A simple undirected graph X is called symmetric if for all vertices
x1, x2, x3, x4 of X such that x1 is adjacent to x2 and x3 is adjacent to x4, there
is a graph automorphism σ of X for which σ(x1) = x3 and σ(x2) = x4.

We immediate start with a basic result concerning unitary invertible graphs
of a finite ring R with symmetric property.

Lemma 25. If ϕ(R) > 3, then the unitary invertible graph of the ring R is
symmetric.

Proof. Choose any four vertices u1, u2, u3 and u4 in R× such that u1 is adjacent
to u2 and u3 is adjacent to u4. Now define a map σ from the vertex set R× to
itself, by the relation

σ(u) = u4(u− u1)(u2 − u1)
−1 + u3(u− u2)(u1 − u2)

−1

for every u ∈ R× where (u2−u1) and (u1−u2) are in R×. Clearly σ(u1) = u3 and
σ(u2) = u4. It is straight forward to see that σ is a one-to-one correspondence
because (u2 − u1) and (u1 − u2) are both units of R. Further, let u and v be any
two adjacent vertices in the graph UI(R), then u + v 6= 0. Now to prove that
σ(u) + σ(v) 6= 0. If possible assume that σ(u)+ σ(v) = 0, then by the relation σ,
we have u+v = 2u1 and u+v = 2u2, which is not possible in a finite commutative
ring R. This contradiction leads that σ(u) + σ(v) 6= 0 for every u and v in R×

such that u + v 6= 0. Similarly, σ maps non adjacent vertices to non adjacent
vertices in UI(R). This completes that σ is a graph automorphism, so the graph
UI(R) is symmetric.

Remark 26. As any symmetric graph is regular and by the Theorem 19, the
graph UI(R) is either (ϕ(R) − 1)− regular or (ϕ(R) − 2)− regular.

If the degree of each vertex in UI(R) is 2, then UI(R) is called a cycle graph.
A graph is Hamiltonian if it has a cycle that visits every vertex exactly once, and
such a cycle is called Hamilton cycle. For more details on cycle and Hamilton
cycle we refer [8].
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Theorem 27. The unitary invertible graph UI(R) is a cycle graph if and only
if ϕ(R) ∈ {3, 4}.

Proof. By the Theorem 18, we have UI(R) is a cycle graph ⇔ deg(u) = 2 for
every u ∈ R× ⇔ ϕ(R)− 1 = 2 or ϕ(R)− 2 = 2 ⇔ ϕ(R) ∈ {3, 4}.

Remark 28. If ϕ(R) = 4, then the graph UI(R) has no odd length cycles. In
particular UI(R) is a triangle free graph if and only if ϕ(R) = 4.

Theorem 29. The graph UI(R) contains a cycle of length ϕ(R), if ϕ(R) > 2.

Proof. We know that UI(R) is isomorphic to either N2 or K2 if and only
if ϕ(R) = 2. So that ϕ(R) > 2 and ϕ(R) must be even. We know show
that UI(R) always contains a cycle of length ϕ(R), ϕ(R) > 2. To do this, let
{

u1, u2, u3, . . . , uϕ(R)

}

be the vertex set of the graph UI(R) such that u1+uϕ(R) =
0, u2+uϕ(R)−1 = 0, . . . , uϕ(R)

2

+uϕ(R)
2

+1
= 0 and consider the following two cases

on A(R×).

Case 1. Suppose A(R×) = R×. Then for every ui, uj ∈ A(R×) for each i 6= j,
that is ui = −ui and uj = −uj this implies that ui 6= −uj for every ui, uj ∈ R×.
It is clear that, the sequence of vertices u1−u2−u3− · · ·−uϕ(R)−u1 ensure the
existence of a cycle which covers all the vertices in the graph UI(R).

Case 2. Suppose A(R×) 6= R×. Then by the Theorem 1, Suppose M(R×) =
R×. This means that ui = −uj for all vertices in UI(R). Therefore, the pairs
(

u1, uϕ(R)

)

,
(

u2, uϕ(R)−1

)

, . . . ,
(

uϕ(R)
2

, uϕ(R)
2

+1

)

are non-adjacent in UI(R). So we

construct a cycle u1 − uϕ(R)
2

− u2 − uϕ(R)
2

+1
− · · · − uϕ(R)

2
−1

− uϕ(R)−2 − uϕ(R) −

uϕ(R)−1 − u1 in UI(R), which again covers all the vertices of UI(R).

Hence, in both the above cases there exist a cycle of length ϕ(R) in UI(R)
covering all the vertices.

In view of the Theorem 29, one can easily see that UI(R) is Hamiltonian
and hence it is always connected. However, UI(R) is totally disconnected if and
only if ϕ(R) = 2 and M(R×) = R×. Next we shall discuss Eulerian property of
UI(R). First we state the theorem which will be used in proving that the graph
UI(R) is Eulerian.

Theorem 30 [8]. A simple connected graph is Eulerian if and only if each of its
vertex have even degree.

Theorem 31. If ϕ(R) > 2, then the unitary invertible graph UI(R) is Eulerian.

Proof. Suppose on the contrary that UI(R) is not Eulerian, which implies that
degree of at least one vertex in UI(R) is not even. But by the Theorem 18, it is
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clear degree of each vertex of UI(R) is either ϕ(R)−1 or ϕ(R)−2. So there exist
two possibilities: if ϕ(R) is odd, then ϕ(R)−1 is even. On the other hands, if ϕ(R)
is even, then ϕ(R)−2 is even. Therefore in the above both possibilities, we found
that degree of each vertex cannot be odd. But, this contradicts our assumption
that UI(R) is not Eulerian. Thus, by contraposition the result follows.

Remark 32. 1. UI(Zn) ∼= N2 if and only if n ∈ {3, 4, 6}.

2. UI(Zn) ∼= C4 if and only if n ∈ {5, 8, 10, 12}.

3. UI(R) ∼= K2 if and only if R ∼= Z2[i].

Remark 33. UI(R) is a bipartite graph if and only ϕ(R) = 4 and A(R×) = R×.

4. Enumeration of triangles in the Unitary Invertible Graph

The Remark 33 shows that UI(R) is a triangle free graph if ϕ(R) = 4. So, in
this section we consider ϕ(R) to be even number and ϕ(R) > 4. Let us denote
by (u, v, w) a triangle in UI(R) with vertices u, v and w. Then u 6= −v, v 6= −w
and w 6= −u. Without loss of generality we may assume that our basic triangles
(1, v, w) have v 6= 1, w 6= 1 and v 6= w and we denote by TB , the set of all basic
triangles having the common vertex 1, that is, TB = {(1, v, w) : v 6= −1, w 6=
−v, 1 6= −w} with its cardinality |TB |. Similarly, u 6= 1, v 6= 1 and w 6= 1 be
any three distinct vertices in UI(R), then the triad (u, v, w) is called the non-
basic triangle and the set of all non-basic triangles is denoted by TNB . However,
the total number of triangles in the graph UI(R) is |T | and defined as |T | =
|TB |+ |TNB |.

Lemma 34. If ϕ(R) > 4, then |TB | =
1
2 (ϕ(R)− 2)(ϕ(R) − 4).

Proof. Let 1, u and v be any three distinct vertices in UI(R) such that u 6= 1
and v 6= 1. If there is ϕ(R) > 4 vertices in the vertex set of the graph UI(R), then
the number of pairs of vertices in UI(R) is

(

ϕ(R)−2
2

)

, in which some are adjacent

and some are non-adjacent. Because of ϕ(R)
2 + ϕ(R)

2 = ϕ(R), the total number of

pairs (u, v) with u = −v or v = −u, is ϕ(R)
2 − 1. Now, the triad (1, u, v) is a basic

triangle in UI(R) if and only if u 6= −1, v 6= −u and v 6= −1. It is clear that the
total number of basic triangles is

|TB | =

(

ϕ(R)− 2

2

)

−

(

ϕ(R)

2
− 1

)

=
1

2
(ϕ(R)2−6ϕ(R)+8)=

1

2
(ϕ(R)−2)(ϕ(R)−4).

Theorem 35. The total number of triangles in UI(R) is |T | = 1
6ϕ(R)(ϕ(R) −

2)(ϕ(R) − 4).
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Proof. By the Lemma 34, the cardinality of the set of all basic triangles having
the common vertex 1 is |TB | =

1
2(ϕ(R) − 2)(ϕ(R) − 4). By symmetry, for each

vertex in UI(R), the cardinality of the set of all triangles having that vertex in
common is 1

2(ϕ(R) − 2)(ϕ(R) − 4). Since the total number of vertices in UI(R)
is ϕ(R) and triangle contains exactly three vertices, so that each triangle comes
thrice in above process. Hence the total number of triangles in UI(R) is

|T | =
1

3
ϕ(R)

[

1

2
(ϕ(R) − 2)(ϕ(R) − 4)

]

=
1

6
ϕ(R)(ϕ(R) − 2)(ϕ(R) − 4).

Theorem 36. If ϕ(R) > 4, then |TNB | =
(

ϕ(R)−2
3

)

.

Proof. Since |T | = |TB | + |TNB |, so that |TNB | = |T | − |TB | =
1
6ϕ(R)(ϕ(R) −

2)(ϕ(R) − 4)− 1
2(ϕ(R)− 2)(ϕ(R) − 4), by the Lemma 34 and Theorem 35.

⇒ |TNB | =
(

1
6ϕ(R)− 1

2

)

(ϕ(R) − 2)(ϕ(R) − 4) =
(

ϕ(R)−2
3

)

Example 37. Since Z×
7 = {1, 2, 3, 4, 5, 6} is the vertex set of unitary invertible

graph UI(Z7). Therefore |TB | =
1
6(6− 2)(6 − 4) = 4, which are (1, 2, 3), (1, 2, 4),

(1, 3, 5) and (1, 4, 5) and also |TNB | =
(

6−2
3

)

= 4, which are (2, 3, 6), (2, 4, 6),
(3, 5, 6) and (4, 5, 6). The graph UI(Z7) is shown in Figure 3.

Figure 3. The unitary invertible graph UI(Z7).

Remark 38. If A(R×) = R× and ϕ(R) > 2, then by the Theorem 18, UI(R) ∼=
Kϕ(R) and hence the total number of triangles in UI(R) is

(

ϕ(R)
3

)

.

References

[1] M. Afkhami and F. Khosh-Ahang, Unit graphs of rings of polynomials and power
series , Arab. J. Math. 2 (2013) 233–246.
doi:10.1007/s40065-013-0067-0

[2] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel
and D. Pritikin, On the Unitary Cayley Graph of a Finite Ring, Electron. J. Combin.
16 (2009) 1–13.

http://dx.doi.org/10.1007/s40065-013-0067-0


Unitary invertible graphs of finite rings 207

[3] M.R. Alfuraidan and Y.F. Zakariya, Inverse graphs associated with finite groups ,
Electron. J. Graph Theory and Appl. 5 (2017) 142–154.
doi:10.5614/ejgta.2017.5.1.14

[4] N. Ashrafi, H.R. Maimani, M.R. Pournaki and S. Yassemi, Unit Graphs Associated
with Rings , Commun. Algebra 38 (2010) 2851–2871.
doi:10.1080/00927870903095574

[5] M. Basic and A. Ilic, Polynomials of Unitary Cayley Graphs , Filomat 29 (2015)
2079–2086.
doi:10.2298/FIL1509079B

[6] J.A. Beachy and W.D. Blair, Abstract Algebra, Third Edition (Waveland Press,
2006).

[7] N. Biggs, Algebraic Graph Theory, 2nd Edition (Cambridge India, 2016).

[8] J.A. Bondy and U.S.R. Mutry, Graph Theory with Application (Springer India,
2013).

[9] P. Brrizbeitia and R.E. Gaudici, Counting pure k-cycles in sequences of Cayley
graphs , Discrete Math. 149 (1996) 11–18.

[10] T. Chalapathi, RVMSS. Kiran Kumar and F. Smarandache, Neutrosophic Invertible
Graphs of Neutrosophic Rings , New Trends in Neutrosophic Theory and Applica-
tions 2 (2018) 209–217.

[11] T. Chalapathi and RVMSS. Kiran Kumar, Self Additive Inverse Elements of Neu-
trosophic Rings and Fields , Ann. Pure Appl. Math. 13 (2017) 63–72.
doi:10.22457/apam.v13n1a7

[12] T. Chalapathi, S. Sajana and D. Bharathi, Classical pairs in Zn, Notes on Number
Theory and Discrete Math. 26 (2020) 59–69.
doi:10.7546/nntdm.2020.26.1.59-69

[13] I. Dejter and R.E. Giudici, On unitary Cayley graphs , J. Combin. Math. Combin.
Comput 18 (1995) 121–124.

[14] G. Dresden and W.M. Dymacek, Finding Factors and Factor Rings over the Gaus-
sian Integers , The Mathematical Association of America 112 (2005) 602–611.
doi:10.1080/00029890.2005.11920231

[15] S. Huadong, A study of unit graphs and unitary cayley graphs associated with rings,
Doctoral Ph.D. Thesis (Memorial University of Newfoundland, 2015).

[16] D.L. James, Applications of Unitary Symmetry and Combinatorics (World Scientific
Publishers, 2011).

[17] W.F. Joe and L.S. Robert, Rings Generated by Their Units , J. Algebra 42 (1976)
363–368.

[18] R. Joy and K. Patra, Some aspects of Unitary addition Cayley graph of Gaussian
integers modulo n, Matematika 32 (2016) 43–52.
doi:10.11113/matematika.v32.n1.782

http://dx.doi.org/10.5614/ejgta.2017.5.1.14
http://dx.doi.org/10.1080/00927870903095574
http://dx.doi.org/10.2298/FIL1509079B
http://dx.doi.org/10.22457/apam.v13n1a7
http://dx.doi.org/10.7546/nntdm.2020.26.1.59-69
http://dx.doi.org/10.1080/00029890.2005.11920231
http://dx.doi.org/10.11113/matematika.v32.n1.782


208 T. Chalapathi and S. Sajana

[19] D. Kiani and M.M.H. Aghaei, On the Unitary Cayley Graphs of a Ring, Electron.
J. Combin. 19 (2012) 1–10.
doi:doi.org/10.37236/2214

[20] W. Klotz and T. Sander, Some properties of unitary Cayley graphs , Electron. J.
Combin. 14 (2007) 1–12.
doi:10.37236/963

[21] X. Liu and S. Zhou, Spectral Properties of Unitary Cayley Graphs of Finite Com-
mutative Rings , Electron. J. Combin. 19 (2012) 1–13.

[22] H.R. Maimani, M.R. Pournaki and S. Yassemi, Rings which are generated by their
units: a graph theoretical approach, Elem. Math. 65 (2010) 17–25.
doi:10.4171/EM/134

[23] R.G. Raphael, Rings which are generated by their units , J. Algebra 28 (1974)
199–205.

[24] I. Shavitt, Graph Theoretical Concepts for the Unitary Group Approach to the Many-
Electron Correlation Problem, International Journal of Quantum Chemistry: Quan-
tum Chemistry Symposium 11 (1977) 131–148.
doi:10.1002/qua.560120819

[25] S.G. Telang, Number Theory (Tmh Publisher, 1996).

[26] A. Tripi, Cayley Graphs of Groups and Their Applications, Doctoral Ph.D. Thesis
(Missouri State University, 2017).

[27] I.V. Vitaly, Introduction to Graph Theory (Nova Science Publishers. Inc. New York,
2009).

Received 11 April 2020
Revised 2 July 2020

Accepted 31 January 2021

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/doi.org/10.37236/2214
http://dx.doi.org/10.37236/963
http://dx.doi.org/10.4171/EM/134
http://dx.doi.org/10.1002/qua.560120819
http://www.tcpdf.org

