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Abstract

The hybrid numbers are generalization of complex, hyperbolic and dual
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1. Introduction

Let J
(3)
n be the n-th third-order Jacobsthal number defined recursively by

J (3)
n = J

(3)
n−1 + J

(3)
n−2 + 2J

(3)
n−3, n ≥ 3,

for n ≥ 3 with the initial terms J
(3)
0 = 0, J

(3)
1 = J

(3)
2 = 1.

The n-th modified third-order Jacobsthal number K
(3)
n is defined recursively

by K
(3)
n = K

(3)
n−1 + K

(3)
n−2 + 2K

(3)
n−3 for n ≥ 3 with the initial terms K

(3)
0 = 3,

K
(3)
1 = 1, K

(3)
2 = 3.

The direct formulas for the n-th third-order Jacobsthal number and the n-th
modified third-order Jacobsthal number are named as Binet formulas and have
the form

J (3)
n =

2n+1

7
−

ωn+1
1

(2 − ω1)(ω1 − ω2)
+

ωn+1
2

(2 − ω2)(ω1 − ω2)
,
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K(3)
n = 2n + ωn

1 + ωn
2 ,

where ω1 + ω2 = −1 and ω1ω2 = 1 (see [3–5]).

For any variable quantity x such that x2+x+1 6= 0, the third-order Jacobsthal

polynomial J
(3)
n (x) is defined as J

(3)
n (x) = (x − 1)J

(3)
n−1(x) + (x − 1)J

(3)
n−2(x) +

xJ
(3)
n−3(x) for n ≥ 3 with J

(3)
0 (x) = 0, J

(3)
1 (x) = 1, J

(3)
2 (x) = x− 1.

The modified third-order Jacobsthal polynomial K
(3)
n (x) is defined as K

(3)
n (x)

= (x− 1)K
(3)
n−1(x) + (x− 1)K

(3)
n−2(x) + xK

(3)
n−3(x) for n ≥ 3 with the initial terms

K
(3)
0 (x) = 3, K

(3)
1 (x) = x− 1, K

(3)
2 (x) = x2 − 1.

For x = 2, the third-order Jacobsthal and modified third-order Jacobsthal
polynomials give the third-order Jacobsthal and modified third-order Jacobsthal
numbers, respectively.

Based on the properties of sequences defined by the third-order linear recur-

rence relations, we can give direct formulas for J
(3)
n (x) and K

(3)
n (x). Then,

(1) J (3)
n (x) =

xn+1

x2 + x + 1
−

ωn+1
1

(x− ω1)(ω1 − ω2)
+

ωn+1
2

(x− ω2)(ω1 − ω2)

and

(2) K(3)
n (x) = xn + ωn

1 + ωn
2 ,

where ω1 = −1+i
√
3

2 and ω2 = −1−i
√
3

2 . Equations (1) and (2) are named as
Binet formulas for the third-order Jacobsthal and modified third-order Jacobsthal
polynomials, respectively.

Cook was a pioneer in studying the third-order Jacobsthal numbers, see for
details [6]. Many papers have studied properties of the third-order Jacobsthal
type numbers, for example [1–5]. Note that the third-order Jacobsthal numbers
are related to the Jacobsthal numbers. These numbers have many applications in
algebra, geometry, numbers theory and other branches of mathematics, see [7–10].

The hybrid numbers were introduced by Özdemir in [11] as a new general-
ization of complex, hyperbolic and dual numbers. Let K be the set of hybrid
numbers H of the form

H = a + bi + cε + dh,

where a, b, c, d ∈ R and i, ε, h are operators such that

i2 = −1, ε2 = 0, h2 = 1

and

ih = −hi = ε + i.
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The hybrid numbers multiplication is defined using above equations (see Ta-
ble 1). Note that using above formulas we can find the product of any two
hybrid units. Then, the multiplication of hybrid numbers can be made anal-
ogously as multiplications of algebraic expressions. Addition operation in the
hybrid numbers is both commutative and associative. Zero 0 = 0 + 0i + 0ε + 0h
is the null element. With respect to the addition operation, the inverse element
of H is −H = −a − bi − cε − dh. The multiplication is not commutative, but
associative. Moreover, (K,+, ·) is non-commutative ring (with identity element
1 = 1 + 0i + 0ε + 0h).

Table 1. The multiplication table for the basis of K.

× 1 i ε h

1 1 i ε h

i i −1 1− h ε + i

ε ε 1 + h 0 −ε

h h −(ε + i) ε 1

A special kind of hybrid numbers, namely Horadam numbers, were intro-
duced in [12]. Interesting results of the Fibonacci and Lucas hybrid numbers
obtained recently can be found in [13]. Furthermore, some identities of Jacobshal
and Jacobsthal-Lucas hybrid numbers can be found in [14] and Fibonacci and
Lucas hybrinomials in [15].

In this paper, we introduce the third-order Jacobsthal and modified third-
order Jacobsthal hybrinomials, i.e., polynomials, which can be considered as a
generalization of the third-order Jacobsthal hybrid numbers and the modified
third-order Jacobsthal hybrid numbers.

For n ≥ 0, the third-order Jacobsthal and modified third-order Jacobsthal
hybrinomials are defined by

(3) JH(3)
n (x) = J (3)

n (x) + iJ
(3)
n+1(x) + εJ

(3)
n+2(x) + hJ

(3)
n+3(x)

and

(4) KH(3)
n (x) = K(3)

n (x) + iK
(3)
n+1(x) + εK

(3)
n+2(x) + hK

(3)
n+3(x),

where J
(3)
n (x) is the n-th third-order Jacobsthal polynomial, K

(3)
n (x) is the n-th

modified third-order Jacobsthal polynomial and i, ε, h are hybrid units.

For x = 2, we obtain the third-order Jacobsthal hybrid numbers and the
modified third-order Jacobsthal hybrid numbers, respectively.
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2. Main results

Theorem 1. For any variable quantity x such that x2 + x + 1 6= 0 and n ≥ 3,
we have

(5) JH(3)
n (x) = (x− 1)JH

(3)
n−1(x) + (x− 1)JH

(3)
n−2(x) + xJH

(3)
n−3(x),

with

JH
(3)
0 (x) = i + ε · (x− 1) + h · (x2 − x),

JH
(3)
1 (x) = 1 + i · (x− 1) + ε · (x2 − x) + h · (x3 − x2 + 1),

JH
(3)
2 (x) = x− 1 + i · (x2 − x) + ε · (x3 − x2 + 1) + h · (x4 − x3 + x− 1),

where i, ε, h are hybrid units.

Proof. If n = 3, we have

JH
(3)
3 (x) = (x− 1)JH

(3)
2 (x) + (x− 1)JH

(3)
1 (x) + xJH

(3)
0 (x)

= (x− 1)2 + i · x(x− 1)2 + ε · (x3 − x2 + 1)(x− 1)

+ h · (x3 + 1)(x− 1)2 + (x− 1) + i · (x− 1)2 + ε · x(x− 1)2

+ h · (x3 − x2 + 1)(x − 1) + i · x + ε · x(x− 1) + h · x2(x− 1)

= x2 − x + i · (x3 − x2 + 1) + ε · (x4 − x3 + x− 1)

+ h · (x5 − x4 + x2 − x)

= J
(3)
3 (x) + iJ

(3)
4 (x) + εJ

(3)
5 (x) + hJ

(3)
6 (x).

If n ≥ 4, then using the definition of the third-order Jacobsthal polynomials, we
have

JH(3)
n (x) = J (3)

n (x) + iJ
(3)
n+1(x) + εJ

(3)
n+2(x) + hJ

(3)
n+3(x)

= (x− 1)J
(3)
n−1(x) + (x− 1)J

(3)
n−2(x) + xJ

(3)
n−3(x)

+ i ·
(

(x− 1)J (3)
n (x) + (x− 1)J

(3)
n−1(x) + xJ

(3)
n−2(x)

)

+ ε ·
(

(x− 1)J
(3)
n+1(x) + (x− 1)J (3)

n (x) + xJ
(3)
n−1(x)

)

+ h ·
(

(x− 1)J
(3)
n+2(x) + (x− 1)J

(3)
n+1(x) + xJ (3)

n (x)
)

= (x− 1) · JH
(3)
n−1(x) + (x− 1) · JH

(3)
n−2(x) + x · JH

(3)
n−3(x),

which ends the proof.

In the same way, we obtain the next result for modified third-order Jacobsthal
hybrinomials.
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Theorem 2. For any variable quantity x such that x2 + x + 1 6= 0, we have

(6) KH(3)
n (x) = (x− 1)KH

(3)
n−1(x) + (x− 1)KH

(3)
n−2(x) + xKH

(3)
n−3(x), n ≥ 3,

with KH
(3)
0 (x) = 3+i·(x−1)+ε·(x2−1)+h·(x3+2), KH

(3)
1 (x) = x−1+i·(x2−

1)+ε·(x3+2)+h·(x4−1) and KH
(3)
2 (x) = x2−1+i·(x3+2)+ε·(x4−1)+h·(x5−1).

Now we give the Binet formulas for the third-order Jacobsthal and modified
third-order Jacobsthal hybrinomials.

Theorem 3 (Binet formulas). For any variable quantity x such that x2+x+1 6= 0
and n ≥ 0 be an integer. Then,

(7)

JH(3)
n (x) =

xn+1

x2 + x + 1
(1 + xi + x2ε + x3h)

−
ωn+1
1

(x− ω1)(ω1 − ω2)
(1 + ω1i + ω2ε + h)

+
ωn+1
2

(x− ω2)(ω1 − ω2)
(1 + ω2i + ω1ε + h),

(8)
KH(3)

n (x) = xn(1 + xi + x2ε + x3h) + ωn
1 (1 + ω1i + ω2ε + h)

+ ωn
2 (1 + ω2i + ω1ε + h),

where ω1 = −1+i
√
3

2 and ω2 = −1−i
√
3

2 .

Proof. Using Equations (2) and (4), we have

KH(3)
n (x) = K(3)

n (x) + iK
(3)
n+1(x) + εK

(3)
n+2(x) + hK

(3)
n+3(x)

= xn + ωn
1 + ωn

2 + i
(

xn+1 + ωn+1
1 + ωn+1

2

)

+ ε
(

xn+2 + ωn+2
1 + ωn+2

2

)

+ h
(

xn+3 + ωn+3
1 + ωn+3

2

)

and after calculations result (8) follows. In the same way, using Equations (1) and
(3), we obtain Binet formula (7) for the third-order Jacobsthal hybrinomials.

Theorem 4. For n ≥ 2, we have

KH(3)
n (x) = (x− 1)JH(3)

n (x) + 2(x− 1)JH
(3)
n−1(x) + 3xJH

(3)
n−2(x).
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Proof. Using Equation (4), we obtain

KH(3)
n (x) = K(3)

n (x) + iK
(3)
n+1(x) + εK

(3)
n+2(x) + hK

(3)
n+3(x)

= (x− 1)J (3)
n (x) + 2(x− 1)J

(3)
n−1(x) + 3xJ

(3)
n−2(x)

+ i
(

(x− 1)J
(3)
n+1(x) + 2(x− 1)J (3)

n (x) + 3xJ
(3)
n−1(x)

)

+ ε
(

(x− 1)J
(3)
n+2(x) + 2(x− 1)J

(3)
n+1(x) + 3xJ (3)

n (x)
)

+ h
(

(x− 1)J
(3)
n+3(x) + 2(x− 1)J

(3)
n+2(x) + 3xJ

(3)
n+1(x)

)

= (x− 1)JH(3)
n (x) + 2(x− 1)JH

(3)
n−1(x) + 3xJH

(3)
n−2(x).

Thus, the result follows.

Now, we will give some identities related to the well-known identities for the
third-order Jacobsthal and modified third-order Jacobsthal numbers

J
(3)
n+1 · J

(3)
n−1 −

(

J (3)
n

)2
=

1

49
(2n(8Zn + 3Zn+1) − 7)

=







2n − 1 if n ≡ 0 (mod 3)
−3 · 2n − 1 if n ≡ 1 (mod 3)
2n+1 − 1 if n ≡ 2 (mod 3),

K
(3)
n+1 ·K

(3)
n−1 −

(

K(3)
n

)2
= −2n−1(3Yn+1 + 8Yn) − 3

=







−13 · 2n−1 − 3 if n ≡ 0 (mod 3)
11 · 2n−1 − 3 if n ≡ 1 (mod 3)
2n − 3 if n ≡ 2 (mod 3),

where Yn = ωn
1 + ωn

2 and Zn = 1
ω1−ω2

(

(−3 − 2ω2)ωn
1 − (−3 − 2ω1)ω

n
2

)

.

We give their versions for the third-order Jacobsthal and modified third-order
Jacobsthal hybrinomials.

For simplicity of notation, let

x = 1 + xi + x2ε + x3h,

ω1 = 1 + ω1i + ω2ε + h,

ω2 = 1 + ω2i + ω1ε + h,

ZH,n =
1

ω1 − ω2

(

(x− ω2)ω1ω
n+1
1 − (x− ω1)ω2ω

n+1
2

)

,

YH,n = ω1ω
n
1 + ω2ω

n
2 .
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Then, we can write Equations (7) and (8) as

JH(3)
n (x) =

1

x2 + x + 1

(

xxn+1 − ZH,n

)

and
KH(3)

n (x) = xxn + YH,n.

Lemma 5 (Cassini like-identity for the sequence ZH,n). For n ≥ 2, we have

Z
(3)
H,n+1(x) · Z

(3)
H,n−1(x) −

(

Z
(3)
H,n(x)

)2

= −
x2 + x + 1

3

(

ω1ω2(1 − ω2) + ω2ω1(1 − ω1)
)

.

Proof.

Z
(3)
H,n+1(x) · Z

(3)
H,n−1(x) −

(

Z
(3)
H,n(x)

)2

=
1

(ω1 − ω2)2
(

Aω1ω
n+2
1 −Bω2ω

n+2
2

) (

Aω1ω
n
1 −Bω2ω

n
2

)

−
1

(ω1 − ω2)2
(

Aω1ω
n+1
1 −Bω2ω

n+1
2

) (

Aω1ω
n+1
1 −Bω2ω

n+1
2

)

=
AB

3

(

ω1ω2ω
2
1 + ω2ω1ω

2
2 − ω1ω2 − ω2ω1

)

.

Then, we have

Z
(3)
H,n+1(x) · Z

(3)
H,n−1(x) −

(

Z
(3)
H,n(x)

)2

= −
AB

3

(

ω1ω2(1 − ω2) + ω2ω1(1 − ω1)
)

= −
x2 + x + 1

3

(

ω1ω2(1 − ω2) + ω2ω1(1 − ω1)
)

,

where A = x− ω2 and B = x− ω1.

Theorem 6 (Cassini like-identity for the third-order Jacobsthal hybrinomials).
Let n ≥ 0, r ≥ 0 be integers such that n ≥ r. Then,

JH
(3)
n+1(x) · JH

(3)
n−1(x) −

(

JH(3)
n (x)

)2

=
1

(x2 + x + 1)2
(

xxn+1(ZH,n − xZH,n−1) + (xZH,n − ZH,n+1)xx
n
)

−
1

3(x2 + x + 1)

(

ω1ω2(1 − ω2) + ω2ω1(1 − ω1)
)

,

where ZH,n is as in Lemma 5.
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Proof. Applying Theorem 3 and Lemma 5, we have that

JH
(3)
n+1(x) · JH

(3)
n−1(x) −

(

JH(3)
n (x)

)2

=
1

(x2 + x + 1)2
(

xxn+2 − ZH,n+1

)

(xxn − ZH,n−1)

−
1

(x2 + x + 1)2
(

xxn+1 − ZH,n

) (

xxn+1 − ZH,n

)

.

Finally, we obtain

JH
(3)
n+1(x) · JH

(3)
n−1(x) −

(

JH(3)
n (x)

)2

=
1

(x2 + x + 1)2
(

xxn+1(ZH,n − xZH,n−1) + (xZH,n − ZH,n+1)xx
n
)

+
1

(x2 + x + 1)2

(

Z
(3)
H,n+1(x) · Z

(3)
H,n−1(x) −

(

Z
(3)
H,n(x)

)2
)

=
1

(x2 + x + 1)2
(

xxn+1(ZH,n − xZH,n−1) + (xZH,n − ZH,n+1)xx
n
)

−
1

3(x2 + x + 1)

(

ω1ω2(1 − ω2) + ω2ω1(1 − ω1)
)

.

Note that

ZH,n =
1

ω1 − ω2

(

(x− ω2)ω1ω
n+1
1 − (x− ω1)ω2ω

n+1
2

)

= x

(

ω1ω
n+1
1 − ω2ω

n+1
1

ω1 − ω2

)

−

(

ω1ω
n
1 − ω2ω

n
1

ω1 − ω2

)

=







x− (x + 1)i + ε + xh if n ≡ 0 (mod 3)
−(x + 1) + i + xε− (x + 1)h if n ≡ 1 (mod 3)
1 + xi− (x + 1)ε + h if n ≡ 2 (mod 3).

Next we shall give the generating function for the third-order Jacobsthal
hybrinomials.

Theorem 7. The generating function for the third-order Jacobsthal hybrinomial

sequence
(

JH
(3)
n (x)

)

n≥0
is

j(t) =

{

i + ε · (x− 1) + h · (x2 − x) +
(

1 + ε · (x− 1) + h · (x2 − x + 1)
)

t

+
(

ε · x + h · (x2 − x)
)

t2

}

1 − (x− 1)t− (x− 1)t2 − xt3
.
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Proof. Assume that the generating function of the third-order Jacobsthal hybri-

nomial sequence
(

JH
(3)
n (x)

)

n≥0
has the form j(t) =

∑∞
n=0 JH

(3)
n tn. Then,

j(t) = JH
(3)
0 + JH

(3)
1 t + JH

(3)
2 t2 + · · · .

Multiply the above equality on both sides by −(x− 1)t, −(x− 1)t2 and then by
−xt3, we obtain

−(x− 1)tj(t) = −(x− 1)JH
(3)
0 t− (x− 1)JH

(3)
1 t2 − (x− 1)JH

(3)
2 t3 − · · ·

−(x− 1)t2j(t) = −(x− 1)JH
(3)
0 t2 − (x− 1)JH

(3)
1 t3 − (x− 1)JH

(3)
2 t4 − · · ·

−xt3j(t) = −xJH
(3)
0 t3 − xJH

(3)
1 t4 − xJH

(3)
2 t5 − · · · .

By adding the four equalities above, we will get

j(t)(1 − (x− 1)t− (x− 1)t2 − xt3)

= JH
(3)
0 +

(

JH
(3)
1 − (x− 1)JH

(3)
0

)

t

+
(

JH
(3)
2 − (x− 1)JH

(3)
1 − (x− 1)JH

(3)
0

)

t2,

since JH
(3)
n (x) = (x−1)JH

(3)
n−1(x)+(x−1)JH

(3)
n−2(x)+xJH

(3)
n−3(x), (see Theorem

1) and the coefficients of tn for n ≥ 3 are equal to zero. Moreover, JH
(3)
0 (x) =

i+ε · (x−1)+h · (x2−x), JH
(3)
1 (x) = 1+ i · (x−1)+ε · (x2−x)+h · (x3−x2 +1)

and JH
(3)
2 (x) = x− 1 + i · (x2 − x) + ε · (x3 − x2 + 1) +h · (x4 − x3 + x− 1), and

the result follows.

In the same way, we obtain the next theorem.

Theorem 8. The generating function for the modified third-order Jacobsthal hy-

brinomial sequence
(

KH
(3)
n (x)

)

n≥0
is

k(t) =







KH
(3)
0 +

(

KH
(3)
1 − (x− 1)KH

(3)
0

)

t

+
(

KH
(3)
2 − (x− 1)KH

(3)
1 − (x− 1)KH

(3)
0

)

t2







1 − (x− 1)t− (x− 1)t2 − xt3
,

where KH
(3)
0 (x) = 3+i·(x−1)+ε·(x2−1)+h·(x3+2), KH

(3)
1 (x) = x−1+i·(x2−

1)+ε·(x3+2)+h·(x4−1) and KH
(3)
2 (x) = x2−1+i·(x3+2)+ε·(x4−1)+h·(x5−1).

There are some analogies between properties of third-order Jacobsthal and
modified third-order Jacobsthal polynomials and third-order Jacobsthal and mod-
ified third-order Jacobsthal hybrinomials.
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Lemma 9. Let n ≥ 1 be an integer and x 6= 1. Then,

(9)

n
∑

l=0

J
(3)
l (x) =

1

3(x− 1)

(

J
(3)
n+2(x) − (x− 2)J

(3)
n+1(x) + xJ (3)

n (x) − 1
)

.

Proof. By induction on n. Then, if n = 1, we have

1
∑

l=0

J
(3)
l (x) = 1 =

1

3(x− 1)

(

J
(3)
3 (x) − (x− 2)J

(3)
2 (x) + xJ

(3)
1 (x) − 1

)

.

If n ≥ 2, then using the definition of the third-order Jacobsthal polynomials, we
have

n+1
∑

l=0

J
(3)
l (x) =

n
∑

l=0

J
(3)
l (x) + J

(3)
n+1(x)

=
1

3(x− 1)

(

J
(3)
n+2(x) − (x− 2)J

(3)
n+1(x) + xJ (3)

n (x) − 1
)

+ J
(3)
n+1(x)

=
1

3(x− 1)

(

J
(3)
n+2(x) + (2x− 1)J

(3)
n+1(x) + xJ (3)

n (x) − 1
)

=
1

3(x− 1)

(

J
(3)
n+3(x) − (x− 2)J

(3)
n+2(x) + xJ

(3)
n+1(x) − 1

)

,

which ends the proof.

Theorem 10. Let n ≥ 0 be an integer. Then, we have

(10)
n
∑

l=0

JH
(3)
l

(x) =
1

3(x− 1)

{

JH
(3)
n+2(x) − (x− 2)JH

(3)
n+1(x)

+ xJH
(3)
n (x) − 1 − i− (3x− 2)ε− (3x2 − 3x + 1)h

}

.

Proof. Let consider the sum
∑n

l=0 JH
(3)
l

(x). Then,

n
∑

l=0

JH
(3)
l

(x) = JH
(3)
0 (x) + JH

(3)
1 (x) + · · · + JH(3)

n (x)

= J
(3)
0 (x) + iJ

(3)
1 (x) + εJ

(3)
2 (x) + hJ

(3)
3 (x)

+ J
(3)
1 (x) + iJ

(3)
2 (x) + εJ

(3)
3 (x) + hJ

(3)
4 (x)

...

+ J (3)
n (x) + iJ

(3)
n+1(x) + εJ

(3)
n+2(x) + hJ

(3)
n+3(x) .
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Furthermore, using Lemma 9 we have

n
∑

l=0

JH
(3)
l (x) = J

(3)
0 (x) + J

(3)
1 (x) + · · · + J (3)

n (x)

+ i
(

J
(3)
1 (x) + J

(3)
2 (x) + · · · + J

(3)
n+1(x)

)

+ ε
(

J
(3)
2 (x) + J

(3)
3 (x) + · · · + J

(3)
n+2(x)

)

+ h
(

J
(3)
3 (x) + J

(3)
4 (x) + · · · + J

(3)
n+3(x)

)

=
1

3(x− 1)

(

J
(3)
n+2(x) − (x− 2)J

(3)
n+1(x) + xJ (3)

n (x) − 1
)

+
i

3(x− 1)

(

J
(3)
n+3(x) − (x− 2)J

(3)
n+2(x) + xJ

(3)
n+1(x) − 1

)

+
ε

3(x− 1)

(

J
(3)
n+4(x) − (x− 2)J

(3)
n+3(x) + xJ

(3)
n+2(x) − 1

)

+
h

3(x− 1)

(

J
(3)
n+5(x) − (x− 2)J

(3)
n+4(x) + xJ

(3)
n+3(x) − 1

)

− ε− xh

and finally

n
∑

l=0

JH
(3)
l (x) =

1

3(x− 1)















JH
(3)
n+2(x) − (x− 2)JH

(3)
n+1(x)

+ xJH
(3)
n (x) − 1 − i− (3x− 2)ε

− (3x2 − 3x + 1)h















.

Theorem 11. Let n ≥ 0 be an integer. Then, we have

(11)

n
∑

l=0

KH
(3)
l (x) =

1

3(x− 1)















KH
(3)
n+2(x) − (x− 2)KH

(3)
n+1(x)

+ xKH
(3)
n (x) + 3(x− 2) + 3(x− 3)i

+ 2(x− 4)ε + (x2 − 2x + 7)h















.

Proof. Using the next identity

n
∑

l=0

K
(3)
l

(x) =
1

3(x− 1)

{

K
(3)
n+2(x) − (x− 2)K

(3)
n+1(x)

+ xK
(3)
n (x) + 3(x− 2)

}

and proceeding in the same way as in Theorem 10, the result follows.

Matrix generators play an important role in the theory of the third-order
Jacobsthal numbers and the third-order Jacobsthal polynomials (see, for exam-
ple [4]). We derive the matrix representation of the third-order Jacobsthal hy-
brinomials.
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Definition 12. Third-order Jacobsthal hybrinomial matrix Jh
(3)
n (x) is defined

by

Jh(3)n (x) =









JH
(3)
n+4(x) (x− 1)JH

(3)
n+3(x) + xJH

(3)
n+2(x) xJH

(3)
n+3(x)

JH
(3)
n+3(x) (x− 1)JH

(3)
n+2(x) + xJH

(3)
n+1(x) xJH

(3)
n+2(x)

JH
(3)
n+2(x) (x− 1)JH

(3)
n+1(x) + xJH

(3)
n (x) xJH

(3)
n+1(x)









,

for all n ≥ 0.

Theorem 13. Let n ≥ 0 be an integer. Then

Jh(3)n (x) = Jh
(3)
0 (x) ·





x− 1 x− 1 x

1 0 0
0 1 0





n

.

Proof. (by induction on n) If n = 0 then assuming that the matrix to the power
0 is the identity matrix, the result is obvious. Now assume that for any n ≥ 0
holds

Jh(3)n (x) = Jh
(3)
0 (x) ·





x− 1 x− 1 x

1 0 0
0 1 0





n

.

By simple calculation using induction’s hypothesis, we have

Jh
(3)
0 (x) ·





x− 1 x− 1 x

1 0 0
0 1 0





n+1

= Jh
(3)
0 (x) ·





x− 1 x− 1 x

1 0 0
0 1 0





n

·





x− 1 x− 1 x

1 0 0
0 1 0





= Jh(3)n (x) ·





x− 1 x− 1 x

1 0 0
0 1 0





= Jh
(3)
n+1(x),

which ends the proof.

In the same way, we obtain the matrix representation for the modified third-
order Jacobsthal hybrinomials.

Theorem 14. Let n ≥ 0 be an integer. Then

Kh(3)n (x) = Kh
(3)
0 (x) ·





x− 1 x− 1 x

1 0 0
0 1 0





n

,
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where

Kh(3)n (x) =









KH
(3)
n+4(x) (x− 1)KH

(3)
n+3(x) + xKH

(3)
n+2(x) xKH

(3)
n+3(x)

KH
(3)
n+3(x) (x− 1)KH

(3)
n+2(x) + xKH

(3)
n+1(x) xKH

(3)
n+2(x)

KH
(3)
n+2(x) (x− 1)KH

(3)
n+1(x) + xKH

(3)
n (x) xKH

(3)
n+1(x)









.

3. Conclusion

We defined new numbers by using definitions of hybrinomial sequence, third-
order Jacobsthal hybrinomial, modified third-order Jacobsthal hybrinomial. The
properties of those numbers were examined. Some theorems about these numbers
were presented.
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