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Abstract

In this paper, we introduce the notion of r-ideal and m-k-ideal in inclines.
We study the properties of r-ideals and m-k-ideals, the relations between
them and characterize m-k-ideal and r-ideal in inclines.
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1. Introduction

The non-trivial example of semiring, first appeared in the work of the German
mathematician Richard Dedikind in 1894 in connection with the study of ideals
of a commutative ring. The notion of semiring was introduced by the American
mathematician Vandiver [25] in 1934. A semiring is a well known universal al-
gebra. Semirings have been used for studying optimization theory, graph theory,
matrices, determinants, theory of automata, coding theory, analysis of computer
programmes, etc. Few research scholars studied the algebraic structure of incline.
Inclines are additively idempotent semirings in which products are less than or
equal to either factor. Recently idempotent semirings and Kleene Algebras have
been established as fundamental structures in computer sciences. An incline has
both semiring structure and the poset structure. Every distributive lattice and
every Boolean algebra is an incline but an incline need not be a distributive lat-
tice. The set of all idempotent elements in an incline is a distributive lattice. The
concept of incline was first introduced by Cao in 1984. Cao et al. [4] studied the
incline and its applications. Kim and Rowsh [6] have studied matrices over an in-
cline. An incline is a more general algebraic structure than a distributive lattice.
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An incline is a generalization of Boolean algebra, fuzzy algebra and distributive
lattice. Ahn et al. [2, 3] studied ideals and r-ideals in inclines. Meenakshi and
Anbalagan [6] studied regular elements in an incline and proved that regular com-
mutative incline is a distributive lattice. In an incline every ideal is a k-ideal. In
1995, Murali Krishna Rao [7, 8] introduced the notion of Γ-semiring as a gen-
eralization of Γ-ring, ternary semiring and semiring. Murali Krishna Rao et al.

[9–24] studied regular Γ-incline, field Γ-semiring,ideals and derivations.

Inclines and Matrices over inclines are useful tools in diverse areas such as
automata theory, design of switching circuits, graph theory, information systems,
modeling, decision making, dynamical programming, control theory, classical and
non classical path finding problems in graphs, fuzzy set theory, data analysis,
medical diagnosis, nervous system, probable reasoning, physical measurement
and so on. In this paper, we introduce the notion of r-ideal and m-k-ideal in
inclines. We study the properties of r-ideal, k-ideal, m-k-ideal in incline and the
relations between them.

2. Preliminaries

In this section, we will recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1 [3]. An incline M with additive identity 0 and multiplicative
identity 1 is a non-empty set M with operations addition (+) and multiplication
(·) defined on M ×M → M such that satisfying the following conditions for all
x, y, z ∈ M

(i) x+ y = y + x

(ii) x+ x = x

(iii) x+ xy = x

(iv) y + xy = y

(v) x+ (y + z) = (x+ y) + z

(vi) x(yz) = x(yz)

(vii) x(y + z) = xy + xz

(viii) (x+ y)z = xz + yz

(ix) x1 = 1x = x

(x) x+ 0 = 0 + x = x.

In an incline, define the order relation such that for all x, y ∈ M, y ≤ x if
and only if y + x = x. Obviously ≤ is a partial order relation over M.
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Example 2.2. If M = [0, 1], a binary operation + is defined as a+b = max{a, b}
and multiplication operation is defined as xy = min{x, y} for all x, y ∈ M, then
M is an incline.

Example 2.3. If M = [0, 1],a binary operation + is maximum, and a mutipli-
cation operation is defined as ab is the usual multiplication for all a, b ∈ M, then
M is incline with unity 1.

Definition 2.4. A subincline I of an incline M is a non-empty subset of M
which is closed under the incline operations addition and multiplication.

Definition 2.5. An incline M is said to be commutative if xy = yx for all
x, y ∈ M.

Definition 2.6. An element a ∈ M is said to be idempotent of an incline M if
a = aa

Definition 2.7. Every element of M is an idempotent of an incline M , then M
is said to be idempotent incline M.

Definition 2.8. An incline M with zero element 0 is said to be hold cancellation
laws if a 6= 0, ab = ac, ba = ca, where a, b, c ∈ M , then b = c.

Definition 2.9. If x ≤ y for all y ∈ M , then x is called the least element of M
and denoted as 0. If x ≥ y for all y ∈ M , then x is called the greatest element of
M and denoted as 1.

Definition 2.10. An incline M is said to be linearly ordered if x, y ∈ M , then
either x ≤ y or y ≤ x, where ≤ is an incline order relation.

Definition 2.11. An element 1 ∈ M is said to be unity if for each x ∈ M
x1 = 1x = x.

Definition 2.12. A non-zero element a in an incline M is said to be zero divisor
if there exists non-zero element b ∈ M, such that ab = ba = 0.

Definition 2.13. An incline M with unity 1 and zero element 0 is called an
integral incline if it has no zero divisors.

Definition 2.14. Let M and N be inclines. A mapping f : M → N is called a
homomorphism if

(i) f(a+ b) = f(a) + f(b)

(ii) f(ab) = f(a)f(b), for all a, b ∈ M.

Definition 2.15. Let M be an incline. A mapping d : M → M is called a
derivation if it satisfies
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(i) d(x+ y) = d(x) + d(y)

(ii) d(xy) = d(x)y + xd(y) for all x, y ∈ M.

Definition 2.16. A mapping f from an incline M into an incline N is said to
be regular homomorphism if it satisfies the following

(i) f(x+ y) = f(x) + f(y)

(ii) f(xy) = f(x)f(y)

(iii) f(0) = 0.

If the incline N is additively cancellative, then any homomorphism from an
incline M into an incline N is regular.

Definition 2.17. A subincline I of an incline M is called an ideal if it is a lower
set. i.e., for any x ∈ I, y ∈ M and y ≤ x ⇒ y ∈ I.

Definition 2.18. A proper ideal P of an incline M is said to be prime ideal if
for all x, y ∈ M, xy ∈ P ⇒ x ∈ P or y ∈ P.

Definition 2.19. An ideal K of an incline M is said to be maximal ideal if
K 6= M and for every ideal I of M with K ⊆ I ⊆ M , then either I = K or
I = M.

Definition 2.20. A subincline I of an incline M is said to be k-ideal if x ∈ M,
x+ y ∈ I, y ∈ I, then x ∈ I.

3. r-ideals and m-k-ideals in inclines

In this section, we introduce the notion of r-ideal and m-k-ideal in inclines. We
study the properties of r-ideals, k-ideals, m-k-ideals in incline and the relations
between them.

Definition 3.1. A subincline I of an incline M is said to be a left (right) r-ideal
of M if MI ⊆ I (IM ⊆ I).

Definition 3.2. If I is both a left r-ideal and a right r-ideal, then I is called a
r-ideal of an incline M.

Definition 3.3. An incline M is said to be r-simple if it has no proper r-ideals
of M.

Definition 3.4. An ideal I of an incline M is said to be m-k-ideal if xy ∈ I,
x ∈ I, 1 6= y ∈ M , then y ∈ I.

Theorem 3.5. Let M be an incline. If I is an ideal of an incline M , then I is

a r-ideal of M.
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Proof. Suppose I is an ideal of the incline M, x ∈ I and y ∈ M . Then xy ≤ x
and yx ≤ x. Since I is an ideal, xy and yx ∈ I. Hence I is a r-ideal of the
incline M.

Theorem 3.6. Let M be an incline with unity 1. Then additive semigroup (M,+)
of the incline M is positively ordered.

Proof. Let M be an incline with unity 1.

Then xy ≤ x, for all x, y ∈ M

⇒ xy + y ≤ x+ y, for all x, y ∈ M

⇒ y ≤ x+ y for all x, y ∈ M.

Hence additive semigroup (M,+) is positively ordered.

The proof of the following theorem is trivial so we omit the proof

Theorem 3.7. Let M be a mono incline. If I is an ideal of M , then I is a

m-k-ideal of M.

Theorem 3.8. If I is a maximal ideal of an incline M with unity satisfying

a+ b 6= 1, for all a, b ∈ M , then I is a m-k-ideal of M.

Proof. Suppose I is a maximal ideal of the incline M, xy ∈ I, x ∈ I and y /∈ I.
Then I ⊆ I + (y), where (y) is a principal ideal generated by y. I is a proper
subset of I + (y), since y ∈ I + (y) and I + (y) 6= M, since 1 /∈ I + (y). Which is
a contradiction to maximality of I. Hence I is a m-k-ideal of the incline M.

The following example shows that converse of the Theorem 3.9 need not be
true.

Example 3.9. Let I = [0, 1] be a set of real numbers between 0 and 1 with
x+y = max{x, y} and x ·y = xy, where · is a usual multiplication for all x, y ∈ I.
Then I is an incline.

Let M be the set of all 2× 2 matrices whose elements be in I. Now define

A+B = (aij + bij) and A×B = (aijbij),

where A = (aij), B = (bij) are in M. Then M is an incline.

Let B =

{(

a b
0 0

)

| a, b ∈ I, a 6= b

}

. Suppose

(

a b
0 0

)

∈ B,

(

p q
r s

)

∈ M.

Then

(

a b
0 0

)(

p q
r s

)

=

(

ap bq
0 0

)

∈ B.

Suppose A = (aij) and B = (bij) ∈ M. We define A ≤ B if and only if aij ≤

bij , for all i, j. We have

(

0.5 0.5
0 0

)

≤

(

0.5 0.6
0 0

)

∈ B but

(

0.5 0.5
0 0

)

/∈ B.

Hence B is a r-ideal but not an ideal of the incline M.



302 M.M.K. Rao

Example 3.10. Let M be the set of all natural numbers. Then (M,max,min)
with usual ordering is an incline. If In = {1, 2, ·, ·, ·, n}, then In forms a k-ideal
but not m-k-ideal of an incline, since n.n+ 1 ∈ In but n+ 1 /∈ In.

Theorem 3.11. Every m-k-ideal of an incline M is a k-ideal of M .

Proof. Let I be a m-k-ideal of the incline M. Suppose x+ y ∈ I, x ∈ I, y ∈ M ,
then by Theorem 3.9, (x+y)y ∈ I. Therefore y ∈ I, since I is a m-k-ideal. Hence
I is a k-ideal of M.

Converse of the theorem need not be true.

Theorem 3.12. Let I be a subincline of an incline M. Then I is an ideal of M
if and only if I is a k-ideal of M.

Proof. Let I be an ideal of the incline M , x ∈ M , x+ y ∈ I and y ∈ I.

x+ y = (x+ x) + y

= x+ (x+ y)

⇒ x ≤ x+ y.

Therefore, by definition of an ideal, x ∈ I. Hence I is a k-ideal of M.
Conversely suppose that I is a k-ideal of the incline M. Let y ∈ M,x ∈ I

and y ≤ x.

⇒ y + x = x

⇒ y + x ∈ I

⇒ y ∈ I, since I is a k-ideal of the incline M.

Hence I is an ideal of the incline M.

Theorem 3.13. If M is an incline and I is a r-ideal of M containing a unit u,
then I = M.

Proof. Let x ∈ M. Since u is a unit,there exists u′ ∈ M such that uu′ = 1. Then
x1 = x, uu′ = 1 and xu ∈ I. Now

x = x1 = xuu′ ∈ I

⇒ x ∈ I.

Hence M = I. This completes the proof.

Theorem 3.14. A field incline M is a r-simple.

Proof. Let I be a proper r-ideal of the field incline M. Every non-zero element
of I is a unit. By Theorem 3.14, we have I = M. Hence field incline is simple.
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Theorem 3.15. If I is a r-ideal of an idempotent incline M , then I is a k-ideal
of M.

Proof. Suppose x+ y ∈ I, y ∈ I and x ∈ M. Therefore x+ xy = x, and xx = x.

x+ y ∈ I, x ∈ M

⇒ (x+ y)x ∈ I

⇒ xx+ yx ∈ I

⇒ x+ yx ∈ I

⇒ x ∈ I.

Suppose x ≤ y, y ∈ I, then x + y = y. Therefore x ∈ I. Hence I is a k-ideal of
the incline M.

Theorem 3.16. If I is a k-ideal of a mono incline M , then I is a m-k-ideal
of M.

Proof. Suppose xy ∈ I, x ∈ I, y ∈ M . Then x+ y ∈ I, x ∈ I ⇒ y ∈ I. Hence I
is a m-k-ideal of the incline M.

Let I be a r-ideal of an incline M. Define I∗ = {x ∈ M | x+ a ∈ I, for some
a ∈ I}.

Theorem 3.17. Let I be a r-ideal of an incline M. Then I∗ is a k-ideal of M.

Proof. Let x, y ∈ I∗. Then there exist a, b ∈ I such that x+ a, y + b ∈ I and

(x+ a) + (y + b) = x+ y + a+ b ∈ I

⇒ x+ y ∈ I∗.

(x+ a)(y + b) = xy + xb+ ay + ab

⇒ xy ∈ I∗.

Therefore I∗ is a subincline of M.

Let x, y ∈ M,x ≤ y and y ∈ I∗. Then there exists a ∈ I such that y + a ∈ I.
We have

x+ y = y

⇒ x+ y + a = y + a

⇒ x+ y + a ∈ I

⇒ x ∈ I.

Hence I∗ is a k-ideal of M.
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Corollary 3.18. If I is a r-ideal of an idempotent mono- incline M , then I∗ is

a m-k-ideal of M.

Theorem 3.19. Let f : M → N be an onto homomorphism of inclines M and

N. If I is a left r-ideal of M , then f(I) is a left r-ideal of N.

Proof. Let x, y ∈ f(I). Then there exist a, b ∈ I such that f(a) = x and f(b) = y.
Then

x+ y = f(a) + f(b)

= f(a+ b) ∈ f(I).

xy = f(a)f(b)

= f(ab) ∈ f(I).

Hence f(I) is a subincline of N.

Let x ∈ f(I), a ∈ N . Then there exist y ∈ I and b ∈ M such that f(y) = x
and f(b) = a. Therefore

xa = f(y)f(b) = f(yb) ∈ f(I), since I is a left r-ideal.

Hence f(I) is a left r-ideal of N.

Definition 3.20. Let A be a non-empty subset of an incline M. Then the set
{x ∈ M | a(ax) = 0, for all a ∈ A}. It is denoted by Annl(A).

Theorem 3.21. Let A and B be subsets of an incline M. If A ⊆ B, then

Annl(B) ⊆ Annl(A).

Proof. Let x ∈ Annl(B). Then

b(bx) = 0, for all b ∈ B

⇒ b(bx) = 0, for all b ∈ A, since A ⊆ B

⇒ b ∈ Annl(A).

Hence Annl(B) ⊆ Annl(A).

Theorem 3.22. Let f : M → N be a regular homomorphism of inclines M and

N . Suppose A is a subset of M . Then f(Annl(A)) ⊆ Annl(f(A).
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Proof. Let y ∈ f(Annl(A)) and b ∈ [f(A)]. Then there exist x ∈ Annl(A) and
a ∈ A such that f(x) = y and f(a) = b.

b(by) = f(a)(f(a)f(x))

= f(a(ax))

= f(0)

= 0.

Hence y ∈ Annl(f(A). This completes the proof of the theorem.

Theorem 3.23. Let A be a non-empty subset of a commutative incline M. Then
Annl(A) is an r-ideal of M.

Proof. Let x, y ∈ Annl(A). Then

a(ax) = 0 and a(ay) = 0

⇒ a(a(x+ y)) = a(ax) + a(ay) = 0 + 0 = 0

⇒ x+ y ∈ Annl(A).

a(a(xy)) = a(ax)y = 0y = 0

⇒ xy ∈ Annl(A).

Hence Annl(A) is a subincline of M.
Suppose x ∈ Annl(A), y ∈ M . Then

a(a(xy)) = a(ax)y = 0y = 0, for all a ∈ A.

Therefore xy ∈ Annl(A). Hence Annl(A) is a r-ideal of the incline M.

Theorem 3.24. Let f : M → N be a homomorphism of inclines M and N. If J
is a r-ideal of N , then f−1(J) is a r-ideal of M.

Proof. Let x, y ∈ f−1(J). Then

f(x+ y) = f(x) + f(y) ∈ J, since J is a subincline

⇒ x+ y ∈ f−1(J).

f(xy) = f(x)f(y) ∈ J, since J is a subincline.

Hence f−1(J) is a subincline of M.
Let x ∈ M,y ∈ f−1(J). Then f(y) ∈ J.

f(xy) = f(x)f(y) ∈ J, since J is an r-ideal of M

f(yx) = f(y)f(x) ∈ J, since J is an r-ideal of M.

Therefore xy and yx are in f−1(J). Hence f−1(J) is a r-ideal of M.
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The following theorems are characterizations of m-k-ideal of an incline M .
Let d be a derivation of an incline M. Define a set Fixd(M) = {x ∈ M/d(x) = x}.

Theorem 3.25. Let d be a derivation of an incline M, where semigroup (M, ·)
is left cancellative semigroup. Then Fixd(M) is a k-ideal and a m-k-ideal of an
incline M .

Proof. Suppose d is a derivation of M and x, y ∈ Fixd(M). Then

d(x) = x, d(y) = y

d(x+ y) = d(x) + d(y) = x+ y.

Therefore x+ y ∈ Fixd(M)

d(xy) = d(x)y + xd(y)

= xy + xy

= xy.

Therefore Fixd(M) is a subincline of M.
Suppose x ≤ y and y ∈ Fixd(M).

x ≤ y

xy ≤ yy

xy ≤ y

⇒ xy = y

⇒ d(xy) = y

Then d(x)y + xd(y) = y

⇒ d(x)y + xy = xy

⇒ y[d(x) + x] = xy

⇒ d(x) + x = x

⇒ d(x) ≤ d(x) + x = x,

we have x ≤ d(x). Hence d(x) = x, x ∈ Fixd(M). Suppose x+ y, y ∈ Fixd(M).

x+ y ∈ Fixd(M).

Then d(x+ y) = x+ y

⇒ d(x) + d(y) = x+ y

⇒ d(x) + y = x+ y.

Therefore d(x) = x.

Therefore d(x) = x. Hence Fixd(M) is a k-ideal of M. Suppose xy ∈ Fixd(M),
x ∈ Fixd(M). Then d(xy) = xy
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⇒ d(x)y + xd(y) = xy

⇒ xy + xd(y) = xy

⇒ x[y + d(y)] = xy

⇒ y + d(y) = y

⇒ d(y) ≤ y + d(y) = y,

we have y ≤ d(y). Hence d(y) = y, y ∈ Fixd(M). Hence Fixd(M) is a m-k-ideal
of M .

Theorem 3.26. Let d be a derivation of an incline M. Define ker d = {x ∈
M/d(x) = 0}. Then ker d is a k-ideal of M .

Proof. Let x, y ∈ ker d. Then

d(x) = 0, d(y) = 0

d(x+ y) = d(x) + d(y) = 0.

Therefore x+ y ∈ ker d.

d(xy) = d(x)y + xd(y)

= 0y + x0 = 0.

Therefore xy ∈ ker d. Suppose x ≤ y and y ∈ ker d.

x ≤ y

Then x+ y = y

⇒ d(x+ y) = d(y)

⇒ d(x) + d(y) = d(y)

⇒ d(x) + 0 = 0.

Therefore d(x) = 0.

⇒ x ∈ ker d.

Suppose x + y ∈ ker d and y ∈ ker d. Then d(x + y) = 0 ⇒ d(x) + d(y) = 0,
⇒ d(x) = 0, ⇒ x ∈ ker d. Hence ker d is a k-ideal of the incline M .

Theorem 3.27. Let d be a derivation of an integral incline M . Define ker d =
{x ∈ M/d(x) = 0}. Then ker d is a m-k-ideal of M .

Proof. By Theorem 3.27, ker d is an ideal. Let 0 6= y ∈ ker d, x ∈ M . Then
xy ∈ ker d and d(xy) = 0

⇒ d(x)y + xd(y) = 0

⇒ d(x)y = 0

⇒ d(x) = 0, since M is an integral incline. Therefore ker d is a m-k-ideal of M.
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4. Conclusion

In this paper, we introduced the notion of r-ideal and m-k-ideal in inclines. We
studied the properties of r-ideal, k-ideal, m-k-ideal and the relations between
them and charecterized m-k-ideal in incline using derivations of incline. We
proved if d is a derivation of an integral incline M , then ker d is a m-k-ideal
of M . In continous of this paper, we study prime m-k-ideals in inclines.
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