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Abstract

Let R be a finite commutative ring with identity. The idempotent graph

of R is the simple undirected graph I(R) with vertex set, the set of all non-
trivial idempotents of R and two distinct vertices x and y are adjacent if and
only if xy = 0. In this paper, we have determined all isomorphism classes
of finite commutative rings with identity whose I(R) has genus one or two.
Also we have determined all isomorphism classes of finite commutative rings
with identity whose I(R) has crosscap one. Also we study the the book
embedding of toroidal idempotent graphs and classify finite commutative
rings whose I(R) is a ring graph.
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1. Introduction

The study on linking commutative ring theory with graph theory has been started
with the concept of the zero-divisor graph of a commutative ring which was first
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launched by I. Beck [3]. Recall that the idempotent graph of a commutative ring
R, is a simple undirected graph I(R) with vertex set, the set of all non-trivial
idempotents of R and two distinct vertices x and y are adjacent if and only
if xy = 0. The concept was first initiated by, Akbari, Habibi, Majidinya and
Manaviyat [1]. They obtained some basic results of I(Mn(R)), for a division
ring R. Influenced by the ideas of the above authors, we try to classify the finite
commutative rings with unity whose idempotent graph is planar, ring graph, has
genus 1 or 2 and crosscap 1.

2. Preliminaries

In this section, we recollect some definitions and theorems which are required for
the subsequent sections.

Let G be a graph with n vertices and q edges. Let C be a cycle of G.
We say C is a primitive cycle if it has no chords. Also a graph G has the
primitive cycle property (PCP) if any two primitive cycles intersect in at most
one edge. The number frank(G) is called the free rank of G and it is the number
of primitive cycles of G. Also the number rank(G) = q + n − r, is called the
cycle rank of G, where r is the number of connected components of G. A graph
G is called a ring graph if it satisfies one of the following equivalent conditions:
1. rank(G) = frank(G); 2. G satisfies the PCP and G does not contain a
subdivision of K4 as a subgraph. A split graph is one whose vertex set can be
partitioned as the disjiont union of an independent set and a clique (either of
which may be empty).

A graph is said to be planar if it can be drawn in the plane so that its edges
intersect only at their ends. A planar graph, which has all the vertices in the
outer face of the embedding, is called an outerplanar graph. For non-negative
integers g and k, let Sg denote the sphere with g handles and Nk denote the
sphere with k crosscaps attached to it. It is well-known that every connected
compact surface is homeomorphic to Sg or Nk for some non-negative integers g
and k. The genus of a graph G, denoted by g(G), is the minimum integer n such
that G can be embedded in Sn. Similarly the crosscap (nonorientable genus)
g(G) is the minimum k such that G can be embedded in Nk and G is toroidal if
g(G) = 1. For details on the notion of embedding of graphs in surface, one can
refer to White [14] and for graph theory definitions one can refer [4]. Also for
ring theory definitions we refer [2].

The following results are useful for further reference in this paper.

Theorem 1 [14, Kuratowski’s]. A graph G is planar if and only if it contains

no subdivision of K5 or K3,3.
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Theorem 2 [8, Theorem 1]. A graph G is outerplanar if and only if it contains

no subgraph homeomorphic to K2,3 or K4.

Lemma 3 [14, Theorem 4.4.7]. g(Km,n) =
⌈

(m−2)(n−2)
4

⌉

if m,n ≥ 2. In particu-

lar, g(K4,4) = g(K3,n) = 1 if n = 3, 4, 5, 6. Also g(K5,4) = g(K6,4) = g(Km,3) = 2
if m = 7, 8, 9, 10.

Lemma 4 [14, Theorem 4.4.7]. Let m,n be positive integers. Then we have the

following g(Km,n) =
⌈

1
2(m− 2)(n − 2)

⌉

if m,n ≥ 2.

3. The idempotent graph with g(I(R)) ≤ 2

In this section, we characterize all finite commutative rings R with identity whose
I(R) has genus at most two. Using the Euler characteristic formula and a tech-
nique of deletion and insertion, we are able to successfully exclude some cases of
higher genus.

Remark 5 [1]. Let R be a finite commutative ring. Then

(i) I(R) is a null graph if and only if R is a field or a local ring.

(ii) I(R) is a complete graph if and only if I(R) is a complete graph of order 2.

In view of Remark 5, throughout this paper we assume that R is a finite
commutative nonlocal ring with nonzero identity. Recall that every Artinian
(finite) ring R is decomposed into Artinian local rings, i.e., R = R1 × · · · × Rn,
where each (Ri,mi) is a local ring.

We are now in a position to classify all finite nonlocal rings such that the
idempotent graph is planar. Note that, ai’s notates the non-trivial idempotents
of R.

Theorem 6. Let R be a finite commutative nonlocal ring. Then I(R) planar

(outerplanar) if and only if n ≤ 3, where n is the number of distinct maximal

ideals of R.

Proof. If n = 2, then I(R) ∼= K2. When n = 3, then the proof follows from
Figure 1.
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Figure 1. I(R1 ×R2 ×R3).
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Conversely, assume that I(R) is planar. Since R is finite, R ∼= R1×R2×· · ·×Rn,
where each Ri is a local ring. Suppose n > 3. Let Ω = {a1, a2, . . . , a6} where,
a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0), a3 = (1, 1, 0, . . . , 0), a4 = (0, 0, 1, . . . , 0),
a5 = (0, 0, 0, 1, 0, . . . , 0), a6 = (0, 0, 1, 1, 0, . . . , 0). Then the subgraph induced by
Ω in I(R) contains K3,3 as a subgraph and by Theorem 1, we get a contradiction.
Hence n ≤ 3. The proof for outerplanarity can be easily obtained, using a similar
argument and Theorem 2.
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Figure 2. An embedding of I(R1 ×R2 ×R3 ×R4) in S1.
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Now we characterize all finite commutative nonlocal rings R such that the
idempotent graph is toroidal.

Theorem 7. Let R be a finite commutative nonlocal ring. Then g(I(R)) = 1 if

and only if n = 4, where n is the number of distinct maximal ideals of R.

Proof. Suppose that g(I(R)) = 1. Since R is finite, R ∼= R1×R2×· · ·×Rn, where
each Riis a local ring. Suppose n > 4. Let B = {a1, a2, . . . , a10} where, a1 =
(1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0), a3 = (1, 1, 0, . . . , 0), a4 = (0, 0, 1, 0, . . . , 0),
a5 = (0, 0, 0, 1, 0, . . . , 0), a6 = (0, 0, 0, 0, 1, 0, . . . , 0), a7 = (0, 0, 1, 1, 0, . . . , 0), a8 =
(0, 0, 1, 0, 1, 0, . . . , 0), a9 = (0, 0, 0, 1, 1, 0, . . . , 0), a10 = (0, 0, 1, 1, 1, 0, . . . , 0). Then
the subgraph induced by B in I(R) contains K3,7 as a subgraph and by Lemma
3, g(I(R)) ≥ 2, a contradiction. By Theorem 6, n = 4.

Conversely, assume that n = 4. Let C = {a1, a2, . . . , a14} where, a1 =
(1, 0, 0, 0), a2 = (0, 1, 0, 0), a3 = (1, 1, 0, 0), a4 = (1, 0, 1, 0), a5 = (1, 0, 0, 1),
a6 = (0, 0, 1, 0), a7 = (0, 0, 0, 1), a8 = (0, 0, 1, 1), a9 = (0, 1, 1, 0), a10 = (0, 1, 0, 1),
a11 = (0, 1, 1, 1), a12 = (1, 0, 1, 1), a13 = (1, 1, 0, 1), a14 = (1, 1, 1, 0). Then the
subgraph induced by C in I(R) contains K3,3 as a subgraph. By Theorem 1,
g(I(R)) ≥ 1, whereas an embedding of I(R) given in Figure 2 explicitly shows
that g(I(R)) = 1.

Theorem 8. There is no finite commutative nonlocal ring R for which g(I(R))
= 2.
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Proof. Since R is finite, R ∼= R1×R2×· · ·×Rn, where each Ri is a local ring. By
Theorems 6 and 7, n ≥ 5. Let E = {a1, a2, . . . , a30}, where a1 = (1, 0, 0, 0, . . . , 0),
a2 = (0, 1, 0, 0, . . . , 0), a3 = (0, 0, 1, 0, . . . , 0), a4 = (0, 0, 0, 1, 0, . . . , 0), a5 = (0, 0,
0, 0, 1, 0, . . . , 0), a6= (1, 1, 0, 0, . . . , 0), a7 = (1, 0, 1, 0, . . . , 0), a8 = (1, 0, 0, 1, 0, . . . ,
0), a9 = (1, 0, 0, 0, 1, 0, . . . , 0), a10 = (0, 1, 1, 0, . . . , 0), a11 = (0, 1, 0, 1, 0, . . . , 0),
a12 = (0, 1, 0, 0, 1, 0, . . . , 0), a13 = (0, 0, 1, 1, 0, . . . , 0), a14 = (0, 0, 0, 1, 1, 0, . . . , 0),
a15 = (0, 0, 1, 0, 1, 0, . . . , 0), a16 = (1, 1, 1, 0, . . . , 0), a17 = (0, 1, 1, 1, 0, . . . , 0),
a18 = (0, 0, 1, 1, 1, 0, . . . , 0), a19 = (0, 1, 0, 1, 1, 0, . . . , 0), a20 = (0, 1, 1, 0, 1, 0, . . . , 0),
a21 = (1, 0, 1, 1, 0, . . . , 0), a22 = (1, 0, 0, 1, 1, 0, . . . , 0), a23 = (1, 0, 1, 0, 1, 0, . . . , 0),
a24 = (1, 1, 0, 0, 1, 0, . . . , 0), a25 = (1, 1, 0, 1, 0, . . . , 0), a26 = (0, 1, 1, 1, 1, 0, . . . , 0),
a27 = (1, 0, 1, 1, 1, 0, . . . , 0), a28 = (1, 1, 0, 1, 1, 0, . . . , 0), a29 = (1, 1, 1, 0, 1, 0, . . . , 0),
a30 = (1, 1, 1, 1, 0, . . . , 0). Then the subgraph induced by E in I(R) contains a
subdivision of K3,12 as a subgraph and by Lemma 3, g(I(R)) ≥ 3.

b b b

b b b b b b b
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x4 x5 x6 x7 x8 x9 x10

Figure 3. The subgraph induced by B.

We are now in a point to classify all finite nonlocal rings such that the
idempotent graph is projective.

Theorem 9. Let R be a finite commutative ring. Then g(I(R)) = 1 if and only

if n = 4, where n is the number of distinct maximal ideals of R.

Proof. Suppose g(I(R)) = 1. We have, R ∼= R1×R2×· · ·×Rn, where each Ri is a
local ring. When n ≥ 5, let H = {a1, a2, . . . , a10} where a1 = (1, 0, 0, . . . , 0), a2 =
(0, 1, 0, . . . , 0), a3 = (1, 1, 0, . . . , 0), a4 = (0, 0, 1, 0, . . . , 0), a5 = (0, 0, 0, 1, 0, . . . , 0),
a6 = (0, 0, 0, 0, 1, 0, . . . , 0), a7 = (0, 0, 1, 1, 0, . . . , 0), a8 = (0, 0, 0, 1, 1, 0, . . . , 0),
a9 = (0, 0, 1, 0, 1, 0, . . . , 0), a10 = (0, 0, 1, 1, 1, 0, . . . , 0). Then the subgraph in-
duced by H in I(R) contains K3,7 as a subgraph. By Lemma 4, g(I(R)) ≥ 3, a
contradiction. Hence n = 4.

Conversely, assume that n = 4. Let J = {a1, a2, . . . , a14} where, a1 =
(1, 0, 0, 0), a2 = (0, 1, 0, 0), a3 = (1, 1, 0, 0), a4 = (1, 0, 1, 0), a5 = (1, 0, 0, 1),
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a6 = (0, 0, 1, 0), a7 = (0, 0, 0, 1), a8 = (0, 0, 1, 1), a9 = (0, 1, 1, 0), a10 = (0, 1, 0, 1),
a11 = (0, 1, 1, 1), a12 = (1, 0, 1, 1), a13 = (1, 1, 0, 1), a14 = (1, 1, 1, 0). Then the
subgraph induced by J in I(R) contains K3,3 as a subgraph. By Theorem 4,
g(I(R)) ≥ 1, whereas an embedding of I(R) given in Figure 4, explicitly shows
that g(I(R)) = 1.
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Figure 4. An embedding of I(R1 ×R2 ×R3 ×R4) in N1.

Theorem 10. There is no finite commutative ring R for which g(I(R)) = 2.

Proof. Since R is finite, R ∼= R1 ×R2 × · · · ×Rn, where each Ri is a local ring.
By Theorem 9, n ≥ 5. Let K = {a1, a2, . . . , a10} where a1 = (1, 0, 0, . . . , 0), a2 =
(0, 1, 0, . . . , 0), a3 = (1, 1, 0, . . . , 0), a4 = (0, 0, 1, 0, . . . , 0), a5 = (0, 0, 0, 1, 0, . . . , 0),
a6 = (0, 0, 0, 0, 1, 0, . . . , 0), a7 = (0, 0, 1, 1, 0, . . . , 0), a8 = (0, 0, 0, 1, 1, 0, . . . , 0),
a9 = (0, 0, 1, 0, 1, 0, . . . , 0), a10 = (0, 0, 1, 1, 1, 0, . . . , 0). Then the subgraph in-
duced by K in I(R) contains K3,7 as a subgraph and by Lemma 4, g(I(R)) ≥ 3.

Theorem 11. Let R be a finite commutative ring. Then I(R) is not a split graph

for n ≥ 4, where n is the number of distinct maximal ideals of R.

Proof. By the structure of I(R), I(R) contains Kn for n ≥ 4. Consider an vertex
a of I(R) that is not in V (Kn), which has 1 in the i, j th places and 0 in the
remaining places. This vertex must adjacent with the vertex b that has 0 in the
i, j th places and 1 in the remaining places. Hence the remaining vertices cannot
form an independent set. Hence the theorem.

Theorem 12. Let R be a finite commutative ring. Then I(R) is a ring graph if

and only if n = 3, where n is the number of distinct maximal ideals of R.
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Proof. Assume that I(R) is a ring graph. Since every ring graph is planar it is
enough to consider whether I(R) is a ring graph for each ring in Theorem 6.

When n = 3, I(R) has rank(I(R)) = frank(I(R)). Hence I(R) is a ring
graph. The converse is obvious.

4. Book thickness of I(R)

A standard n-book is formed by joining n half-planes, called pages, together at a
common line, called spine. When embedding a graph in a book, the vertices are
placed along the spine. Each edge is embedded on a single page of the book so
that no two edges cross each on a page. The book thickness of a graph G is the
smallest n, for which G has an n-book embedding. Yannakakis [10] has shown
that all planar graphs have book thickness at most 4.

b b b b b b

(1,0,0) (0,1,1) (0,1,0) (1,0,1) (0,0,1) (1,1,0)

Figure 5. Book embedding of I(R1 ×R2 ×R3).

Theorem 13 [5, Theorem 3.4]. The book thickness of the complete graph Kn is

equal to ⌈n/2⌉, when n ≥ 4.

Theorem 14 [5, Theorem 2.5]. A graph has book thickness one if and only if it

is outer planar.

Theorem 15 [5, Theorem 2.5]. The book thickness of a graph is at most two if

and only if it is a subgraph of a planar graph that has a Hamiltonian cycle.

Now we classify all rings such that the book thickness of idempotent graph
is 1.

Theorem 16. Let R be a finite commutative ring. Then the book thickness of

I(R) is 1 if and only if n ≤ 3, where n is the number of distinct maximal ideals

of R.

Proof. The proof is clear by Theorem 6 and Theorem 14.

Now we characterize all finite commutative rings R such that the book thick-
ness of the idempotent graph is 3.
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Theorem 17. Let R be a finite commutative ring. The book thickness of I(R)
is 3 if and only if R has exactly 4 distinct maximal ideals.

Proof. Suppose R has exactly 4 distinct maximal ideals, then by Theorem 7, we
know that R = R1 × R2 × R3 × R4, which is toroidal. By Theorem 15, one can
note that, a two page book embedding is corresponding to a planar structure.
Hence a toroidal graph has book thickness at least three. But the three pages of
I(R) are represented by the sets of dashed and solid edges above and below the
spine in Figure 6 (For ai, 1 ≤ i ≤ 14 refer Figure 2). Hence the book thickness
of I(R) is 3.

Conversely assume that the book thickness of I(R) is 3. Suppose that R has
at least 5 distinct maximal ideals. Let J = {a1, a2, a3, a4, a5, a6, a7, a10, a11, a13,
a18} be a subset of E in Theorem 8. Then, the subgraph induced by J in I(R)
must contain a subdivision (each edge should be subdivided at most once) of K7.
By [11, Theorem 3.1], we come to know that, book thickness of Kn does not
change, even though we subdivide its edges at most once. Hence by Theorem 13,
the book thickness of I(R) is at least 4, a contradiction.

Corollary 18. There exists no finite commutative ring R, for which book thick-

ness of I(R) is 2.

b b b b b b b b b b b b b b

Figure 6. Book embedding of I(R1 ×R2 ×R3 ×R4).

a4 a8 a1 a9 a6 a12 a13a14 a2 a3a7 a5 a10a11
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