ON THE GENUS OF THE IDEMPOTENT GRAPH OF A FINITE COMMUTATIVE RING

G. Gold Belsi ${ }^{1}$, S. Kavitha ${ }^{2}$
AND
K. Selvakumar ${ }^{1}$
Reg. No. 18114012092031
${ }^{1}$ Department of Mathematics
Manonmaniam Sundaranar University Tirunelveli 627 012, Tamil Nadu, India
${ }^{2}$ Department of Mathematics
Gobi Arts and Science College
Gobichettipalayam 638 476, Tamilnadu
e-mail: goldbelsi@gmail.com
kavithaashmi@gmail.com
selva_158@yahoo.co.in

Abstract

Let R be a finite commutative ring with identity. The idempotent graph of R is the simple undirected graph $I(R)$ with vertex set, the set of all nontrivial idempotents of R and two distinct vertices x and y are adjacent if and only if $x y=0$. In this paper, we have determined all isomorphism classes of finite commutative rings with identity whose $I(R)$ has genus one or two. Also we have determined all isomorphism classes of finite commutative rings with identity whose $I(R)$ has crosscap one. Also we study the the book embedding of toroidal idempotent graphs and classify finite commutative rings whose $I(R)$ is a ring graph.

Keywords: idempotent graph, planar, genus, crosscap.
2010 Mathematics Subject Classification: 13A15, 13M05, 05C25, 05C75.

1. InTroduction

The study on linking commutative ring theory with graph theory has been started with the concept of the zero-divisor graph of a commutative ring which was first
launched by I. Beck [3]. Recall that the idempotent graph of a commutative ring R, is a simple undirected graph $I(R)$ with vertex set, the set of all non-trivial idempotents of R and two distinct vertices x and y are adjacent if and only if $x y=0$. The concept was first initiated by, Akbari, Habibi, Majidinya and Manaviyat [1]. They obtained some basic results of $I\left(M_{n}(R)\right)$, for a division ring R. Influenced by the ideas of the above authors, we try to classify the finite commutative rings with unity whose idempotent graph is planar, ring graph, has genus 1 or 2 and crosscap 1.

2. Preliminaries

In this section, we recollect some definitions and theorems which are required for the subsequent sections.

Let G be a graph with n vertices and q edges. Let C be a cycle of G. We say C is a primitive cycle if it has no chords. Also a graph G has the primitive cycle property (PCP) if any two primitive cycles intersect in at most one edge. The number $\operatorname{frank}(G)$ is called the free rank of G and it is the number of primitive cycles of G. Also the number $\operatorname{rank}(G)=q+n-r$, is called the cycle rank of G, where r is the number of connected components of G. A graph G is called a ring graph if it satisfies one of the following equivalent conditions: 1. $\operatorname{rank}(G)=\operatorname{frank}(G) ; 2 . \quad G$ satisfies the PCP and G does not contain a subdivision of K_{4} as a subgraph. A split graph is one whose vertex set can be partitioned as the disjiont union of an independent set and a clique (either of which may be empty).

A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A planar graph, which has all the vertices in the outer face of the embedding, is called an outerplanar graph. For non-negative integers g and k, let S_{g} denote the sphere with g handles and N_{k} denote the sphere with k crosscaps attached to it. It is well-known that every connected compact surface is homeomorphic to S_{g} or N_{k} for some non-negative integers g and k. The genus of a graph G, denoted by $g(G)$, is the minimum integer n such that G can be embedded in S_{n}. Similarly the crosscap (nonorientable genus) $\bar{g}(G)$ is the minimum k such that G can be embedded in N_{k} and G is toroidal if $g(G)=1$. For details on the notion of embedding of graphs in surface, one can refer to White [14] and for graph theory definitions one can refer [4]. Also for ring theory definitions we refer [2].

The following results are useful for further reference in this paper.
Theorem 1 [14, Kuratowski's]. A graph G is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$.

Theorem 2 [8, Theorem 1]. A graph G is outerplanar if and only if it contains no subgraph homeomorphic to $K_{2,3}$ or K_{4}.

Lemma 3 [14, Theorem 4.4.7]. $g\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right]$ if $m, n \geq 2$. In particular, $g\left(K_{4,4}\right)=g\left(K_{3, n}\right)=1$ if $n=3,4,5,6$. Also $g\left(K_{5,4}\right)=g\left(K_{6,4}\right)=g\left(K_{m, 3}\right)=2$ if $m=7,8,9,10$.

Lemma 4 [14, Theorem 4.4.7]. Let m, n be positive integers. Then we have the following $\bar{g}\left(K_{m, n}\right)=\left\lceil\frac{1}{2}(m-2)(n-2)\right\rceil$ if $m, n \geq 2$.

3. The idempotent graph with $g(I(R)) \leq 2$

In this section, we characterize all finite commutative rings R with identity whose $I(R)$ has genus at most two. Using the Euler characteristic formula and a technique of deletion and insertion, we are able to successfully exclude some cases of higher genus.

Remark 5 [1]. Let R be a finite commutative ring. Then
(i) $I(R)$ is a null graph if and only if R is a field or a local ring.
(ii) $I(R)$ is a complete graph if and only if $I(R)$ is a complete graph of order 2 .

In view of Remark 5, throughout this paper we assume that R is a finite commutative nonlocal ring with nonzero identity. Recall that every Artinian (finite) ring R is decomposed into Artinian local rings, i.e., $R=R_{1} \times \cdots \times R_{n}$, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring.

We are now in a position to classify all finite nonlocal rings such that the idempotent graph is planar. Note that, a_{i} 's notates the non-trivial idempotents of R.

Theorem 6. Let R be a finite commutative nonlocal ring. Then $I(R)$ planar (outerplanar) if and only if $n \leq 3$, where n is the number of distinct maximal ideals of R.

Proof. If $n=2$, then $I(R) \cong K_{2}$. When $n=3$, then the proof follows from Figure 1.

Figure 1. $I\left(R_{1} \times R_{2} \times R_{3}\right)$.

Conversely, assume that $I(R)$ is planar. Since R is finite, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} is a local ring. Suppose $n>3$. Let $\Omega=\left\{a_{1}, a_{2}, \ldots, a_{6}\right\}$ where, $a_{1}=(1,0,0, \ldots, 0), a_{2}=(0,1,0, \ldots, 0), a_{3}=(1,1,0, \ldots, 0), a_{4}=(0,0,1, \ldots, 0)$, $a_{5}=(0,0,0,1,0, \ldots, 0), a_{6}=(0,0,1,1,0, \ldots, 0)$. Then the subgraph induced by Ω in $I(R)$ contains $K_{3,3}$ as a subgraph and by Theorem 1 , we get a contradiction. Hence $n \leq 3$. The proof for outerplanarity can be easily obtained, using a similar argument and Theorem 2.

Figure 2. An embedding of $I\left(R_{1} \times R_{2} \times R_{3} \times R_{4}\right)$ in S_{1}.
Now we characterize all finite commutative nonlocal rings R such that the idempotent graph is toroidal.

Theorem 7. Let R be a finite commutative nonlocal ring. Then $g(I(R))=1$ if and only if $n=4$, where n is the number of distinct maximal ideals of R.

Proof. Suppose that $g(I(R))=1$. Since R is finite, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} is a local ring. Suppose $n>4$. Let $B=\left\{a_{1}, a_{2}, \ldots, a_{10}\right\}$ where, $a_{1}=$ $(1,0,0, \ldots, 0), a_{2}=(0,1,0, \ldots, 0), a_{3}=(1,1,0, \ldots, 0), a_{4}=(0,0,1,0, \ldots, 0)$, $a_{5}=(0,0,0,1,0, \ldots, 0), a_{6}=(0,0,0,0,1,0, \ldots, 0), a_{7}=(0,0,1,1,0, \ldots, 0), a_{8}=$ $(0,0,1,0,1,0, \ldots, 0), a_{9}=(0,0,0,1,1,0, \ldots, 0), a_{10}=(0,0,1,1,1,0, \ldots, 0)$. Then the subgraph induced by B in $I(R)$ contains $K_{3,7}$ as a subgraph and by Lemma $3, g(I(R)) \geq 2$, a contradiction. By Theorem $6, n=4$.

Conversely, assume that $n=4$. Let $C=\left\{a_{1}, a_{2}, \ldots, a_{14}\right\}$ where, $a_{1}=$ $(1,0,0,0), a_{2}=(0,1,0,0), a_{3}=(1,1,0,0), a_{4}=(1,0,1,0), a_{5}=(1,0,0,1)$, $a_{6}=(0,0,1,0), a_{7}=(0,0,0,1), a_{8}=(0,0,1,1), a_{9}=(0,1,1,0), a_{10}=(0,1,0,1)$, $a_{11}=(0,1,1,1), a_{12}=(1,0,1,1), a_{13}=(1,1,0,1), a_{14}=(1,1,1,0)$. Then the subgraph induced by C in $I(R)$ contains $K_{3,3}$ as a subgraph. By Theorem 1, $g(I(R)) \geq 1$, whereas an embedding of $I(R)$ given in Figure 2 explicitly shows that $g(I(R))=1$.

Theorem 8. There is no finite commutative nonlocal ring R for which $g(I(R))$ $=2$.

Proof. Since R is finite, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} is a local ring. By Theorems 6 and $7, n \geq 5$. Let $E=\left\{a_{1}, a_{2}, \ldots, a_{30}\right\}$, where $a_{1}=(1,0,0,0, \ldots, 0)$, $a_{2}=(0,1,0,0, \ldots, 0), a_{3}=(0,0,1,0, \ldots, 0), a_{4}=(0,0,0,1,0, \ldots, 0), a_{5}=(0,0$, $0,0,1,0, \ldots, 0), a_{6}=(1,1,0,0, \ldots, 0), a_{7}=(1,0,1,0, \ldots, 0), a_{8}=(1,0,0,1,0, \ldots$, $0), a_{9}=(1,0,0,0,1,0, \ldots, 0), a_{10}=(0,1,1,0, \ldots, 0), a_{11}=(0,1,0,1,0, \ldots, 0)$, $a_{12}=(0,1,0,0,1,0, \ldots, 0), a_{13}=(0,0,1,1,0, \ldots, 0), a_{14}=(0,0,0,1,1,0, \ldots, 0)$, $a_{15}=(0,0,1,0,1,0, \ldots, 0), a_{16}=(1,1,1,0, \ldots, 0), a_{17}=(0,1,1,1,0, \ldots, 0)$, $a_{18}=(0,0,1,1,1,0, \ldots, 0), a_{19}=(0,1,0,1,1,0, \ldots, 0), a_{20}=(0,1,1,0,1,0, \ldots, 0)$, $a_{21}=(1,0,1,1,0, \ldots, 0), a_{22}=(1,0,0,1,1,0, \ldots, 0), a_{23}=(1,0,1,0,1,0, \ldots, 0)$, $a_{24}=(1,1,0,0,1,0, \ldots, 0), a_{25}=(1,1,0,1,0, \ldots, 0), a_{26}=(0,1,1,1,1,0, \ldots, 0)$, $a_{27}=(1,0,1,1,1,0, \ldots, 0), a_{28}=(1,1,0,1,1,0, \ldots, 0), a_{29}=(1,1,1,0,1,0, \ldots, 0)$, $a_{30}=(1,1,1,1,0, \ldots, 0)$. Then the subgraph induced by E in $I(R)$ contains a subdivision of $K_{3,12}$ as a subgraph and by Lemma $3, g(I(R)) \geq 3$.

Figure 3. The subgraph induced by B.
We are now in a point to classify all finite nonlocal rings such that the idempotent graph is projective.
Theorem 9. Let R be a finite commutative ring. Then $\bar{g}(I(R))=1$ if and only if $n=4$, where n is the number of distinct maximal ideals of R.

Proof. Suppose $\bar{g}(I(R))=1$. We have, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} is a local ring. When $n \geq 5$, let $H=\left\{a_{1}, a_{2}, \ldots, a_{10}\right\}$ where $a_{1}=(1,0,0, \ldots, 0), a_{2}=$ $(0,1,0, \ldots, 0), a_{3}=(1,1,0, \ldots, 0), a_{4}=(0,0,1,0, \ldots, 0), a_{5}=(0,0,0,1,0, \ldots, 0)$, $a_{6}=(0,0,0,0,1,0, \ldots, 0), a_{7}=(0,0,1,1,0, \ldots, 0), a_{8}=(0,0,0,1,1,0, \ldots, 0)$, $a_{9}=(0,0,1,0,1,0, \ldots, 0), a_{10}=(0,0,1,1,1,0, \ldots, 0)$. Then the subgraph induced by H in $I(R)$ contains $K_{3,7}$ as a subgraph. By Lemma $4, \bar{g}(I(R)) \geq 3$, a contradiction. Hence $n=4$.

Conversely, assume that $n=4$. Let $J=\left\{a_{1}, a_{2}, \ldots, a_{14}\right\}$ where, $a_{1}=$ $(1,0,0,0), a_{2}=(0,1,0,0), a_{3}=(1,1,0,0), a_{4}=(1,0,1,0), a_{5}=(1,0,0,1)$,
$a_{6}=(0,0,1,0), a_{7}=(0,0,0,1), a_{8}=(0,0,1,1), a_{9}=(0,1,1,0), a_{10}=(0,1,0,1)$, $a_{11}=(0,1,1,1), a_{12}=(1,0,1,1), a_{13}=(1,1,0,1), a_{14}=(1,1,1,0)$. Then the subgraph induced by J in $I(R)$ contains $K_{3,3}$ as a subgraph. By Theorem 4, $\bar{g}(I(R)) \geq 1$, whereas an embedding of $I(R)$ given in Figure 4, explicitly shows that $\bar{g}(I(R))=1$.

Figure 4. An embedding of $I\left(R_{1} \times R_{2} \times R_{3} \times R_{4}\right)$ in N_{1}.
Theorem 10. There is no finite commutative ring R for which $\bar{g}(I(R))=2$.
Proof. Since R is finite, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} is a local ring. By Theorem 9, $n \geq 5$. Let $K=\left\{a_{1}, a_{2}, \ldots, a_{10}\right\}$ where $a_{1}=(1,0,0, \ldots, 0), a_{2}=$ $(0,1,0, \ldots, 0), a_{3}=(1,1,0, \ldots, 0), a_{4}=(0,0,1,0, \ldots, 0), a_{5}=(0,0,0,1,0, \ldots, 0)$, $a_{6}=(0,0,0,0,1,0, \ldots, 0), a_{7}=(0,0,1,1,0, \ldots, 0), a_{8}=(0,0,0,1,1,0, \ldots, 0)$, $a_{9}=(0,0,1,0,1,0, \ldots, 0), a_{10}=(0,0,1,1,1,0, \ldots, 0)$. Then the subgraph induced by K in $I(R)$ contains $K_{3,7}$ as a subgraph and by Lemma $4, \bar{g}(I(R)) \geq 3$.

Theorem 11. Let R be a finite commutative ring. Then $I(R)$ is not a split graph for $n \geq 4$, where n is the number of distinct maximal ideals of R.

Proof. By the structure of $I(R), I(R)$ contains K_{n} for $n \geq 4$. Consider an vertex a of $I(R)$ that is not in $V\left(K_{n}\right)$, which has 1 in the i, j th places and 0 in the remaining places. This vertex must adjacent with the vertex b that has 0 in the i, j th places and 1 in the remaining places. Hence the remaining vertices cannot form an independent set. Hence the theorem.

Theorem 12. Let R be a finite commutative ring. Then $I(R)$ is a ring graph if and only if $n=3$, where n is the number of distinct maximal ideals of R.

Proof. Assume that $I(R)$ is a ring graph. Since every ring graph is planar it is enough to consider whether $I(R)$ is a ring graph for each ring in Theorem 6.

When $n=3, I(R)$ has $\operatorname{rank}(I(R))=\operatorname{frank}(I(R))$. Hence $I(R)$ is a ring graph. The converse is obvious.

4. Book thickness of $I(R)$

A standard n-book is formed by joining n half-planes, called pages, together at a common line, called spine. When embedding a graph in a book, the vertices are placed along the spine. Each edge is embedded on a single page of the book so that no two edges cross each on a page. The book thickness of a graph G is the smallest n, for which G has an n-book embedding. Yannakakis [10] has shown that all planar graphs have book thickness at most 4.

Figure 5. Book embedding of $I\left(R_{1} \times R_{2} \times R_{3}\right)$.

Theorem 13 [5, Theorem 3.4]. The book thickness of the complete graph K_{n} is equal to $\lceil n / 2\rceil$, when $n \geq 4$.

Theorem 14 [5, Theorem 2.5]. A graph has book thickness one if and only if it is outer planar.

Theorem 15 [5, Theorem 2.5]. The book thickness of a graph is at most two if and only if it is a subgraph of a planar graph that has a Hamiltonian cycle.

Now we classify all rings such that the book thickness of idempotent graph is 1 .

Theorem 16. Let R be a finite commutative ring. Then the book thickness of $I(R)$ is 1 if and only if $n \leq 3$, where n is the number of distinct maximal ideals of R.

Proof. The proof is clear by Theorem 6 and Theorem 14.
Now we characterize all finite commutative rings R such that the book thickness of the idempotent graph is 3 .

Theorem 17. Let R be a finite commutative ring. The book thickness of $I(R)$ is 3 if and only if R has exactly 4 distinct maximal ideals.

Proof. Suppose R has exactly 4 distinct maximal ideals, then by Theorem 7 , we know that $R=R_{1} \times R_{2} \times R_{3} \times R_{4}$, which is toroidal. By Theorem 15 , one can note that, a two page book embedding is corresponding to a planar structure. Hence a toroidal graph has book thickness at least three. But the three pages of $I(R)$ are represented by the sets of dashed and solid edges above and below the spine in Figure 6 (For $a_{i}, 1 \leq i \leq 14$ refer Figure 2). Hence the book thickness of $I(R)$ is 3 .

Conversely assume that the book thickness of $I(R)$ is 3 . Suppose that R has at least 5 distinct maximal ideals. Let $J=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{10}, a_{11}, a_{13}\right.$, $\left.a_{18}\right\}$ be a subset of E in Theorem 8. Then, the subgraph induced by J in $I(R)$ must contain a subdivision (each edge should be subdivided at most once) of K_{7}. By [11, Theorem 3.1], we come to know that, book thickness of K_{n} does not change, even though we subdivide its edges at most once. Hence by Theorem 13, the book thickness of $I(R)$ is at least 4, a contradiction.

Corollary 18. There exists no finite commutative ring R, for which book thickness of $I(R)$ is 2 .

Figure 6. Book embedding of $I\left(R_{1} \times R_{2} \times R_{3} \times R_{4}\right)$.

Acknowledgment

The support for this research work is provided by MANF programme (201718-MANF-2017-18-TAM-82372) of University Grants Commission, Government of India for the first author.

References

[1] S. Akbari, M. Habibi, A. Majidinya and R. Manaviyat, On the Idempotent Graph of a Ring, J. Algebra 12 (2013) 1-14. doi:10.1142/S0219498813500035
[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison - Wiley Publishing Company, London, 1969).
[3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226. doi:10.1016/0021-8693(88)90202-5
[4] J.A. Bondy and U.S.R. Murty, Graph Theory and its Applications (American Elsevier, New York, 1976).
[5] F.R. Bernhart and P.C. Kainen, The book thickness of a graph, J. Comb. Theory, Ser. B 27 (1979) 320-331. doi:10.1016/0095-8956(79)90021-2
[6] S. Kavitha and R. Kala, On the genus of graphs from commutative rings, AKCE Int. J. Graphs Combin. 14 (2017) 27-34. doi:10.1016/j.akcej.2016.11.006
[7] T.Y. Lam, A First Course in Non-commutative Rings (Springer-Verlag, New York, 2001).
[8] M.M. Sysło, Characterizations of Outer planar graphs, Discrete Math. 26 (1979) 47-53. doi:10.1016/0012-365X(79)90060-8
[9] A. Mallika and R. Kala, Nilpotent graphs with crosscap at most two, AKCE Int. J. Graphs Combin. 15 (2018) 229-237. doi:10.1016/j.akcej.2017.11.006
[10] M. Yannakakis, Embedding planar graphs in four pages, J. Comput. Syst. Sci. 38 (1989) 36-67. doi:10.1016/0022-0000(89)90032-9
[11] R. Blankenship and B. Oporowski, Drawing subdivisions of complete and complete bipartite graphs on books (Tech Rep. 1994-4, Department of Mathematics, Louisiana State University, 1999).
[12] T. McKenzie and S. Overbay, Book thickness of toroidal zero-divisor graphs, Africa Matematika 28 (2017) 823-830.
doi: $10.35834 / \mathrm{mjms} / 1449161362$
[13] T. Endo, The page number of toroidal graph is at most seven, Discrete Math. 175 (1997) 87-96. doi:10.1016/S0012-365X(96)00144-6
[14] A.T. White, Graphs, Groups and Surfaces (North-Holland-Amsterdam, 1984).

