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1. Introduction

After Boole’s axiomatization of two valued propositional calculus as a Boolean
algebra, a number of generalizations both ring theoretically and lattice theoreti-
cally have come into being. The concept of an Almost Distributive Lattice (ADL)
is introduced by Swamy and Rao [9] as a common abstraction of many existing
ring theoretic generalizations of a Boolean algebra on one hand and the class of
distributive lattices on the other. In that paper, the concept of an ideal in an
ADL is introduced analogous to that in a distributive lattice and it is observed
that the set PI(L) of all principal ideals of L forms a distributive lattice. This
provided a path to extend many existing concepts of lattice theory to the class
of ADLs. With this motivation, Swamy, Rao and Nanaji [10] introduced the
concept of pseudo-complementation on an ADL. They observed that unlike in a
distributive lattice, an ADL L can have more than one pseudo-complementation.
If ∗,⊥ are two pseudo-complementations on L, it is observed that x∗ ∨ x∗∗ is
maximal, for all x ∈ L if and only if x⊥ ∨ x⊥⊥ is maximal, for all x ∈ L. Later,
in [11], the concept of a stone ADL is introduced as an ADL with a pseudo-
complementation ∗ satisfying the condition x∗ ∨ x∗∗ is maximal, for all x ∈ L.
Properties of pseudo-complemented ADLs are studied and stone ADLs are char-
acterized algebraically, topologically and by means of prime ideals. In [7], Rao
and Ravi Kumar proved that some important results on minimal prime ideal of
an ADL. In [4], Rao, Rafi and Ravi Kumar introduced the concept of closure
operators in an Almost Distributive Lattices by using invariant elements. After
giving the necessary definitions and notations first, some important properties of
closure operators are proved in an ADL. In [5], Rao et al. characterized normal
almost distributive lattices in terms of prime filters and maximal filters. After
that, in 2012, Rao et al. [6], introduced dual annihilators and the class of all
dually normal almost distributive lattices are characterized topologically. In [8],
Sambasiva Rao introduced the concept of β-filters in an MS-algebra and their
properties are studied. Also, the β-filters of an MS-algebra are characterized in
terms of boosters. In this paper, we have extended the concept of β-filters to a
stone ADL, analogously and their properties are studied. We characterized the
β-filters in terms of boosters. In addition to this, it is observed that a mapping θ
is an isomorphism of the set of all β-filters of a stone ADL onto the set of all ideals
of stone ADL. Some equivalent conditions are derived for the set of all boosters
to become relatively complemented in terms of prime β-filters. Some topological
properties of the space SpecβF

(L) of all prime β-filters of an ADL L are observed.
A set of equivalent conditions are derived for the space SpecβF

(L) to become a
T1-space. A necessary and sufficient condition are obtained for SpecβF

(L) to
become a Hausdorff space.
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2. Preliminaries

In this section, we recall certain definitions and important results, those will be
required in the text of the paper.

Definition 2.1 [9]. An Almost Distributive Lattice with zero or simply ADL is
an algebra (L,∨,∧, 0) of type (2, 2, 0) satisfying:

1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

3. (x ∨ y) ∧ y = y

4. (x ∨ y) ∧ x = x

5. x ∨ (x ∧ y) = x

6. 0 ∧ x = 0

7. x ∨ 0 = x, for all x, y, z ∈ L.

Example 2.2. Every non-empty set X can be regarded as an ADL as follows.
Let x0 ∈ X. Define the binary operations ∨,∧ on X by

x ∨ y =

{

x if x 6= x0

y if x = x0
x ∧ y =

{

y if x 6= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.

If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a ≤ b if and only if a = a∧ b
(or equivalently, a ∨ b = b), then ≤ is a partial ordering on L.

Theorem 2.3 [9]. If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the

following:

(1) a ∨ b = a⇔ a ∧ b = b

(2) a ∨ b = b⇔ a ∧ b = a

(3) ∧ is associative in L

(4) a ∧ b ∧ c = b ∧ a ∧ c

(5) (a ∨ b) ∧ c = (b ∨ a) ∧ c

(6) a ∧ b = 0⇔ b ∧ a = 0

(7) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(8) a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a

(9) a ≤ a ∨ b and a ∧ b ≤ b

(10) a ∧ a = a and a ∨ a = a

(11) 0 ∨ a = a and a ∧ 0 = 0
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(12) If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a

(13) a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a
distributive lattice except the right distributivity of ∨ over ∧, commutativity of
∨, commutativity of ∧. Any one of these properties make an ADL L a distributive
lattice. That is

Theorem 2.4 [9]. Let (L,∨,∧, 0) be an ADL with 0. Then the following are

equivalent:

(1) (L,∨,∧, 0) is a distributive lattice.

(2) a ∨ b = b ∨ a, for all a, b ∈ L.

(3) a ∧ b = b ∧ a, for all a, b ∈ L.

(4) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in
the partially ordered set (L,≤). That is, for any a ∈ L, m ≤ a⇒ m = a.

Theorem 2.5 [9]. Let L be an ADL and m ∈ L. Then the following are equiva-

lent:

(1) m is maximal with respect to ≤

(2) m ∨ a = m, for all a ∈ L

(3) m ∧ a = a, for all a ∈ L

(4) a ∨m is maximal, for all a ∈ L.

As in distributive lattices [1, 2], a non-empty sub set I of an ADL L is called
an ideal of L if a ∨ b ∈ I and a ∧ x ∈ I for any a, b ∈ I and x ∈ L. Also, a
non-empty subset F of L is said to be a filter of L if a∧ b ∈ F and x∨ a ∈ F for
a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least
element {0} and greatest element L under set inclusion in which, for any I, J ∈
I(L), I ∩ J is the infimum of I and J while the supremum is given by I ∨ J :=
{a ∨ b | a ∈ I, b ∈ J}. A proper ideal P of L is called a prime ideal if, for any
x, y ∈ L, x∧y ∈ P ⇒ x ∈ P or y ∈ P . A proper idealM of L is said to be maximal
if it is not properly contained in any proper ideal of L. It can be observed that
every maximal ideal of L is a prime ideal. Every proper ideal of L is contained in
a maximal ideal. For any subset S of L the smallest ideal containing S is given
by (S] := {(

∨n
i=1 si) ∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s]

instead of (S]. Similarly, for any S ⊆ L, [S) := {x∨ (
∧n

i=1 si) | si ∈ S, x ∈ L and
n ∈ N}. If S = {s}, we write [s) instead of [S).
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Theorem 2.6 [9]. For any x, y in L the following are equivalent:

(1) (x] ⊆ (y]

(2) y ∧ x = x

(3) y ∨ x = y

(4) [y) ⊆ [x).

For any x, y ∈ L, it can be verified that (x]∨(y] = (x∨y] and (x]∧(y] = (x∧y].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.

Theorem 2.7 [3]. Let I be an ideal and F a filter of L such that I ∩ F = ∅.
Then there exists a prime ideal P such that I ⊆ P and P ∩ F = ∅.

Definition 2.8. Let (L,∨,∧, 0) be an ADL. Then a unary operation a −→ a∗

on L is called a pseudo-complementation on L if, for any a, b ∈ L, it satisfies the
following conditions:

(1) a ∧ b = 0⇒ a∗ ∧ b = b

(2) a ∧ a∗ = 0

(3) (a ∨ b)∗ = a∗ ∧ b∗.

Then (L,∨,∧,∗ , 0) is called a pseudo-complemented ADL.

Theorem 2.9. Let L be an ADL and ∗ a pseudo-complementation on L. Then,
for any a, b ∈ L, we have the following:

(1) 0∗∗ = 0

(2) 0∗ ∧ a = a

(3) a∗∗ ∧ a = a

(4) a∗∗∗ = a∗

(5) a ≤ b⇒ b∗ ≤ a∗

(6) a∗ ∧ b∗ = b∗ ∧ a∗

(7) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗

(8) a∗ ∧ b = (a ∧ b)∗ ∧ b∗.

For any pseudo-complemented ADL L, let us denote the set of all elements
of the form x∗ = 0 by D(L). Then the following lemma is a direct consequence.

Definition 2.10 [11]. Let L be an ADL and ∗ a pseudo-complementation on
L.Then L is called stone ADL if, for any x ∈ L, x∗ ∨ x∗∗ = 0∗.

Lemma 2.11 [11]. Let L be a stone ADL and a, b ∈ L. Then the following

conditions hold:

(1) 0∗ ∧ a = a and 0∗ ∨ a = 0∗

(2) (a ∧ b)∗ = a∗ ∨ b∗.
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3. β-filters in stone ADLs

In this section, we have introduced the concepts of boosters and β-filters in a
stone ADL. The β-filters of a stone ADL are characterized in terms of boosters.
Later, some equivalent conditions are derived for the set of all boosters to be-
come relatively complemented in terms of prime β-filters. Though many results
look similar, the proofs are not similar because of the lack of the properties like
commutativity of ∨, commutativity of ∧ and the right distributivity of ∨ over ∧
in an ADL.

Now we begin with the following.

Definition 3.1. Let L be a stone ADL with maximal elements. Then for any
a ∈ L, define (a)+ = {x ∈ L | x∨ a∗ is a maximal element of L}. We call (a)+ as
booster of a.

Lemma 3.2. Let L be a stone ADL with maximal elements.Then for any a, b ∈ L,
we have the following.

(1) (0)+ = L.

(2) If m is any maximal element of L, then (m)+ is the set of all maximal

element of L.

(3) For any a ∈ L, (a)+ is a filter of L.

(4) If a ≤ b, then (b)+ ⊆ (a)+.

(5) If a∗ = b∗, then (a)+ = (b)+

(6) (a ∨ b)+ = (b ∨ a)+

(7) (a ∨ b)+ = (a)+ ∩ (b)+.

(8) If (a)+ = (b)+, then (a∧ c)+ = (b∧ c)+ and (a∨ c)+ = (b∨ c)+, for all c ∈ L

(9) (a)+ = L if and only if a = 0.

Proof. (1) Clearly, x∨ 0∗ is a maximal element of L, for all x ∈ L. That implies
x ∈ (0)+ and hence (0)+ = L.

(2) It is obvious.

(3) Let m be any maximal element of L. Clearly, m ∈ (a)+. Let x, y ∈ (a)+.
Then x ∨ a∗ and y ∨ a∗ are maximal elements of L. Now, ((x ∧ y) ∨ a∗) ∧ t =
(x∨ a∗)∧ (y ∨ a∗)∧ t = (y ∨ a∗)∧ t = t. Therefore x∧ y ∈ (a)+. Let x ∈ (a)+ and
y ∈ L. Then x∨a∗ is a maximal element of L. Now, ((y∨x)∨a∗)∧t = (x∨a∗)∧t = t.
Therefore (y ∨ x) ∨ a∗ is a maximal element of L and hence y ∨ x ∈ (a)+. Thus
(a)+ is a filter of L.

(4) Suppose a ≤ b. Then a∧ b = a and a∨ b = b. Let x ∈ (b)+. Then x∨ b∗ is
maximal. Now, (x∨ a∗)∧ t = [x∨ (a∧ b)∗]∧ t = [x∨ a∗∨ b∗]∧ t = (x∨ b∗)∧ t = t.
Therefore x∨a∗ is a maximal element of L and hence x ∈ (a)+. Thus (b)+ ⊆ (a)+.
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(5) Suppose a∗ = b∗. Let x ∈ (a)+. Then x ∨ a∗ is a maximal element if and
only if x ∨ b∗ is maximal. Hence (a)+ = (b)+.

(6) Now x ∈ (a ∨ b)+ if and only if x ∨ (a ∨ b)∗ is maximal if and only if
x ∨ (b ∨ a)∗ is maximal if and only x ∈ (b ∨ a)+. Therefore (a ∨ b)+ = (b ∨ a)+.

(7) Clearly, (a ∨ b)+ ⊆ (a)+ ∩ (b)+. Let x ∈ (a)+ ∩ (b)+. Then x ∈ (a)+

and x ∈ (b)+. That implies x ∨ a∗ and x ∨ b∗ are maximal elements. Now,
[x ∨ (a ∨ b)∗] ∧ t = [x ∨ (a∗ ∧ b∗)] ∧ t = [(x ∨ a∗) ∧ (x ∨ b∗)] ∧ t = (x ∨ b∗) ∧ t = t.
Therefore x ∨ (a ∨ b)∗ is maximal element of L and hence x ∈ (a ∨ b)+. Thus
(a)+ ∩ (b)+ ⊆ (a ∨ b)+. Therefore (a ∨ b)+ = (a)+ ∩ (b)+.

(8) Suppose (a)+ = (b)+. Let x ∈ (a∧c)+. Then x∨(a∧c)∗ is maximal. That
implies x∨ (c∗ ∨ a∗) is maximal. Therefore x∨ c∗ ∈ (a)+ and hence x∨ c∗ ∈ (b)+.
That implies x ∨ c∗ ∨ b∗ is maximal and hence x ∨ (b ∧ c)∗ is maximal. Thus
(a ∧ c)+ ⊆ (b ∧ c)+. Similarly, we get that (b ∧ c)+ ⊆ (a ∧ c)+. Hence (a ∧ c)+ =
(b ∧ c)+.

Let x ∈ (a∨ c)+. Then x∨ (a∨ c)∗ is maximal and hence x∨a∗ and x∨ c∗ are
maximal elements. Therefore x ∈ (a)+∩(c)+ and hence x ∈ (b)+∩(c)+ = (b∨c)+.
Thus (a ∨ c)+ ⊆ (b ∨ c)+. Similarly, we get that (b ∨ c)+ ⊆ (a ∨ c)+. Therefore
(a ∨ c)+ = (b ∨ c)+.

(9) It is obvious.

Now, we prove that B0(L) forms a complete distributive lattice.

Theorem 3.3. Let L be a stone ADL with maximal elements. Then the set

B0(L) of all boosters is a complete distributive lattice on its own.

Proof. Consider M = {x | x is a maximal element of L}. Clearly, B0(L) is a
poset with respect to the set inclusion. Now for any two boosters (a)+, (b)+ of L,
define the operations ∩ and ⊔ as (a)+∩(b)+ = (a∨b)+ and (a)+⊔(b)+ = (a∧b)+.
Clearly, (a∨ b)+ is the infimum of both (a)+ and (b)+ in B0(L). Clearly (a∧ b)+

is an upper bound for both (a)+ and (b)+. Suppose (a)+ ⊆ (c)+ and (b)+ ⊆ (c)+

for some c ∈ L. Let x ∈ (a∧b)+. Then x∨(a∧b)∗ is maximal and hence x∨a∗∨b∗

is a maximal. That implies x ∨ a∗ ∈ (b)+ ⊆ (c)+. So that x∨ a∗ ∨ c∗ is maximal.
Therefore x ∨ c∗ ∈ (a)+ ⊆ (c)+ and hence x ∨ c∗ is maximal. Thus x ∈ (c)+.
Therefore (a ∧ b)+ is the supremum for both (a)+ and (b)+ in B0(L). Hence
(B0(L),∩,⊔,M,L) is a bounded lattice. By the extension of the property (7) of
Lemma 3.2 (B0(L),∩,⊔,M,L) is a complete lattice. It can be easily obtained
that (B0(L),∩,⊔,M,L) is a complete distributive lattice.

The following corollary is a direct consequence of the above theorem.

Corollary 3.4. A stone ADL L is dual homomorphic to its lattice B0(L) of

boosters. Moreover, L has a greatest (smallest) element if and only if B0(L) has
a smallest (greatest) element.
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Now, we have the following two notations.

(1) For any filter F of L, define an operator β as β(F ) = {(x)+ | x ∈ F}.

(2) For any ideal I of B0(L), define an operator
←−
β as

←−
β (I) = {x ∈ L | (x)+ ∈ I}.

Lemma 3.5. Let L be a stone ADL with maximal elements. Then we have the

following:

(1) For any filter F of L, β(F ) is an ideal of B0(L).

(2) For any ideal I of B0(L),
←−
β (I) is a filter of L.

(3) For any filters F,G of L, F ⊆ G⇒ β(F ) ⊆ β(G).

(4) For any ideals I, J of L, I ⊆ J ⇒
←−
β (I) ⊆

←−
β (J).

Proof. (1) Let F be a filter of L and m be any maximal element of L. Since
m ∈ F, we get (m)+ ∈ β(F ) and hence β(F ) 6= ∅. Let (x)+, (y)+ ∈ β(F ). Now,
(x)+ ⊔ (y)+ = (x ∧ y)+ ∈ β(F ). Again, let (x)+ ∈ β(F ) and (r)+ ∈ B0(L). Then
(x)+ ∩ (r)+ = (x ∨ r)+ ∈ β(F ). Therefore β(F ) is an ideal in B0(L).

(2) Let I be an ideal of B0(L) and m be any maximal element of L. Since

(m)+ ∈ I, we get m ∈
←−
β (I). Then

←−
β (I) 6= ∅. Let x, y ∈

←−
β (I). Then (x)+, (y)+ ∈

I. Hence (x ∧ y)+ = (x)+ ⊔ (y)+ ∈ I. Thus x ∧ y ∈
←−
β (I). Again, let x ∈

←−
β (I)

and r ∈ L. Then (x)+ ∈ I and (r)+ ∈ B0(L). Since I is an ideal of B0(L), we get

(x ∨ r)+ = (x)+ ∩ (r)+ ∈ I. Hence x ∨ r ∈
←−
β (I). Therefore

←−
β (I) is a filter of L.

(3) Let F,G be two filters of L. Suppose F ⊆ G. We prove that β(F ) ⊆ β(G).
Let (x)+ ∈ β(F ). Then x ∈ F ⊆ G. Hence (x)+ ∈ β(G). Thus β(F ) ⊆ β(G).

(4) Let I, J be two ideals of L such that I ⊆ J. We prove that
←−
β (I) ⊆

←−
β (J).

Let x ∈
←−
β (I). Then (x)+ ∈ I ⊆ J and hence (x)+ ∈ J. Therefore x ∈

←−
β (J).

Thus
←−
β (I) ⊆

←−
β (J).

Proposition 3.1. Let L be a stone ADL. Then the map F 7→
←−
β β(F ) is a closure

operator on the filters of L. i.e.,

(1) F ⊆
←−
β β(F )

(2) F ⊆ G implies
←−
β β(F ) ⊆

←−
β β(G)

(3)
←−
β β{
←−
β β(F )} =

←−
β β(F ) for any filters F,G of L.

Proof. (1) Let x ∈ F. Then we get (x)+ ∈ β(F ). Hence (x)+ = (y)+ for some

y ∈ F. Since β(F ) is an ideal of B0(L), we get that x ∈
←−
β β(F ). Therefore

F ⊆
←−
β β(F ).

(2) Suppose F ⊆ G. Let x ∈
←−
β β(F ). Then (x)+ ∈ β(F ). Hence (x)+ = (y)+

for some y ∈ F ⊆ G. Hence (x)+ = (y)+ ∈ β(G). Since β(G) is an ideal of B0(L),

we get x ∈
←−
β β(G). Therefore

←−
β β(F ) ⊆

←−
β β(G).
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(3) Clearly
←−
β β(F ) ⊆

←−
β β{
←−
β β(F )}. Conversely, let x ∈

←−
β β{
←−
β β(F )}.. Then

(x)+ ∈ β{
←−
β β(F )}. Hence (x)+ = (y)+ for some y ∈

←−
β β(F ). Now y ∈

←−
β β(F )

implies that (x)+ = (y)+ ∈ β(F ). Therefore x ∈
←−
β β(F ).

We prove the following result.

Theorem 3.6. Let L be a stone ADL. Then β is a homomorphism of the set of

filters of L into the set of ideals of B0(L).

Proof. Let F,G be two filters of L. By the condition (3) of Lemma 3.5, we have
that β(F ∩G) ⊆ β(F )∩ β(G). Conversely, let (x)+ ∈ β(F ) ∩ β(G). Then (x)+ =
(f)+ and (x)+ = (g)+ for some f ∈ F and g ∈ G. Now (x)+ = (f)+ ∩ (g)+ =
(f ∨ g)+ ∈ β(F ∩ G). Therefore β(F ) ∩ β(G) ⊆ β(F ∩ G). By condition (3) of
Lemma 3.5, we get that β(F )⊔β(G) ⊆ β(F ∨G). Conversely, let (x)+ ∈ β(F ∨G).
Then (x)+ = (y)+ for some y ∈ F ∨ G. Hence y = f ∧ g, for some f ∈ F and
g ∈ G. Thus (y)+ = (f ∧ g)+ = (f)+ ⊔ (g)+ ∈ β(F ) ⊔ β(G). Implies that
β(F ∨ G) ⊆ β(F ) ⊔ β(G). Therefore β is a homomorphism from the lattice of
filters of L into the lattice of ideals of B0(L).

Corollary 3.7. For any two filters F,G of a stone ADL L, we have
←−
β β(F ∩G) =

←−
β β(F ) ∩

←−
β β(G).

Proof. Let F,G be two filters of L. By the Proposition 3.1, we get
←−
β β(F ∩G) ⊆

←−
β β(F ) ∩

←−
β β(G). Conversely, let x ∈

←−
β β(F ) ∩

←−
β β(G). Then (x)+ ∈ β(F ) ∩

β(G) = β(F ∩G), because of β is a homomorphism. Thus we get x ∈
←−
β β(F ∩G).

Therefore
←−
β β(F ) ∩

←−
β β(G) ⊆

←−
β β(F ∩G).

We have the following definition.

Definition 3.8. A filter F of L is called a β-filter if
←−
β β(F ) = F.

Now we have the following.

Lemma 3.9. Let L be a stone ADL with maximal elements. Then every maximal

filter is a β-filter.

Proof. Let M be a maximal filter of L. By the Proposition 3.1, we have M ⊆
←−
β β(M). Let x ∈

←−
β β(M). Then (x)+ ∈ β(M). Hence (x)+ = (y)+ for some

y ∈ M. We prove that x ∈ M. Suppose x /∈ M. Then M ∨ [x) = L and hence
a∧x = 0, for some a ∈M. That implies a∗∨x∗ = (a∧x)∗ is a maximal element of
L and hence a∗ ∈ (x)+ = (y)+. Therefore a∗ ∨ y∗ is maximal element of L. Now,
a∗∗∧y∗ ≤ a∗∗∧y∗∗ = (a∗∨b∗)∗ = 0. Since a∗∗, y∗∗ ∈M, we get 0 = a∗∗∧y∗∗ ∈M,

which is a contradiction. Hence x ∈ M. Thus
←−
β β(M) ⊆ M. Therefore M is a

β-filter of L.
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Now, in the following theorem, the class of all β-filters of a stone ADL can
be characterized in terms of boosters.

Theorem 3.10. Let L be a stone ADL. Then for filter F of L is a β-filter if and
only if, for any x, y ∈ L, (x)+ = (y)+ and x ∈ F imply that y ∈ F.

Proof. Assume that F is a β-filter of L, i.e.,
←−
β β(F ) = F. Let x, y ∈ L be such

that (x)+ = (y)+. Suppose x ∈ F. Then (y)+ = (x)+ ∈ β(F ). That implies

y ∈
←−
β β(F ) = F. Conversely, assume the condition. Clearly F ⊆

←−
β β(F ). Now,

let x ∈
←−
β β(F ). Then (x)+ ∈ β(F ). Hence (x)+ = (y)+, for some y ∈ F. By the

assumed condition, we get that x ∈ F. Therefore
←−
β β(F ) ⊆ F and hence F is a

β-filter of L.

Theorem 3.11. Let L be a stone ADL with maximal elements. If P is minimal

in the class of all prime filters containing a given β-filter, then P is a β-filter.

Proof. Let F be a β-filter of L and P, minimal in the class of all prime filters
of L such that F ⊆ P. Suppose P is not a β-filter. Then by the Theorem
3.10, there exist elements x, y ∈ L such that (x)+ = (y)+, x ∈ P and y /∈ P.
Consider I = (L \ P ) ∨ (x ∨ y]. Suppose I ∩ F 6= ∅. Then choose a ∈ I ∩ F. That
implies a ∈ I and a ∈ F. Since a ∈ I, we get a = r ∨ s, for some r ∈ L \ P
and s ∈ (x ∨ y]. Now, r ∨ s = r ∨ [(x ∨ y) ∧ s] = (r ∨ x ∨ y) ∧ (r ∨ s). That
implies r ∨ x ∨ y = (r ∨ x ∨ y) ∨ (r ∨ s) ∈ F. Since (x)+ = (y)+, we get that
(r ∨ y)+ = (r ∨ x ∨ y)+. Since F is a β-filter and r ∨ x ∨ y ∈ F, we get that
r ∨ y ∈ F ⊆ P. Hence r ∈ P or y ∈ P, which is a contradiction to y /∈ P and
r /∈ P. Hence I ∩ F = ∅. Thus there exists a prime filter Q such that I ∩Q = ∅
and F ⊆ Q. Since I ∩Q = ∅, we get Q ⊆ P and also x∨ y /∈ Q, x∨ y ∈ P. Hence
Q ⊂ P. Therefore P is not minimal in the class of all prime filters containing F,
which is a contradiction. Therefore P is a β-filter of L.

It can be observed that β-filters are simply the closed elements with respect
to the closure operation of Proposition 1.1. From this proposition, the following
result is an immediate consequence.

Theorem 3.12. Let L be a stone ADL with maximal elements. Then the set

Fβ(L) of all β-filters of L forms a distributive lattice on its own.

We have the following lemma.

Lemma 3.13. Let L be a stone ADL. Then for any ideal I of B0(L), β
←−
β (I) = I.

Proof. Let I be an ideal of B0(L). Let (x)
+ ∈ I. Then x ∈

←−
β (I). Hence (x)+ ∈

β
←−
β (I). Thus I ⊆ β

←−
β (I). Conversely, let (x)+ ∈ β

←−
β (I). Then (x)+ = (y)+ for

some y ∈
←−
β (I). Now y ∈

←−
β (I) implies that (x)+ = (y)+ ∈ I. Hence β

←−
β (I) ⊆ I.

Therefore β
←−
β (I) = I.
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The infimum of a set of β-filters {Ji} is
⋂

Ji, their set-theoretic intersection.

The supremum is
←−
β β(

∨

Ji) where
∨

Ji is their supremum in the lattice of ideals
of L.Now, we prove that the set of β-filters of L is isomorphic to the set of ideals
of B0(L).

Theorem 3.14. Let L be a stone ADL. Then θ is an isomorphism of the set of

β-filters of L onto the set of ideals of B0(L).

Proof. Let θ be the restriction of β to Fβ(L). Then clearly θ is one-to-one. Let I

be an ideal of B0(L). Then
←−
β (I) is a filter of L. By above Lemma,

←−
β β{
←−
β (I)} =

←−
β {β
←−
β (I)} =

←−
β (I). Thus

←−
β (I) is a β-filter of L. Now θ(

←−
β (I)) = β

←−
β (I) = I.

Therefore θ is onto. Let F,G be two β-filters of L. Then clearly θ(F ∩ G) =

β(F ∩G) = β(F )∩β(G) = θ(F )∩θ(G). Again θ{
←−
β β(F ∨G)} = β{

←−
β β(F ∨G)} =

β(F ∨ G) = β(F ) ⊔ β(G) = θ(F ) ⊔ θ(G). Hence θ is an isomorphism of Fβ(L)
onto the lattice of ideals of B0(L).

The following corollary is a direct consequence of the above theorem.

Corollary 3.15. Let L be a stone ADL. Then prime β-filters of L are in corre-

spondence with the prime ideals of B0(L).

Theorem 3.16. Let F be a β-filter and I, an ideal of L with F ∩ I = ∅. There
exists a prime β-filter P of L such that F ⊆ P and P ∩ I = ∅.

Proof. Consider F = {G | G is a β-filter and G ∩ I = ∅}. Clearly f ∈ F and
F satisfies the Zorn’s lemma hypothesis. Then F has a maximal element say
M. Let x, y ∈ L with x ∨ y ∈ M. We prove that either x ∈ M or y ∈ M.

Suppose that x /∈ M and y /∈ M. Then M ⊂ M ∨ [x) ⊆
←−
β β(M ∨ [x)) and

M ⊂ M ∨ [y) ⊆
←−
β β(M ∨ [x)). That implies M ⊂

←−
β β(M ∨ [x)) and M ⊂

←−
β β(M ∨ [y)). Since

←−
β β(M ∨ [x)) and

←−
β β(M ∨ [y)) are β-filters of L, we get that

←−
β β(M ∨ [x))∩ I 6= ∅ and

←−
β β(M ∨ [y))∩ I 6= ∅. Then choose a ∈

←−
β β(M ∨ [x))∩ I

and b ∈
←−
β β(M ∨ [y))∩ I. Therefore a∨b ∈ I and a∨b ∈

←−
β β(M ∨ [x))∩

←−
β β(M ∨

[y)) =
←−
β β((M ∨ [x))∩ (M ∨ [y))) =

←−
β β(M ∨ [x∨ y)) =

←−
β β(M) = M. Therefore

M ∩ I 6= ∅, which is a contradiction. Hence x ∈M or y ∈M. Thus M is a prime
β-filter of L.

Theorem 3.17. Let L be a stone ADL. Then every proper β-filter of L is the

intersection of all prime β-filters containing it.

Proof. Let F be a proper β-filter of L. Consider the following set F0 = ∩{P | P
is a prime β-filter and F ⊆ P}. Clearly, F ⊆ F0. Conversely, let a /∈ F. Take
∑

= {G | G is a β-filter, F ⊆ G, a /∈ G}. Then clearly F ∈
∑

. Clearly
∑

satisfies the hypothesis of Zorn’s lemma. Let M be a maximal element of
∑

. Let
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x, y ∈ L be such that x /∈M and y /∈M. Then M ⊂M ∨ [x) ⊆
←−
β β{M ∨ [x)} and

M ⊂ M ∨ [y) ⊆
←−
β β{M ∨ [y)}. By maximality of M, we get a ∈

←−
β β{M ∨ [x)}

and a ∈
←−
β β{M ∨ [y)}. Hence we get that a ∈

←−
β β{M ∨ [x)} ∩

←−
β β{M ∨ [y)} =

←−
β β{[M∨[x)]∩[M∨[y)]} =

←−
β β{M∨[x∨y)}. If x∨y ∈M, then a ∈

←−
β β(M) = M,

which is a contradiction. Thus M is a prime β-filter such that a /∈M. Therefore
a /∈ F0 and hence F = F0. Thus every proper β-filter of L is the intersection of
all prime β-filters containing it.

Let (L,∨,∧, 0) be an ADL with 0. Let a, b ∈ L such that a ≤ b. Then the
set [a, b] = {x ∈ L | a ≤ x ≤ b} is called an interval in L. Clearly, every interval
in an ADL L is a bounded distributive lattice under the induced operations ∨
and ∧. An ADL L is said to be relatively complemented if for any a, b ∈ L with
a ≤ b, the interval [a, b] is a complemented lattice (hence a Boolean algebra).
Note that the discrete ADL (Example 2.2) is a relatively complemented ADL.
Every relatively complemented ADL is an associative ADL. It is easy to verify
that an ADL L is not relatively complemented, then there exists two distinct
prime ideals in L, one of which contains the other.

In general, every maximal filter of an ADL is a prime filter, but not the
converse. In the following, we derive a necessary and sufficient condition for
every prime filter to become a maximal filter.

Theorem 3.18. Let L be an ADL. Then L is relatively complemented if and

only if each prime filter is a maximal filter.

Proof. Assume that L is relatively complemented. Let P be a prime filter in L.
Suppose P ⊂ Q, where Q is also a filter of L. We now show that Q = L. Let
y ∈ L. Choose x ∈ Q such that x /∈ P and t ∈ P . Now we have 0 < x < x∨ y ∨ t.
Since R is relatively complemented, there exists z ∈ L such that

x ∧ z = 0 and x ∨ z = x ∨ y ∨ t.

Now
t ∈ P ⇒ x ∨ y ∨ t ∈ P (∵ P is a filter )

⇒ x ∨ z ∈ P
⇒ x ∈ P or z ∈ P (∵ P is prime )
⇒ z ∈ P (∵ x /∈ P )
⇒ z ∈ Q (∵ P ⊂ Q )
⇒ x ∧ z ∈ Q (∵ x, z ∈ Q )
⇒ 0 ∈ Q (∵ x ∧ z = 0 ).

Hence Q = L.

Therefore P is a maximal filter of L.

Conversely, assume that every prime filter of L is a maximal filter. Suppose
L is not relatively complemented. Then there exists two distinct prime ideals,



β-prime spectrum of stone Almost Distributive Lattices 323

say P,Q such that P ⊂ Q. Then L−P and L−Q are two prime filters in L such
that L−Q ⊂ L− P . Which is a contradiction to the hypothesis. Hence L must
be relatively complemented.

We derive a set of equivalent conditions for the lattice B0(L) to become
relatively complemented.

Theorem 3.19. Let L be a stone ADL. Then the following conditions are equiv-

alent:

(1) B0(L) is relatively complemented

(2) every prime β-filter is a maximal filter

(3) every prime β-filter is minimal.

Proof. (1) ⇒ (2) Assume that B0(L) is relatively complemented. Then every
prime ideal of B0(L) is maximal. Hence every prime ideal of B0(L) is minimal.
Then by Corollaries 3.4 and 3.15, every prime β-filter of L is maximal β-filter
and hence a maximal filter.

(2) ⇒ (3) Assume that every prime β-filter of L is a maximal filter. Since
every maximal filter is a prime β-filter, we get that every prime β-filter is a
minimal prime β-filter.

(3) ⇒ (1) Assume that every prime β-filter of L is minimal. Then by Corol-
laries 3.4 and 3.15, we get that every prime ideal of B0(L) is maximal and hence
B0(L) is relatively complemented.

The following is a direct consequence of the above Theorems 3.6 and 3.19.

Corollary 3.20. If B0(L) is relatively complemented, the each β-filter of L is an

intersection of all maximal filters.

4. The space of prime β-filters

In this section, we have discussed some topological concepts on the collection of
prime β-filters of a stone ADL.

Let SpecβF
(L) be the set of all prime β-filters of a stone ADL L. For any

A ⊆ L, let K(A) = {P ∈ SpecβF
(L) | A * P} and for any x ∈ L; K(x) =

K({x}). For any two subsets A and B of L, it is obvious that A ⊆ B implies
K(A) ⊆ K(B).
The following observations can be verified directly.

Lemma 4.1. For any x, y ∈ L, the following conditions holds.

(1)
⋃

x∈LK(x) = SpecβF
(L)
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(2) K(x) ∩K(y) = K(x ∨ y)

(3) K(x) ∪K(y) = K(x ∧ y)

(4) K(x) = ∅ ⇔ x is maximal.

From the above Lemma, it can be easily observed that the collection
{K(x) | x ∈ L} forms a base for a topology on SpecβF

(L) which is called a
hull-kernel topology.

Theorem 4.2. For any filter F of L, K(F ) = K(
←−
β β(F )).

Proof. Clearly we get that K(F ) ⊆ K(
←−
β β(F )). Let P ∈ K(

←−
β β(F )). Then

←−
β β(F ) * P. Therefore we can choose an element x ∈

←−
β β(F ) such that x /∈ P.

Since x ∈
←−
β β(F ), we have (x)+ ∈ β(F ) and hence (x)+ = (y)+, for some

y ∈ F. Suppose F ⊆ P. Then y ∈ P. Since P is a β-filter of L, we get that
x ∈ P, which is a contradiction. Therefore F * P and hence P ∈ K(F ). Thus

K(
←−
β β(F )) ⊆ K(F ).

In the following theorem, the compact open sets of SpecβF
(L) are character-

ized.

Theorem 4.3. For any stone ADL, the set of all compact open sets of SpecβF
(L)

is the base {K(x) | x ∈ L}.

Proof. Let x ∈ L with K(x) ⊆
⋃

i∈∆K(xi). Let F be a filter generated by

{xi | i ∈ ∆}. Suppose x /∈
←−
β β(F ). Since

←−
β β(F ) is a β-filter of L, there exists

a prime β-filter P of L such that x /∈ P and
←−
β β(F ) ⊆ P. Since x /∈ P, we get

that P ∈ K(x) ⊆
⋃

i∈∆ K(xi). That implies xi /∈ P, for some i ∈ ∆, which is

a contradiction to that F ⊆
←−
β β(F ) ⊆ P. Therefore x ∈

←−
β β(F ). That implies

(x)+ ∈ β(F ) and hence (x)+ = (y)+, for some y ∈ F. Since F is a filter generated
by {xi | i ∈ ∆}, we get that y = x1 ∧ x2 ∧ · · · ∧ xn, for some x1, x2, . . . , xn ∈
{xi | i ∈ ∆}. That implies (y)+ = (x1 ∧ x2 ∧ · · · ∧ xn)

+. Let P ∈ K(x). Then
x /∈ P. Suppose P /∈

⋃

i∈∆K(xi). Then xi ∈ P, for all i = 1, 2, . . . , n and hence
x1 ∧ x2 ∧ · · · ∧ xn ∈ P. That implies y ∈ P, which is a contradiction. Therefore
P ∈

⋃

i∈∆K(xi) and hence K(x) ⊆
⋃n

i=1K(xi). Thus K(x) is a compact space.
It is enough to show that every compact open subset of SpecβF

(L) is of the form
K(x). for some x ∈ L. Let C be a compact open subset of SpecβF

(L). Since
C is open, we get that C =

⋃

a∈A K(a), for some A ⊆ L. Since C is compact,
there exist a1, a2, . . . , an ∈ A such that C =

⋃n
i=1 K(ai) = K(

∧n
i=1 ai). Therefore

C = K(x), for some x ∈ L.

Corollary 4.4. Let L be a stone ADL. Then SpecβF
(L) is a compact space.
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Theorem 4.5. Let L be a stone ADL. Then the following are equivalent:

(1) SpecβF
(L) is T1-space

(2) every prime β-filter is maximal

(3) every prime β-filter is minimal

(4) SpecβF
(L) is Haudorff space.

Proof. (1)⇒ (2) Assume that SpecβF
(L) is T1-space. Let P be a prime β-filter

of L. Suppose Q is any prime β-filter of L with P $ Q. Since SpecβF
(L) is T1-

space, there exist basic open sets K(x) and K(y) such that P ∈ K(x)\K(y) and
Q ∈ K(y) \K(x). Since P /∈ K(y), we get that y ∈ P $ Q. Therefore Q /∈ K(y),
which is a contradiction. Hence P is maximal.

(2)⇒ (3) It is obvious.

(3)⇒ (1) Assume that every prime β-filter is minimal. Let P,Q ∈ SpecβF
(L)

with P 6= Q. Since P and Q are minimal, it is clear that P * Q and Q * P.
Then there exist x, y ∈ L such that x ∈ P \ Q and y ∈ Q \ P. That implies
P ∈ K(y) \K(x) and Q ∈ K(x) \K(y). Therefore SpecβF

(L) is T1-space.

(2)⇒ (4) Assume that every prime β-filter is maximal. Let P,Q ∈ SpecβF
(L)

with P 6= Q. Choose an element a ∈ P such that a /∈ Q. By our assumption, P
is maximal filter of L. Since a ∈ P, then there c /∈ P such that a ∨ c is maximal
element. So that Q ∈ K(a) and P ∈ K(c). Now K(a) ∩K(c) = K(a ∨ c) = ∅,
since a ∨ c is maximal.

(4)⇒ (1) Clear.
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