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Abstract

Directed graphs without multiple edges can be represented as algebras
of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity
if the corresponding graph algebra does, and the set of all graphs satisfying
a set of identities is called a graph variety. We describe the graph varieties
axiomatized by certain groupoid identities (medial, semimedial, autodis-
tributive, commutative, idempotent, unipotent, zeropotent, alternative).
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1. Introduction

Graph algebras were introduced by Shallon [10] in 1979 with the purpose of
providing examples of nonfinitely based finite algebras. Let us briefly recall this
concept. Given a directed graph G = (V,E) without multiple edges, the graph

algebra associated with G is the algebra A(G) = (V ∪ {∞}, ◦,∞) of type (2, 0),
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where ∞ is an element not belonging to V and the binary operation ◦ is defined
by the rule

u ◦ v :=

{
u, if (u, v) ∈ E,

∞, otherwise,

for all u, v ∈ V ∪ {∞}. We will denote the product u ◦ v simply by juxtaposition
uv.

Using this representation, we may view any algebraic property of a graph
algebra as a property of the graph with which it is associated. We are mainly
concerned with the relation of satisfaction of an identity by an algebra. By
Birkhoff’s theorem, the classes of algebras defined by identities are precisely the
varieties, i.e., classes of algebras closed under homomorphic images, subalgebras,
and direct products. As pointed out by Pöschel [8], the class of graph algebras
does not constitute a variety, because it is not closed under direct products. It
does, nevertheless, make sense to consider the Galois connection between graphs
(or graph algebras) and identities induced by the satisfaction relation. The closed
classes of graphs are called graph varieties, and the closed classes of identities are
called equational theories of graphs.

To study graph varieties, different approaches have been taken. The closed
classes of graphs and identities have been described abstractly by explicit closure
conditions that do not make reference to the satisfaction relation. Pöschel [8,
Theorem 2.8] showed that a class of finite graphs is a graph variety if and only if it
is closed under finite pointed subproducts and isomorphic copies. The equational
theories of graphs were described in a similar manner also by Pöschel [7]. Every
equational theory must contain the identities that are satisfied by all graphs;
these were determined by Kiss, Pöschel and Pröhle [3]; see Theorem 2.11.

Another approach is to consider an interesting graph-theoretical property and
to define it using identities. Several such descriptions were provided by Pöschel
and Wessel [9]. For example, for any graph G = (V,E), the edge relation E is
symmetric (i.e., G is undirected) if and only if G satisfies the identity x(yx) ≈ xy;
E is reflexive if and only if G |= xx ≈ x; E is antisymmetric if and only if
G |= x(yx) ≈ y(xy); E is transitive if and only if G |= x(yz) ≈ (xz)(yz).

A third possibility is to take an interesting identity and to describe the graph
variety it axiomatizes in terms of graph-theoretical properties. Examples of this
approach can be found in the work of Poomsa-ard and his coauthors [4, 5, 6],
who characterized the graph varieties axiomatized by the associative, left self-
distributive and right self-distributive identities.

We continue this line of research, taking the third of the above-mentioned
approaches. The goal of the current paper is to characterize the graph varieties
axiomatized by certain noteworthy identities in the language of groupoids (i.e.,
algebras with a single binary operation) that are of general interest in algebra,
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such as the zeropotent, unipotent, commutative, alternative, semimedial, and
medial identities.

This paper is organized as follows. We first provide preliminaries on graph
varieties in Section 2. Then we characterize the graph varieties axiomatized by
the zeropotent, unipotent, left unar, right unar, commutative and alternative
identities in Section 3, and those axiomatized by the (left or right) semimedial
and medial identities in Sections 4 and 5 respectively.

2. Terms, identities and graph varieties

We start with the basic definitions and some propositions which will be needed in
the later sections. Throughout this paper, by a graph we mean a finite directed
graph without multiple edges.

Definition 2.1. A finite directed graph, or simply graph, is a pair G = (V,E),
where V is a finite set of vertices, and E ⊆ V × V is a set of edges. We also
write V (G) and E(G) for the set of vertices and for the set of edges of a graph
G, respectively.

A graph G′ = (V ′, E′) is called a subgraph of G if V ′ ⊆ V and E′ ⊆ E. If
additionally E′ = E ∩ (V ′ × V ′) then G′ is called the subgraph of G induced by
V ′. We denote by G(V ′) the subgraph of G induced by V ′.

Definition 2.2. Let G be a graph. If (u, v) ∈ E(G), then we say that v is
an out-neighbour of u and u is an in-neighbour of v. The out-neighbourhood (in-
neighbourhood, resp.) of a vertex v is the set of all out-neighbours (in-neighbours,
resp.) of v, and it is denoted by NG

o (v) (by NG
i (v), respectively), or, if the graph

G is clear from the context, simply by No(v) (by Ni(v), respectively). The out-

degree (in-degree, respectively) of a vertex is the number of its out-neighbours
(in-neighbours, respectively).

Definition 2.3. Let G = (V,E) be a graph. We say that a vertex v ∈ V is a sink

if the out-degree of v is zero and it is a source if the in-degree of v is zero. Let
G′ = (V ′, E′) be an induced subgraph of G. We say that G′ is a sink subgraph of
G if (v′, v) /∈ E for every v′ ∈ V ′, v ∈ V \ V ′ and G′ is a source subgraph of G if
(v, v′) /∈ E for every v′ ∈ V ′, v ∈ V \ V ′.

Definition 2.4. An edge of the form (x, x) is called a loop. We say that an edge
(x, y) is symmetric, if also (y, x) is an edge. Note that loops are symmetric edges.

Definition 2.5. A graph G = (V,E) is undirected if the edge relation E is
symmetric, i.e., for all x, y ∈ V , (x, y) ∈ E implies (y, x) ∈ E. The underlying

graph of a directed graph G = (V,E) is the undirected graph (V,E′), where E′

is the symmetric closure of E.
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Definition 2.6. Let G = (V,E) and G′ = (V ′, E′) be graphs. A mapping
h : V → V ′ is called a homomorphism from G to G′ if for all x, y ∈ V , (x, y) ∈ E
implies (h(x), h(y)) ∈ E′.

We associate to each graph G = (V,E) the graph algebra A(G) as defined
in the introduction. Encoding graphs as algebras in this way, we can view any
algebraic properties of the graph algebra A(G) as properties of the graph G
itself. In particular, for any property of groupoids, we say that a graph G has
that property if the groupoid reduct of A(G) has that property.

Definition 2.7. Let X = {x1, x2, x3, . . . } be a countable set of variables. We
define terms over X in the language of graph algebras by the following recursion.

(i) Every variable x ∈ X is a term.

(ii) ∞ is a term.

(iii) If t1 and t2 are terms, then (t1t2) is a term.

The set of all terms over X is denoted by Tτ (X).

Definition 2.8. Let G = (V,E) be a graph. Let h : X → V ∪ {∞} be a map,
called an assignment. Extend h to a map h̄ : Tτ (X) → V ∪ {∞} by the rule
h̄(t) = h(t) if t = x ∈ X, h̄(t) = h̄(t1) ◦ h̄(t2) if t = (t1t2), where the product
is taken in A(G). Then h̄(t) is called the valuation of the term t in the graph
G with respect to assignment h. Although the graph G does not appear in the
notation h̄, it will always be clear from the context.

Definition 2.9. An identity (in the language of graph algebras) is an ordered
pair (s, t) of terms s, t ∈ Tτ (X), usually written as s ≈ t. Let A(G) be a graph
algebra with corresponding graph G = (V,E). We say that A(G) satisfies s ≈ t,
and we write A(G) |= s ≈ t if h̄(s) = h̄(t) for every assignment h : X → V ∪{∞}.
In this case, we also say that G satisfies s ≈ t and we write G |= s ≈ t.

The above notation extends to an arbitrary class G of graphs and to any set
Σ of identities as follows:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ,

G |= s ≈ t if G |= s ≈ t for all G ∈ G,

G |= Σ if G |= Σ for all G ∈ G.

The relation of satisfaction of an identity by a graph induces a Galois con-
nection between graphs and identities via the polarities

IdG = {s ≈ t | s, t ∈ Tτ (X), G |= s ≈ t},

Modg Σ = {G | G is a graph and G |= Σ}.
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It follows from the general theory of Galois connections (see [2]) that Modg Id
is a closure operator on graphs, which we denote simply by Vg. The closed sets
of graphs, i.e., sets G satisfying Vg(G) = G, are called graph varieties. A class
G of graphs is called equational if there exists a set Σ of identities such that
G = Modg Σ. Obviously Vg(G) = G if and only if G is an equational class. The
closed sets of identities are called equational theories of graph algebras.

Definition 2.10. The leftmost variable occurring in a term t is denoted by L(t).
We say that a term t is trivial if ∞ occurs in t.

To any nontrivial term t, we associate a directed graph G(t) = (V (t), E(t)),
where the vertex set V (t) is the set of all variables occurring in t and the edge
set E(t) is defined inductively by

• E(t) = ∅ if t = x for some x ∈ X,

• E(t) = E(t1)∪E(t2)∪{(L(t1), L(t2))} if t = (t1t2), where t1 and t2 are terms.

We associate the empty graph ∅ to every trivial term.

The equational theory of the class of all graphs (all graph algebras) was
described by Kiss, Pöschel and Pröhle in [3] as follows.

Proposition 2.11 (Kiss, Pöschel, Pröhle [3, Lemma 2.2(3)]). Let s ≈ t be an

identity and let G be the class of all graphs. Then G |= s ≈ t if and only if s and

t are trivial terms or G(s) = G(t) and L(s) = L(t).

The following results provide useful tools for checking whether a graph sat-
isfies an identity.

Proposition 2.12 (Kiss, Pöschel, Pröhle [3, Lemma 2.2(2)]). Let G = (V,E) be
a graph and let h : X → V ∪ {∞} be an evaluation of the variables. Consider the

canonical extension h̄ of h to the set of all terms. Then the following holds. If t
is a trivial term, then h̄(t) = ∞. Otherwise, if h : G(t) → G is a homomorphism

of graphs, then h̄(t) = h̄(L(t)), and if h is not a homomorphism of graphs, then

h̄(t) = ∞.

Proposition 2.13 (Pöschel, Wessel [9, Proposition 1.5(2)]). Let s and t be non-

trivial terms such that V (s) = V (t) and L(s) = L(t). Then a graph G = (V,E)
satisfies s ≈ t if and only if G has the following property: a mapping h : V (s) → V
is a homomorphism from G(s) into G if and only if it is a homomorphism from

G(t) into G.

Example 2.14. In order to illustrate graphs associated with terms (see Defini-
tion 2.10) and how Proposition 2.13 will be applied throughout the paper, we
consider the terms s := (xx)(yz) and t := (xy)(xz). The graphs G(s) and G(t)
associated with these terms are shown in Figure 1. Since V (s) = V (t) = {x, y, z}
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and L(s) = L(t) = x, Proposition 2.13 is applicable to s and t, and it asserts
that a graph G satisfies the identity s ≈ t if and only if for every mapping
h : {x, y, z} → V (G), it holds that h is a homomorphism from G(s) into G if
and only if h is a homomorphism from G(t) into G. This condition is, in turn,
equivalent to the following: for all a, b, c ∈ V , (a, a), (a, b), (b, c) ∈ E(G) if and
only if (a, a), (a, b), (a, c) ∈ E(G).

x

y z

G((xx)(yz))

x

y z

G((xy)(xz))

Figure 1. The graphs associated with terms (xx)(yz) and (xy)(xz).

In the following sections, we will describe the graphs satisfying certain group-
oid identities. Recall that a groupoid is

• zeropotent if it satisfies the identities (xx)y ≈ xx ≈ y(xx);

• unipotent if it satisfies the identity xx ≈ yy;

• a left unar if it satisfies the identity xy ≈ xz;

• a right unar if it satisfies the identity yx ≈ zx;

• commutative if it satisfies the identity xy ≈ yx;

• alternative if it satisfies the identities (xx)y ≈ x(xy) and x(yy) ≈ (xy)y;

• left semimedial if it satisfies the identity (xx)(yz) ≈ (xy)(xz);

• right semimedial if it satisfies the identity (yz)(xx) ≈ (yx)(zx);

• semimedial if it is both left and right semimedial;

• medial if it satisfies the identity (xy)(uz) ≈ (xu)(yz).

3. Zeropotent, unipotent, left unar, right unar, commutative and

alternative graphs

Recall that a graph G is zeropotent and unipotent, if it satisfies the identities
(xx)y ≈ xx ≈ y(xx) and xx ≈ yy, respectively.
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Theorem 3.1. Let G be a graph. The following conditions are equivalent:

(i) G is zeropotent.

(ii) G is unipotent.

(iii) G has no loops.

Proof. We are going to show the equivalences (i) ⇔ (iii) and (ii) ⇔ (iii). For the
forward implications, we prove the contrapositive. Assume that (a, a) ∈ E(G).
Let h : X → V (G)∪ {∞} be an assignment such that h(x) = a, h(y) = ∞. Then
h̄(xx) = a, h̄(yy) = ∞, h̄((xx)y) = ∞ and h̄(y(xx)) = ∞. Hence G is neither
zeropotent nor unipotent.

For the converse implications, assume that G has no loops. Then for every
h : X → V (G)∪ {∞}, we get h̄(yy) = h̄(xx) = h̄((xx)y) = h̄(y(xx)) = ∞. Hence
G is zeropotent and unipotent.

Recall that a graph G is a left unar and a right unar, if it satisfies the identity
xy ≈ xz and yx ≈ zx, respectively.

Theorem 3.2. Let G be a graph. The following conditions are equivalent:

(i) G is a left unar.

(ii) G is a right unar.

(iii) G has no edges.

Proof. In this proof, we show only the equivalence (i) ⇔ (iii). The equivalence
(ii) ⇔ (iii) can be shown in the same way.

For the forward implication, we prove the contrapositive. Assume that
(a, b) ∈ E(G). Let h : X → V (G) ∪ {∞} be an assignment such that h(x) = a,
h(y) = b, h(z) = ∞. Then h̄(xy) = a and h̄(xz) = ∞. Hence G is not a left unar.

For the converse implication, assume that G has no edges. Then for every
h : X → V (G) ∪ {∞}, we get h̄(xy) = ∞ = h̄(xz). Hence G is a left unar.

Recall that a graph G is commutative, if it satisfies the identity xy ≈ yx.

Theorem 3.3. A graph G is commutative if and only if G has no edges except

loops.

Proof. If G has an edge (a, b) ∈ E(G) with a 6= b, then ab = a and ba ∈ {b,∞}
in A(G); consequently G is not commutative. Conversely, if all edges in G are
loops, then we have ab = ∞ = ba whenever a 6= b, i.e., G is commutative.

Recall that a graph is alternative, if it satisfies the identities (xx)y ≈ x(xy)
and x(yy) ≈ (xy)y.
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Theorem 3.4. Let G be a graph. The following conditions are equivalent:

(i) G is alternative.

(ii) G |= x(yy) ≈ (xy)y.

(iii) Every out-neighbour of a vertex has a loop.

Proof. (i) ⇔ (ii): By Proposition 2.11, the identity (xx)y ≈ x(xy) is satisfied by
every graph. Therefore a graph is alternative if and only if it satisfies the identity
x(yy) ≈ (xy)y.

(ii) ⇒ (iii): This follows immediately from Proposition 2.13, since for the
terms s := (xy)y and t := x(yy) of the identity in (ii), G(s) and G(t) are the
graphs on vertex set {x, y} with edge sets {(x, y)} and {(x, y), (y, y)}, respectively.

(iii) ⇒ (ii). With the above notation, (iii) implies that a mapping from
V (s) = V (t) into V (G) is a homomorphism from G(s) into G if and only if it
is a homomorphism from G(t) into G. Consequently G |= s ≈ t by Proposi-
tion 2.13.

4. Semimedial graphs

Recall that a graph is left semimedial if it satisfies the identity (xx)(yz) ≈
(xy)(xz) and it is right semimedial if it satisfies the identity (yz)(xx) ≈ (yx)(zx).
A graph is semimedial if it both left and right semimedial.

First, we consider left semimedial graphs.

Proposition 4.1. Let G be a graph. The following conditions are equivalent.

(i) G |= (xx)(yz) ≈ (xy)(xz).

(ii) For all a, b, c ∈ V , we have (a, a), (a, b), (b, c) ∈ E(G) if and only if

(a, a), (a, b), (a, c) ∈ E(G).

(iii) For all a, b, c ∈ V (G), if (a, a), (a, b), (a, c) ∈ E(G) then (b, c) ∈ E(G).

Proof. (i) ⇔ (ii): Follows from Proposition 2.13. This is precisely Example 2.14.

(ii) ⇒ (iii): If (a, a), (a, b), (a, c) ∈ E(G), then condition (ii) implies (b, c) ∈
E(G).

(iii) ⇒ (ii): If (a, a), (a, b), (b, c) ∈ E(G), then (iii) implies (with c := b)
(b, b) ∈ E(G) and (with c := a) (b, a) ∈ E(G). From (b, b), (b, a), (b, c) ∈ E(G)
follows by (iii) that (a, c) ∈ E(G). Conversely, if (a, a), (a, b), (a, c) ∈ E(G), then
(iii) implies (b, c) ∈ E(G).

Theorem 4.2. A graph is left semimedial if and only if its maximal complete

subgraphs are sinks.
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Proof. For the forward implication, assume that G is left semimedial. Let G′

be a maximal complete subgraph of G. Suppose, to the contrary, that G′ is
not a sink. Then there exist vertices u ∈ V (G′) and v ∈ V (G) \ V (G′) such
that (u, v) ∈ E(G). Since G′ is complete, we have also (u, u) ∈ E(G). By
Proposition 4.1(iii), we have (v, v), (v, u) ∈ E(G) and for all w ∈ V (G′), also
(v,w), (w, v) ∈ E(G). Hence G(V (G′)∪ {v}) is a complete subgraph of G, which
contradicts the maximality of G′.

For the converse implication, assume the maximal complete subgraphs of G
are sinks. We need to verify that the condition of Proposition 4.1(iii) holds. Let
a, b, c ∈ V (G) such that (a, a), (a, b), (a, c) ∈ E(G). Let G′ be a maximal complete
subgraph of G containing a. Since G′ is a sink, b and c must belong to G′, so we
have also (b, c) ∈ E(G).

Example 4.3. Figure 2 shows an example of a left semimedial graph. As we will
see in Theorem 4.7, it is not right semimedial and hence not semimedial.

Figure 2. Left semimedial graph.

Next, we consider right semimedial graphs, i.e., graphs satisfying the identity
(yz)(xx) ≈ (yx)(zx).

Proposition 4.4. Let G be a graph. The following conditions are equivalent.

(i) G |= (yz)(xx) ≈ (yx)(zx).

(ii) For all a, b, c ∈ V (G), we have (a, b), (a, c), (c, c) ∈ E(G) if and only if

(a, b), (a, c), (b, c) ∈ E(G).

Proof. Follows from Proposition 2.13.

Corollary 4.5. Let G be a graph satisfying (yz)(xx) ≈ (yx)(zx). Then for all

a, b ∈ V (G), if (a, a), (a, b) ∈ E(G), then (b, b), (b, a) ∈ E(G).

Proof. If (a, a), (a, b) ∈ E(G), then Proposition 4.4 (ii) implies (with a = c) that
(b, a) ∈ E(G) and (with a = b and replacing c by b) that (b, b) ∈ E(G).
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Definition 4.6. An induced subgraph H of a graph G is called a triangle if the
underlying graph of H is an undirected 3-cycle (without loops), i.e., a graph on
three vertices with edges between all pairs of distinct vertices but with no loops.

Theorem 4.7. A graph G is right semimedial if and only if the following condi-

tions hold:

(a) The maximal complete subgraphs of G are sinks.

(b) Every triangle of G is a directed 3-cycle.

(c) For every vertex c with a loop and a, b ∈ V (G), we have (a, b), (a, c) ∈ E(G)
implies (b, c) ∈ E(G).

Proof. For the forward implication, assume G is right semimedial.
(a) Let G′ be a maximal complete subgraph of G. Suppose, to the con-

trary, that G′ is not a sink. Then there exist vertices u ∈ V (G′) and v ∈
V (G) \ V (G′) such that (u, v) ∈ E(G). Since G′ is complete, we have (u, u) ∈
E(G). By Corollary 4.5, we also have (v, v), (v, u) ∈ E(G). Let w ∈ V (G′).
Since (u,w), (w, u), (w,w) ∈ E(G), Proposition 4.4 implies (v,w), (w, v) ∈ E(G).
Hence G(V (G′)∪ {v}) is a complete subgraph of G, which contradicts the maxi-
mality of G′.

(b) Let H be a triangle of G. Suppose, to the contrary, that H is not a di-
rected 3-cycle. Then V (H) = {a, b, c} and E(H) contains edges (a, b), (a, c), (b, c).
Proposition 4.4 implies (c, c) ∈ E(H), so H has a loop, a contradiction.

(c) Follows directly from the forward implication in Proposition 4.4(ii).
For the converse implication, assume that conditions (a), (b), (c) hold. We

want to verify that condition (ii) of Proposition 4.4 holds. If (a, b), (a, c), (c, c) ∈
E(G), then (b, c) ∈ E(G) follows by condition (c). Conversely, assume that
(a, b), (a, c), (b, c) ∈ E(G). Let H be the subgraph of G induced by {a, b, c}. Due
to the edges given above and condition (b), H is not a triangle, so it must contain
a loop. If (c, c) ∈ E(G), then we are done. If (a, a) ∈ E(G) (or (b, b) ∈ E(G),
respectively), then a (or b, respectively) belongs to a maximal complete subgraph
G′. By condition (a), G′ is a sink, so c must also belong to G′. Therefore
(c, c) ∈ E(G).

Example 4.8. The graph shown in Figure 3 is right semimedial (or, equiva-
lently, semimedial; see Theorem 4.9). As we will see in Proposition 5.1, it is not
medial.

Theorem 4.9. A graph is semimedial if and only if it is right semimedial.

Proof. Semimediality implies right semimediality by definition. It is clear from
Theorems 4.2 and 4.7 that right semimediality implies left semimediality and
hence semimediality.
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Figure 3. Right semimedial graph.

5. Medial graphs

Recall that a graph is medial if it satisfies the identity (xy)(uz) ≈ (xu)(yz).

Proposition 5.1. Let G be a graph. The following conditions are equivalent:

(i) G |= (xy)(uz) ≈ (xu)(yz).

(ii) For all a, b, c, d ∈ V (G), we have (a, b), (a, c), (c, d) ∈ E(G) if and only if

(a, b), (a, c), (b, d) ∈ E(G).

(iii) For all b, c ∈ V (G), if Ni(b) ∩Ni(c) 6= ∅, then No(b) = No(c).

Proof. (i) ⇔ (ii): Follows from Proposition 2.13.
(ii) ⇔ (iii): Assume a ∈ Ni(b) ∩Ni(c). Then (a, b), (a, c) ∈ E(G). It follows

from condition (ii) that for all d ∈ V (G), (b, d) ∈ E(G) if and only if (c, d) ∈ E(G).
In other words, No(b) = No(c).

Definition 5.2. A covering of a set S is a collection C of nonempty subsets of
S such that

⋃
C = S. The members of C are referred to as the blocks of C.

Definition 5.3. Let G = (V,E) be a graph. A covering C is outwards compatible

with G, if the following conditions hold:

(i) No(v) is a union of blocks for every v ∈ V .

(ii) All elements of a block have the same out-neighbourhood.

Definition 5.4. Given a graph G = (V,E) and an outwards compatible covering
C of V , we define the quotient graph G/C = (C, Ẽ) as the graph whose vertices
are the blocks of C and a pair (B,B′) of blocks is an edge if and only if B′ is a
maximal block of C contained in No(B), i.e., B′ ⊆ No(B) and for every B′′ ∈ C
such that B′ ⊆ B′′ ⊆ No(B), we have B′ = B′′.

By definition, the out-neighbourhood N
G/C
o (B) of a block B in the quotient

G/C is the set Smax of all maximal (with respect to subset inclusion) elements of
the set S := {B′ ∈ C | B′ ⊆ NG

o (B)}.
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Lemma 5.5. Let G = (V,E) be a graph and let C be an outwards compatible

covering of V . Then for every B ∈ C, NG
o (B) =

⋃
N

G/C
o (B).

Proof. Let B ∈ C. Since C is outwards compatible, NG
o (B) is the union of some

blocks of C. Consequently, for S := {B′ ∈ C | B′ ⊆ NG
o (B)}, it holds that

NG
o (B) =

⋃
S. In fact, we can take Smax to be the set of all maximal elements

of S with respect to subset inclusion, and we have NG
o (B) =

⋃
Smax.

By the definition of the quotient G/C, we have N
G/C
o (B) = Smax. We con-

clude that
⋃

N
G/C
o (B) =

⋃
Smax = NG

o (B).

Definition 5.6. A directed pseudoforest is a graph in which every vertex has
out-degree at most 1. A special case of this is a functional graph, a graph in
which every vertex has out-degree exactly 1. A rooted tree is a tree with one
vertex designated as a root and with every edge oriented towards the root. The
structure of functional graphs and directed pseudoforests is well understood. A
graph is a functional graph if and only if each one of its connected components
is obtained by gluing rooted trees at their roots to the vertices of a directed
cycle. A graph is a directed pseudoforest if and only if each one of its connected
components is a rooted tree or a functional graph.

Theorem 5.7. A graph G is medial if and only if there exists an outwards com-

patible covering C of V (G) such that G/C is a directed pseudoforest.

Proof. Assume first that the graph G is medial. Let

C :=
{
NG

o (v) | v ∈ V (G)} ∪ {{v} | v is a source vertex in G
}
.

It is easy to see that C is a covering of V (G). For, let v ∈ V (G). If v is a
source, then v ∈ {v} ∈ C. If v is not a source, then v has an in-neighbour w, and
v ∈ NG

o (w) ∈ C. In either case, v ∈
⋃

C.
We will show next that C is outwards compatible. By definition, for every

v ∈ V (G), NG
o (v) is a block of C; then clearly NG

o (v) is the union of some blocks of
C. Assume then that u, v ∈ V (G) and there is a block B ∈ C such that u, v ∈ B.
If u = v, then obviously NG

o (u) = NG
o (v). If u 6= v, then |B| > 1, so B = No(w)

for some w ∈ V (G). Then w is a common in-neighbour of u and v, from which it
follows by Proposition 5.1 that NG

o (u) = NG
o (v).

It remains to show that G/C is a directed pseudoforest. Let B ∈ C. By
Proposition 5.1, we have that for all u, v ∈ B, NG

o (u) = NG
o (v). If NG

o (B) = ∅,

then Lemma 5.5 yields that
⋃

N
G/C
o (B) = ∅. Since the blocks of C are nonempty,

this implies that N
G/C
o (B) = ∅, that is, the out-degree of B in G/C is 0.

If NG
o (B) 6= ∅, then NG

o (B) = NG
o (w) ∈ C, for an arbitrary vertex w ∈ B.

Assume now that (B,B′) is an edge of G/C. Then B′ is a maximal block of C
contained in NG

o (B). Since NG
o (B) itself is a block of C, it follows that B′ =
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NG
o (B). Thus, the out-degree of B in G/C is 1. We conclude that every vertex

of G/C has out-degree at most 1.
For the converse implication, assume there is an outwards compatible cover-

ing C of V (G) such that G/C is a directed pseudoforest. We want to verify that
condition (iii) of Proposition 5.1 is satisfied. Let u, v ∈ V (G) be vertices with a
common in-neighbour, say a. Then u, v ∈ NG

o (a).
Since C is an outwards compatible covering of V (G), there exists a block

Ba ∈ C such that a ∈ Ba, and we have NG
o (Ba) = NG

o (a). By Lemma 5.5,

NG
o (Ba) =

⋃
N

G/C
o (Ba). Since every vertex of G/C has out-degree at most 1 and

since NG
o (Ba) 6= ∅, it follows that NG

o (Ba) is the unique out-neighbour of Ba in
G/C. Hence NG

o (Ba) is a block of C. Since u, v ∈ NG
o (a) = NG

o (Ba) ∈ C, it
follows from the outwards compatibility of C that NG

o (u) = NG
o (v).

Example 5.8. Examples of medial graphs are shown in Figure 4. The illustration
shows also how the condition of Theorem 5.7 is satisfied by each graph. The two
graphs on the right and the one on the bottom are directed pseudoforests (actually
functional graphs), so the condition of Theorem 5.7 is satisfied with the trivial
covering with one-element blocks. For the remaining four graphs, the shaded
areas represent the blocks of an outwards compatible covering of the vertices
such that the induced quotient is a directed pseudoforest. In fact, on each of the
first two rows, the quotients of the first two graphs by the given coverings are
isomorphic to the graph on the right.

Remark 5.9. The following implications between properties of graph algebras
hold.

medial ⇒ semimedial ⇒ left semimedial
m

right semimedial

The two implications follow immediately from the definitions. The equivalence
of semimediality and right semimediality is shown in Theorem 4.9. There are
no further implications between these properties. Namely, Example 4.3 provides
a graph that is left semimedial but not (right) semimedial, and Example 4.8
provides a graph that is (right) semimedial but not medial.

Remark 5.10. A description of undirected medial graphs was reported by Davey,
Idziak, Lampe, and McNulty [1, Theorem 1]. An undirected graph is medial if
and only if each one of its connected components is either a complete graph, a
complete bipartite graph, or an isolated vertex.

This can be obtained as a special case from Theorem 5.7. Quotients of
undirected graphs are clearly undirected. An undirected graph is a directed
pseudoforest if and only if each one of its components is either a single vertex
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with a loop (cycle of length 1), two vertices connected by a symmetric edge (cycle
of length 2), or an isolated vertex (one-vertex rooted tree). Such components of
a quotient graph G/C correspond in G to a complete graph, a complete bipartite
graph, and isolated vertices, respectively.

Figure 4. Medial graphs.
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[2] K. Denecke, M. Erné and S.L. Wismath (eds.), Galois connections and applications,
Math. Appl., vol. 565 (Kluwer Academic Publishers, Dordrecht, 2004).
doi:10.1007/978-1-4020-1898-5
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