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Abstract

The hybrid numbers are generalization of complex, hyperbolic and dual
numbers. In this paper, we introduce and study the third-order Jacobsthal
and modified third-order Jacobsthal hybrinomials, i.e., polynomials, which
are a generalization of the Jacobsthal hybrid numbers and the Jacobsthal-
Lucas hybrid numbers, respectively.
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1. INTRODUCTION

Let JV(L?’) be the n-th third-order Jacobsthal number defined recursively by

J(s) - J(3_)1 + J7(13)2 + 2J(3_)37 n Z 37

n n - n

for n > 3 with the initial terms Jég) =0, J1(3) = 2(3) =1

The n-th modified third-order Jacobsthal number KV(L?’) is defined recursively
by KT(L?’) = KT(ngl + KS)—)2 + 2KT(L323 for n > 3 with the initial terms Kég) = 3,
K =1, k) =3,

The direct formulas for the n-th third-order Jacobsthal number and the n-th
modified third-order Jacobsthal number are named as Binet formulas and have
the form

n+1 n+1 n+1
3) _ 2 Wy Wo
JpY = —

T o) —w) 2w —w)
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K® = 2" 40?4 Wi,

where w; + ws = —1 and wijws =1 (see [3-5]).

For any variable quantity x such that 224241 # 0, the third-order Jacobsthal
polynomial I (x) is defined as JP () = (z — 1)Jé?i)1(x) + (z — 1)JT(L?L)2($) +
xJS’_)?’(x) for n > 3 with Jo(g) (x) =0, Jl(g) (x) =1, J2(3) (x) =2 —1.

The modified third-order Jacobsthal polynomial K}(Lg) (x) is defined as K,(L?’) (x)
=(z— 1)K1(1?21(w) + (z — 1)K1(1?22(w) + xKT@?)(w) for n > 3 with the initial terms
K@) =3 K@) =21, KP (2) =22 — 1.

For x = 2, the third-order Jacobsthal and modified third-order Jacobsthal
polynomials give the third-order Jacobsthal and modified third-order Jacobsthal
numbers, respectively.

Based on the properties of sequences defined by the third-order linear recur-

rence relations, we can give direct formulas for I (x) and K (). Then,

s w?-’-l w;z—l—l

3 () _
(1) T (@) ?4+r+1  (r—w)(w —ws) + (x — wo) (w1 — wa)

and
(2) KP(@) = a" + W} +wf,
where w; = *HT“E and wy = *I*T“/g Equations (1) and (2) are named as

Binet formulas for the third-order Jacobsthal and modified third-order Jacobsthal
polynomials, respectively.

Cook was a pioneer in studying the third-order Jacobsthal numbers, see for
details [6]. Many papers have studied properties of the third-order Jacobsthal
type numbers, for example [1-5]. Note that the third-order Jacobsthal numbers
are related to the Jacobsthal numbers. These numbers have many applications in
algebra, geometry, numbers theory and other branches of mathematics, see [7-10].

The hybrid numbers were introduced by Ozdemir in [11] as a new general-
ization of complex, hyperbolic and dual numbers. Let K be the set of hybrid
numbers H of the form

H = a+ bi+ ce + dh,

where a,b,c,d € R and i, ¢, h are operators such that
i2=-1, 2=0, h?=1

and
ih=-hi=¢+1.
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The hybrid numbers multiplication is defined using above equations (see Ta-
ble 1). Note that using above formulas we can find the product of any two
hybrid units. Then, the multiplication of hybrid numbers can be made anal-
ogously as multiplications of algebraic expressions. Addition operation in the
hybrid numbers is both commutative and associative. Zero 0 = 0 + 0i 4 Oc + Oh
is the null element. With respect to the addition operation, the inverse element
of His —H = —a — bi — ce — dh. The multiplication is not commutative, but
associative. Moreover, (K, +,) is non-commutative ring (with identity element
1 =1+ 0i+ 0c + Oh).

Table 1. The multiplication table for the basis of K.

x 1 i € h

1 1 i € h

i i -1 1-h e+i
e € 1+h 0 —€
h h —(e+i) « 1

A special kind of hybrid numbers, namely Horadam numbers, were intro-
duced in [12]. Interesting results of the Fibonacci and Lucas hybrid numbers
obtained recently can be found in [13]. Furthermore, some identities of Jacobshal
and Jacobsthal-Lucas hybrid numbers can be found in [14] and Fibonacci and
Lucas hybrinomials in [15].

In this paper, we introduce the third-order Jacobsthal and modified third-
order Jacobsthal hybrinomials, i.e., polynomials, which can be considered as a
generalization of the third-order Jacobsthal hybrid numbers and the modified
third-order Jacobsthal hybrid numbers.

For n > 0, the third-order Jacobsthal and modified third-order Jacobsthal
hybrinomials are defined by

(3) THP () = IO (@) + 113, () + eI, (@) + 1T ()
and
(4) KH® (2) = K (2) + 1K) (2) + eK )y (@) + hE ), (@),

where J,(L?’) (x) is the n-th third-order Jacobsthal polynomial, K,(L?’) (x) is the n-th
modified third-order Jacobsthal polynomial and i, €, h are hybrid units.

For x = 2, we obtain the third-order Jacobsthal hybrid numbers and the
modified third-order Jacobsthal hybrid numbers, respectively.
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2. MAIN RESULTS

Theorem 1. For any variable quantity x such that 2> +x +1 # 0 and n > 3,
we have

(5)  JHP(2) =z~ D)JHY (@) + (¢ — VIHDy(x) + 2 TH 5(x),

JH® (2)=1+i-(z

JHP (z) =it+e-(x—1)+h-(2®—2),
—1)+e-

B — e )
JH  (z) =2z —14+1i- (z* —

(22 —z)+h- (23— 22 +1),
) +e (2 —2*+1)+h- (2 —2* + 2 - 1),
where i, €, h are hybrid units.
Proof. If n = 3, we have
JHP (2) = (¢ — )IHP (2) + (2 — 1)JHP (2) + 2T HP (2)
= (-1 +i-zz-1)72+e-(@®—2>+1)(z - 1)
+h- (B 4+ Dz -1+ @-1)+i-(z—-1)+e-z(z—1)?
+h- (P -2+ Dz -1 +i-z+e-z(z—1)+h-2%x—1)
= —r+i- (P -2+ D) 4e- @ —2P+2-1)
+h-(2® -2t + 2% —2)
= I (@) +1J (2) + eJ8) (2) + hIP ().

If n > 4, then using the definition of the third-order Jacobsthal polynomials, we
have

JHP (z) = IO (2) + 112, (2) + eIy (x) + 1T, (2)
= (2= DI (@) + (@ = 1)1 (@) + 20y (@)
i (2= DI @) + (@ = DI @) + 2T @)
e (=172 @) + @ = DI @) + 212 (@)
+h- (@ = D)I2@) + (@ = DI (@) + 20D (@)
= (@—1) - JHD (@) + (2 = 1) - TH (@) + w - TH (),
which ends the proof. n

In the same way, we obtain the next result for modified third-order Jacobsthal
hybrinomials.
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Theorem 2. For any variable quantity x such that x> + x + 1 # 0, we have

(6) KHP(2) = (x — DEHY, (2) + (x = VEHD(x) + 2KH (), n> 3,
with KH® () = 3+i-(x—1)+&-(22 = 1)+h-(23+2), KH® () = 2 — 1 +i- (22 —
1)+e-(23+42)+h-(z4—1) and KHP (2) = 22— 141 (2% 42) +e-(2* —1)+h- (27— 1).

Now we give the Binet formulas for the third-order Jacobsthal and modified
third-order Jacobsthal hybrinomials.

Theorem 3 (Binet formulas). For any variable quantity x such that x>+x+1 # 0
and n > 0 be an integer. Then,

wnJrl
r) = ————(1 4+ zi+ 2% + 2°h)
?+r+1

(1 +wli+WQ€+h)

(1 + woi+ wie + h),

- KH® (2) = 2™(1 + 2i + 2% + 2°h) + W} (1 + wii 4 wee + h)
8
+ w3 (1 + woi+ wie + h),

where wy = 71%“/3 and wy = 71%“/3

Proof. Using Equations (2) and (4), we have
.- (3 3 3
KHP (@) = KD (@) + 15,2 () + KD (@) + hE T (@)
= 2" + Wi +wf +1 (2" WPt wp )
+e (2" + Wi+ Wi ) + h (2" WP 4wl

and after calculations result (8) follows. In the same way, using Equations (1) and
(3), we obtain Binet formula (7) for the third-order Jacobsthal hybrinomials. ®

Theorem 4. For n > 2, we have

KH®(2) = (x — )JHP (2) + 2(x — )JTHD (2) + 32T HY,(2).
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Proof. Using Equation (4), we obtain

KHP (z) = K@ (2) + 1KY, (2) + Ky () + hES) (@)
= (2 — 1) (@) + 2(z — )P () + 32T, (2)
+i (@ = I @) + 2~ DID @) + 320, (@)

+e ((x - 1)JT(L?_’22(x) +2(z — 1)J(?_’21(x) + 3xJ,(L3) (w))

n

n

3 3 3
+h (@ = DI () + 20w = 1) I (@) + 325, (2)
= (z — )JH® (2) + 2(x — 1)JHY, (z) + 32JH ,(2).
Thus, the result follows. [ |

Now, we will give some identities related to the well-known identities for the
third-order Jacobsthal and modified third-order Jacobsthal numbers

> 1,
Jﬁel : Jr(z?:1 - <J1S3)> =19 (2"(8Zp + 3Zy41) — 7)

on 1 if n=0 (mod 3)
=¢ =3-2"—-1 if n=1 (mod 3)
2rtl 1 if n=2 (mod 3),

2
K KD = (KP) = =277 3V, +8Y,) = 3

—13-2""1 —3 if n=0 (mod 3)
=¢ 11-2771 -3 if n=1 (mod 3)
2" —3 if n=2 (mod 3),

where Y, = w] +wy and Z,, = wliwz (=3 = 2wa)wf — (=3 — 2wy )wh).

We give their versions for the third-order Jacobsthal and modified third-order
Jacobsthal hybrinomials.
For simplicity of notation, let

z =1+ zi+ 2% + 2°h,
w1 = 1+ wii+we +h,
wg = 1+ woi+wie +h,
1
W1 — w2

+1

Zin = (2 — wo)wiw] ™ = (& — wi)wawy™*)

)

Vi = wiwi’ + wawy.
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Then, we can write Equations (7) and (8) as

1

= e @~ Zn)

and
KHP (x) = za™ + Y .

Lemma 5 (Cassini like-identity for the sequence Zp ;). For n > 2, we have

2
Zipnn(®) - Zi (@) = (247 (@))

22 +z+1
= —f (w1w2(1 — w2) + w2w1(1 — wl)) .

Proof.

2
2t (@) 2 (@) = (237 (@)

1
= o e (Awael ™ = Bunw™) (Awpef — Bunwf)
1
T oy Al — Buge ) (Awief™ — Buywi™)
AB

2 2
= 3 (wiwsw + wawiw) — wiwy — wwn) -
Then, we have

@) 2, @) — (25, @)

AB
= —T (wlwg(l — wg) +w2w1(1 — wl))

3
Zifha

[
=5 (wiws (1 — wa) 4 wawy (1 — wy)) ,

where A = x — w9 and B = 2 — w;.

145

Theorem 6 (Cassini like-identity for the third-order Jacobsthal hybrinomials).

Let n >0, r > 0 be integers such that n > r. Then,

THE), () - T, (@) — (7O (@)’
1

RECETESE
1

322+ +1) (

£$n+1(ZH,n —_ xZH,n—l) + (xZH,n - ZHJH'l)zxn)
w1w2(1 —ws) + wzwl(l - wl)) )

where Zy n is as in Lemma 5.
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Proof. Applying Theorem 3 and Lemma 5, we have that

2
JH, @) - T, (@) - (T (@)

1
T @zt 1)? 7 (@™ = Z) (22" = Zine)
1 n
(2 +z + 1)2 (mc - ZH’") (gw - Zan) .

Finally, we obtain

JHE) (@ ) THO, ()~ (JHP @)’

“ @1t 1? + 1) (22" (Zypm — 2 Z1p-1) + (@200 — Zipsr)zz")

(3) (3) 2
+ x2+x+1 2 (ZHnJrl - (@) = (ZH,n($)) )

22" "N Zyp — 2 Zpn—1) + (@ Zpp — ZHpsr)za")

(22 +x+1)? —|— x+1)2 (
3($2+$—|—1 (wl(.UQ 1—&)2 —|—w2w1(1—w1)) .
Note that
1
Zitn = = (@ = wo)wnei™ — (2 = wi)wa )
wiwT T — wowp ! wiw] — wawf
=X e — _ _
w1 — w2 W1 — W2
x—(x+1)i+e+zh if n=0 (mod 3)
=¢ —(z+1)+i+ze—(x+1)h if n=1 (mod 3)
l+zi—(x+1)e+h if n=2 (mod 3).

Next we shall give the generating function for the third-order Jacobsthal
hybrinomials.

Theorem 7. The generating function for the third-order Jacobsthal hybrinomial

sequence (JHT(L?’) (x)>n>0 is

{i+€ (z—1)+h-(2? —x)+(1+a (z—1)4+h- (2 —z+1))t }

+(e-z+h- (22 —x))t?

J(t) = l—(z—1Dt—(z— 1)t — 23
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Proof. Assume that the generating function of the third-order Jacobsthal hybri-
nomial sequence <JH¢(L?’) (x)) . has the form j(t) =Y 7, JHP . Then,
n>

i) = JHS + JHS 4 THPE 4.

Multiply the above equality on both sides by —(x — 1)¢, —(z — 1)t and then by
—xt3, we obtain

By adding the four equalities above, we will get
JO(1 = (z — 1)t — (z — 1)t* — zt3)
=i + (7a() — (2 = )T )1

+ (B — @ - )IH® — (@ - 1)THD) ¢,

since JHY (x) = (x—1)JH7(L?’_)1(JU)+(x—1)JH7(13_)2(x)+xJHT(L?23(x), (see Theorem
1) and the coefficients of t" for n > 3 are equal to zero. Moreover, JH, (3)( ) =
ite (@—1)+h-(22—2), JHY (@) = 1+i-(z—1) +¢ (a2 —x)+h (z3—22+1)
andJHé)()—x—l—i—l (22 —2)+e- (23 —22+1)+h-(z* —23+2—1), and
the result follows. ]

In the same way, we obtain the next theorem.

Theorem 8. The generating function for the modified third-order Jacobsthal hy-

brinomial sequence (KH,Sg) (x)) . is

KBS + (K — (2 - 1)KH) ¢
+ (KB - @ - )KHY — (- 1)KH) ¢
1—(x—1)t—(x—1)t2—at3 ’

k(t) =

where KH(§3)($) =3+i-(z—1)+e-(22—1)+h-(z3+2), KHfs)(x) =z—1+i- (22—
1)+e-(2342)+h-(z4—1) and KHY () = 22— 14i-(2342) +e-(2* —1)+h-(z5—1).
There are some analogies between properties of third-order Jacobsthal and

modified third-order Jacobsthal polynomials and third-order Jacobsthal and mod-
ified third-order Jacobsthal hybrinomials.
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Lemma 9. Let n > 1 be an integer and x # 1. Then,

0 = g ()~ - 2+ a0 1),

Proof. By induction on n. Then, if n = 1, we have

R p— (A @) = (@ = 27 @) + 2aP (@) - 1).

If n > 2, then using the definition of the third-order Jacobsthal polynomials, we
have

S =3 A )+ )
=0 =0
- 3(901_ 0 (H%@) = (@ =207 @) + 2T (@) = 1) + T (@)
- 3(901_ 0 (J,Sié(w) + (22 = DI (@) + 2 I (@) - 1)
- 3(x1— 1) <J1S?:33(33) —(z— 2)*](?322@) + xJ,g?:Bl(x) - 1) ,
which ends the proof. =

Theorem 10. Let n > 0 be an integer. Then, we have

(10)
@y L THO @)~ (@ - 2)JH]) (x)
; THT ) = 3z —1) {—i— lejfr(bg)(x) -1—-i- (?J)r; —2)e — (322 =3z + Dh|

Proof. Let consider the sum Y ;" JHI(?’) (). Then,

Z JHl(g)(w) = JHo(g)(x) + JH}g)(x) NI JHr(Ls)(w)
=0

= JP (@) +17P () + eI () + I (2)
+ I (@) + 170 (2) + €7 (@) + 0T ()

+ I @) + 12, @) + (@) + b ().
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Furthermore, using Lemma 9 we have

3(z — 1)
b gy (20 — e~ 2% + 20 ) 1)
+ =g (@) - @ = 2020 + 2/ 1)
gy (250 — e~ 20+ 20t 1)
—e—zh

and finally
JH®, (2) = (x - 2)JHP) | ()

- 1
Z JHz(g)(x) = 3z -1 + mJH,(L?’)(x) —1—-i— Bz —-2)
=0 — (322 -3z + h

|
Theorem 11. Let n > 0 be an integer. Then, we have
3 3
o o[ EEL - @ 2rED @)
(11) ZKHl () = 3z -1 +wKH,(L3)(w) +3(x — 2) + 3(z — 3)i
=0 +2(x —4)e + (22 — 22+ 7)h
Proof. Using the next identity
n 3 3
S k() = L[ Kl — @2 @)
=0 3z -1 | 42k () +3(z —2)
and proceeding in the same way as in Theorem 10, the result follows. [ |

Matrix generators play an important role in the theory of the third-order
Jacobsthal numbers and the third-order Jacobsthal polynomials (see, for exam-
ple [4]). We derive the matrix representation of the third-order Jacobsthal hy-
brinomials.
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Definition 12. Third-order Jacobsthal hybrinomial matrix J ) (x) is defined

TH) (o= DI +aTH ) IHL(
IP() = | TS @) (@ = DIH @) + 2T B (@) e lH (@) |
JHE(2) (a — )JHlel(meJHé‘”’)(w) T H) ()
for all n > 0.

Theorem 13. Let n > 0 be an integer. Then

r—1 z—1 z 1"

Th® () = T (x) - | 1 0 0
0 1 0

Proof. (by induction on n) If n = 0 then assuming that the matrix to the power
0 is the identity matrix, the result is obvious. Now assume that for any n > 0
holds

r—1 z—1 z 1"

Jh® (@) = I (@) | 1 0 0
0 1 0
By simple calculation using induction’s hypothesis, we have
r—1 z—1 21"
Jhi@)- | 1 0 0
0 1 0
[z—1 2—1 21" r—1 z—1 =
= I @) | 1 0 0 1 0 0
0 1 0 | 0 1 0
[2—-1 z2—-1 z ]
=Jh® @) | 1 0 0
0 1 0 |
= ), (@),
which ends the proof. [ |

In the same way, we obtain the matrix representation for the modified third-
order Jacobsthal hybrinomials.

Theorem 14. Let n > 0 be an integer. Then

r—1 z—1 z 1"

Kr® (@) =KrP@)-| 1 0o o],
0 1 0
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where

Kb (@)= | KES) (1) (2 - DKH), (2

)+ 2KH 2(
)+ 2KH 3)1(x) eKH® ()
(@) +2KHP (@) aKHP) ()

KHS) (x) (2 nKHﬁax

KHE) (2) (2 - 1)KH)

n+1

3. CONCLUSION

We defined new numbers by using definitions of hybrinomial sequence, third-
order Jacobsthal hybrinomial, modified third-order Jacobsthal hybrinomial. The
properties of those numbers were examined. Some theorems about these numbers
were presented.
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