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1. Introduction

A natural number n is said to be a balancing number if it is the solution of a simple
Diophantine equation 1+2+· · ·+(n−1) = (n+1)+(n+2)+· · ·+(n+l), where l is
a balancer corresponding to n [1]. Let {Bn}n≥0 be the balancing sequence and is
recursively defined as B0 = 0, B1 = 1 and Bn = 6Bn−1−Bn−2 for n ≥ 2. For any
balancing number Bn, the positive square roots of 8B2

n + 1 generate a sequence
called as Lucas-balancing sequence {Cn}n≥0. Lucas-balancing sequence satisfies
the same recurrence as that of balancing sequence but with different initials, that
is, Cn = 6Cn−1 − Cn−2 for n ≥ 2 with C0 = 1 and C1 = 3 [8].

Many researchers studied the partial infinite sums of reciprocal Fibonacci
and other related numbers. Ohtsuka and Nakamura [7] studied the partial infinite
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sums of reciprocal Fibonacci numbers and derived the following results, where
⌊.⌋ denotes the floor function. For all n ≥ 2,

⌊(

∞
∑

k=n

1

Fk

)−1⌋

=

{

Fn−2, if n is even;
Fn−2 − 1, if n is odd

and for all n ≥ 1,

⌊(

∞
∑

k=n

1

F 2
k

)−1⌋

=

{

FnFn−1 − 1, if n is even;
FnFn−1, if n is odd.

Later, Holiday and Komatsu [3] established several identities for generalized Fi-
bonacci numbers Gn defined by Gn = aGn−1 +Gn−2 for n ≥ 2 with (G0, G1) =
(0, 1). Recently, Wang and Wen [9] strengthened the above results to the finite
case and deduced the following identities. For all m ≥ 3 and n ≥ 2,

⌊(

mn
∑

k=n

1

Fk

)−1⌋

=

{

Fn−2, if n is even;
Fn−2 − 1, if n is odd

and for all m ≥ 2 and n ≥ 1,

⌊(

mn
∑

k=n

1

F 2
k

)−1⌋

=

{

FnFn−1 − 1, if n is even;
FnFn−1, if n is odd.

Several authors studied the bounds for partial infinite and finite reciprocal sums
involving terms from Fibonacci sequence, Pell sequence (e.g., see [2, 4, 6, 10–13]).
More recently, Komatsu and Panda [5] studied the partial infinite alternating
sums of reciprocal of balancing numbers and derived some identities involving
these sums. Among other results they have deduced the following result. For
n ≥ 1,

⌊(

∞
∑

k=n

(−1)k

Bk

)−1⌋

=

{

Bn +Bn−1, if n is even;
−(Bn +Bn−1 + 1), if n is odd.

In the present study, we consider the partial finite alternating sums of reciprocals
of balancing numbers, squared balancing numbers, even-indexed balancing num-
bers, odd-indexed balancing numbers, product of consecutive balancing numbers
etc. We derive some identities relating to these sums that enhances the results
of Komatsu and Panda [5].
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2. Auxiliary Results

In this section, we discuss some well known results which are used to prove our
main theorems.

The following results are found in [8].

Lemma 1. For every positive integer n ≥ 1, B2
n −Bn−1Bn+1 = 1.

Lemma 2. For every positive integers m and n, Bm+n = BmBn+1 −Bm−1Bn.

Using the above results, we deduce the following lemmas.

Lemma 3. For any even positive integer n ≥ 2, f1(n) + f1(n + 1) + f1(2n) +
1

B2n+1+B2n−1 > 0, where f1(n) =
1

Bn+Bn−1−1 −
(−1)n

Bn
− 1

Bn+1+Bn−1 .

Proof. Let

f1(n) =
1

Bn +Bn−1 − 1
−

(−1)n

Bn

−
1

Bn+1 +Bn − 1
.

For even n, f1(n) is negative. Now,

f1(n) + f1(n+ 1) + f1(2n) +
1

B2n+1 +B2n − 1

=
1

Bn +Bn−1 − 1
−

1

Bn

+
1

Bn+1
−

1

Bn+2 +Bn+1 − 1
+

1

B2n +B2n−1 − 1
−

1

B2n

>
1

Bn +Bn−1 − 1
−

1

Bn

+
1

Bn+1
−

1

Bn+2 +Bn+1 − 1
−

1

B2n

=
(Bn+2 +Bn+1Bn+2 +Bn)− (Bn+1 +BnBn−1 +Bn−1)

(B2
n +BnBn−1 −Bn)(B2

n+1 +Bn+1Bn+2 −Bn+1)
−

1

B2n
.

By virtue of Lemmas 1 and 2, it can be easily checked that

B2n((Bn+2 +Bn+1Bn+2 +Bn)− (Bn+1 +BnBn−1 +Bn−1))

> (B2
n +BnBn−1 −Bn)(B

2
n+1 +Bn+1Bn+2 −Bn+1).

Therefore,

f1(n) + f1(n+ 1) + f1(2n) +
1

B2n+1 +B2n − 1
> 0.

This completes the proof.

Lemma 4. For any integer m ≥ 2 and odd positive integer n, f1(n)+f1(n+1)−
1

Bmn+1+Bmn+1 > 0, where f1(n) =
−1

Bn+Bn−1+1 −
(−1)n

Bn
+ 1

Bn+1+Bn+1 .
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Proof. Let

f1(n) =
−1

Bn +Bn−1 + 1
−

(−1)n

Bn

+
1

Bn+1 +Bn + 1
.

For odd n, f1(n) is positive and hence f1(n) + f1(n + 1) is positive. In order to
show the result, it suffices to prove that

f1(n) + f1(n+ 1) >
1

B2n+1 +B2n + 1
.

Now,

f1(n) + f1(n+ 1)−
1

B2n+1 +B2n + 1

=
−1

Bn +Bn−1 + 1
+

1

Bn

+
1

Bn+2 +Bn+1 + 1
−

1

Bn+1
−

1

B2n+1 +B2n + 1

=
Bn+1Bn+2 +Bn+1 +Bn−1 − (Bn+2 +BnBn−1 +Bn)

BnBn+1(Bn +Bn−1 + 1)(Bn+2 +Bn+1 + 1)
−

1

B2n+1 +B2n + 1
.

Using Lemmas 1 and 2, the above identity simplifies f1(n)+f1(n+1)− 1
B2n+1+B2n+1

> 0. This ends the proof.

Lemma 5. For any integer m ≥ 2 and odd positive integer n, f2(n)+f2(n+1)+

f2(mn) < 0, where f2(n) =
−1

Bn+Bn−1
− (−1)n

Bn
+ 1

Bn+1+Bn
.

Proof. Let

f2(n) =
−1

Bn +Bn−1
−

(−1)n

Bn

+
1

Bn+1 +Bn

.

For odd n, f2(n) is positive and hence

f2(n) + f2(n+ 1) =
Bn−1 −Bn+2

BnBn+1(Bn +Bn−1)(Bn+2 +Bn+1)
,

which is negative. For m ≥ 2 and odd n, two cases arise. For mn is even, f2(mn)
negative. Thus, it is clear that f2(n) + f2(n + 1) + f2(mn) < 0 for even mn. If
mn is odd, m must be odd and greater than 2 and therefore

f2(mn) =
−1

Bmn +Bmn−1
+

1

Bmn

+
1

Bmn+1 +Bmn

<
1

B3n
.

By virtue of Lemmas 1 and 2, it can be easily checked that

B3n(Bn+2 −Bn−1) > BnBn+1(Bn +Bn−1)(Bn+2 +Bn+1).
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Therefore,

f2(n) + f2(n+ 1) + f2(mn)

<
Bn−1 −Bn+2

BnBn+1(Bn +Bn−1)(Bn+2 +Bn+1)
+

1

B3n

=
B3n(Bn−1 −Bn+2) +BnBn+1(Bn +Bn−1)(Bn+2 +Bn+1)

BnBn+1B3n(Bn +Bn−1)(Bn+2 +Bn+1)
< 0.

This finishes the proof.

3. Main Results

Now, we are in a position to derive our main results.

Theorem 6. If any integer n ≥ 2 is even, then

⌊

(

∑2n
k=n

(−1)k

Bk

)−1
⌋

= Bn +

Bn−1 − 1.

Proof. For any positive integer k, consider

(3.1) f1(k) =
1

Bk +Bk−1 − 1
−

(−1)k

Bk

−
1

Bk+1 +Bk − 1
.

For even k, it is clear that f1(k) is negative and therefore

f1(k) + f1(k + 1) =

(

1

Bk +Bk−1 − 1
−

1

Bk

)

+

(

1

Bk+1
−

1

Bk+2 +Bk+1 − 1

)

=
1−Bk−1

Bk(Bk − (1−Bk−1))
−

1−Bk+2

Bk+1(Bk+1 − (1−Bk+2))

=
1

Bk

(

Bk

1−Bk−1
− 1
) −

1

Bk+1(
Bk+1

1−Bk+2
− 1)

=
1

(

Bk+1Bk−1+1
1−Bk−1

−Bk

) −
1

(

Bk+2Bk+1
1−Bk+2

−Bk+1

)

=
−1

Bk+1 +Bk +
(

Bk+1+1
Bk−1−1

) +
1

Bk+1 +Bk +
(

Bk+1
Bk+2−1

)

> 0.
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Taking summation over k from n to 2n in (3.1), we get

2n
∑

k=n

(−1)k

Bk

=

2n
∑

k=n

(

1

Bk +Bk−1 − 1
−

1

Bk+1 +Bk − 1

)

−

2n
∑

k=n

f1(k)

=
1

Bn +Bn−1 − 1
−

[

1

B2n+1 +B2n − 1
+ f1(n) + f1(n + 1) + f1(2n)

]

−
2n−1
∑

k=n+2

f1(k).

Since
∑2n−1

k=n+2 f1(k) > 0 and from Lemma 3, we have,

2n
∑

k=n

(−1)k

Bk

<
1

Bn +Bn−1 − 1
.

On the other hand, consider f2(k) = 1
Bk+Bk−1

− (−1)k

Bk

− 1
Bk+1+Bk

. For even k,

f2(k) is negative. One can observe that f2(k) + f2(k + 1) < 0. Hence

2n
∑

k=n

(−1)k

Bk

=
1

Bn +Bn−1
−

1

B2n+1 +B2n
−

2n
∑

k=n

f2(k)

=
1

Bn +Bn−1
−

[

1

B2n+1 +B2n
+ f2(2n)

]

−

2n−1
∑

k=n

f2(k) >
1

Bn +Bn−1
,

the result follows.

Theorem 7. For any odd positive integer n and any integer m ≥ 2,
⌊

(

∑

mn

k=n

(−1)k

Bk

)−1
⌋

= − (Bn +Bn−1 + 1) .

Proof. In order to prove the theorem, it suffices to show that
∑

mn

k=n

(−1)k

Bk
<

−1
Bn+Bn−1+1 and

∑

mn

k=n

(−1)k

Bk

> −1
Bn+Bn−1

. Consider

(3.2) f1(k) =
−1

Bk +Bk−1 + 1
−

(−1)k

Bk

+
1

Bk+1 +Bk + 1
,

and

(3.3) f2(k) =
−1

Bk +Bk−1
−

(−1)k

Bk

+
1

Bk+1 +Bk

.

For odd k, both f1(k) and f2(k) are positive. It is checked that f1(k)+f1(k+1) is
positive for any odd positive integer k. Similarly, one can check that f2(k)+f2(k+
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1) is negative. Therefore, from the above results, we conclude
∑mn(even)

k=n
f1(k) > 0

and
∑mn(even)

k=n
f2(k) < 0. Summing (3.2) over k from n to mn,

mn
∑

k=n

(−1)k

Bk

=

mn
∑

k=n

(

−1

Bk +Bk−1 + 1
+

1

Bk+1 +Bk + 1

)

−

mn
∑

k=n

f1(k)

=
−1

Bn +Bn−1 + 1
+

1

Bmn+1 +Bmn + 1
−

mn
∑

k=n

f1(k).

The following cases arise. When mn is odd,

mn
∑

k=n

(−1)k

Bk

=
−1

Bn +Bn−1 + 1
+

1

Bmn+1 +Bmn + 1
− f1(mn)−

mn−1
∑

k=n

f1(k)

=
−1

Bn +Bn−1 + 1
−

Bmn−1 + 1

Bmn(Bmn +Bmn−1 + 1
)−

mn−1
∑

k=n

f1(k).

Since
∑

mn−1
k=n

f1(k) > 0, then
∑

mn

k=n

(−1)k

Bk

< −1
Bn+Bn−1+1 . Now, for even mn,

mn
∑

k=n

(−1)k

Bk

=
−1

Bn +Bn−1 + 1
+

1

Bmn+1 +Bmn + 1
− f1(n)− f1(n+ 1)−

mn
∑

k=n+2

f1(k)

=
−1

Bn +Bn−1 + 1
−

mn
∑

k=n+2

f1(k)−

[

f1(n) + f1(n+ 1)−
1

Bmn+1 +Bmn + 1

]

.

Since
∑

mn

k=n+2 f1(k) > 0 and using Lemma 4, we conclude

mn
∑

k=n

(−1)k

Bk

<
−1

Bn +Bn−1 + 1
.

On the other hand, taking summation over k from n to mn in (3.3), we obtain

mn
∑

k=n

(−1)k

Bk

=

mn
∑

k=n

(

−1

Bk +Bk−1
+

1

Bk+1 +Bk

)

−

mn
∑

k=n

f2(k)

=
−1

Bn +Bn−1
+

1

Bmn+1 +Bmn

−
mn
∑

k=n

f2(k).
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If mn is even, then
∑mn(even)

k=n
f2(k) < 0 and therefore

mn
∑

k=n

(−1)k

Bk

=
−1

Bn +Bn−1
+

1

Bmn+1 +Bmn

−

mn
∑

k=n

f2(k)

>
−1

Bn +Bn−1
.

As
∑

mn−1
k=n+2 f2(k) < 0 and from Lemma 5,

mn
∑

k=n

(−1)k

Bk

=
−1

Bn +Bn−1
+

1

Bmn+1 +Bmn

−

mn
∑

k=n

f2(k)

=
−1

Bn +Bn−1
+

1

Bmn+1 +Bmn

−
[

f2(n) + f2(n+ 1) + f2(mn)
]

−
mn−1
∑

k=n+2

f2(k) >
−1

Bn +Bn−1
.

This completes the proof of the theorem.

Theorem 8. For any even positive integer n and any integer m ≥ 3,
⌊ (

∑

mn

k=n

(−1)k

Bk

)−1 ⌋

= Bn +Bn−1.

Proof. In order to show the above the result, it is sufficient to prove that
∑

mn

k=n

(−1)k

Bk
< 1

Bn+Bn−1
and

∑

mn

k=n

(−1)k

Bk
> 1

Bn+Bn−1+1 . Consider

(3.4) g1(k) =
1

Bk +Bk−1
−

(−1)k

Bk

−
1

Bk+1 +Bk

.

For even k, g1(k) < 0 and g1(k)+g1(k+1) is positive which can be easily checked.
Taking summation over k from n to mn in (3.4), we have

mn
∑

k=n

(−1)k

Bk

=

mn
∑

k=n

( 1

Bk +Bk−1
−

1

Bk+1 +Bk

)

−

mn
∑

k=n

g1(k)

=
1

Bn +Bn−1
−

1

Bmn+1 +Bmn

−

mn
∑

k=n

g1(k).

If mn is odd, then
∑

mn

k=n
g1(k) > 0 and therefore

∑

mn

k=n

(−1)k

Bk
< 1

Bn+Bn−1
. For

even mn,
∑

mn−1
k=n

g1(k) > 0 and hence
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mn
∑

k=n

(−1)k

Bk

=
1

Bn +Bn−1
−

1

Bmn+1 +Bmn

−

mn−1
∑

k=n+2

g1(k) − (g1(n) + g1(n+ 1) + g1(mn))

=
1

Bn +Bn−1
−

mn−1
∑

k=n+2

g1(k) −

(

g1(n) + g1(n+ 1) + g1(mn) +
1

Bmn+1 +Bmn

)

.

One can observe that g1(n)+g1(n+1)+g1(mn)+ 1
Bmn+1+Bmn

> 0 and therefore,
∑

mn

k=n

(−1)k

Bk
< 1

Bn+Bn−1
. Let

(3.5) g2(k) =
1

Bk +Bk−1 + 1
−

(−1)k

Bk

−
1

Bk+1 +Bk + 1
.

For even k, g2(k) and g2(k) + g2(k+1) are negative. Summing (3.5) over k from
n to mn, we obtain

mn
∑

k=n

(−1)k

Bk

=

mn
∑

k=n

( 1

Bk +Bk−1 + 1
−

1

Bk+1 +Bk + 1

)

−

mn
∑

k=n

g2(k)

=
1

Bn +Bn−1 + 1
−
( 1

Bmn+1 +Bmn + 1
+ g2(mn)

)

−

mn−1
∑

k=n

g2(k)

=
1

Bn +Bn−1 + 1
−
( 1

Bmn +Bmn−1 + 1
−

1

Bmn

)

−

mn−1
∑

k=n

g2(k).

Since
∑

mn−1
k=n

g2(k) < 0, it follows that
∑

mn

k=n

(−1)k

Bk
> 1

Bn+Bn−1+1 . This ends the
proof of the theorem.

Theorem 9. For any even positive integer n and any integer m ≥ 2,
⌊(

∑

mn

k=n

(−1)k

B2
k

)−1⌋

= B2
n +B2

n−1.

Proof. Consider g1(k) =
1

B2
k
+B2

k−1

− (−1)k

B2
k

− 1
B2

k+1
+B2

k

. For even k, g1(k) < 0 and

it can be observed that g1(k) + g1(k + 1) > 0. With the help of (3.4),

mn
∑

k=n

(−1)k

B2
k

=
mn
∑

k=n

(

1

B2
k
+B2

k−1

−
1

B2
k+1 +B2

k

)

−
mn
∑

k=n

g1(k) =
1

B2
n +B2

n−1

−
mn−1
∑

k=n+2

g1(k)−

[

g1(n) + g1(n+ 1) + g1(mn) +
1

B2
mn+1 +B2

mn

]

.
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It is observed that g1(n)+g1(n+1)+g1(mn)+ 1
B2

mn+1
+B2

mn

> 0 and
∑

mn−1
k=n+2 g1(k)

> 0. Therefore,

(3.6)

mn
∑

k=n

(−1)k

B2
k

<
1

B2
n +B2

n−1

.

On the other hand, consider g2(k) =
1

B2
k
+B2

k−1
+1

− (−1)k

B2
k

− 1
B2

k+1
+B2

k
+1

. For even

k, both g2(k) and g2(k) + g2(k + 1) are negative. Therefore,

mn
∑

k=n

(−1)k

B2
k

=

mn
∑

k=n

(

1

B2
k
+B2

k−1 + 1
−

1

B2
k+1 +B2

k
+ 1

)

−

mn
∑

k=n

g2(k)

=
1

B2
n +B2

n−1 + 1
−

mn−1
∑

k=n

g2(k) −

(

g2(mn) +
1

B2
mn+1 +B2

mn + 1

)

.

As
∑

mn−1
k=n

g2(k) < 0 and g2(mn) + 1
B2

mn+1
+B2

mn+1
< 0,

(3.7)

mn
∑

k=n

(−1)k

B2
k

>
1

B2
n +B2

n−1 + 1
.

The result follows from (3.6) and(3.7).

Theorem 10. For any positive odd integer n and any integer m ≥ 2,
⌊(

mn
∑

k=n

(−1)k

B2
k

)−1 ⌋

= −(B2
n +B2

n−1 + 1).

Proof. In order to prove the result, it is sufficient to show that
∑

mn

k=n

(−1)k

B2
k

<

−1
B2

n+B2
n−1

+1
and

∑

mn

k=n

(−1)k

B2
k

> −1
B2

n+B2
n−1

. Consider

(3.8) s1(k) =
−1

B2
k
+B2

k−1 + 1
−

(−1)k

B2
k

+
1

B2
k+1 +B2

k
+ 1

,

and

(3.9) s2(k) =
−1

B2
k
+B2

k−1

−
(−1)k

B2
k

+
1

B2
k+1 +B2

k

.

For any odd positive integer k, s1(k) and s2(k) are positive. It can be easily
checked that s1(k) + s1(k+1) > 0 and s2(k) + s2(k+1) < 0 for any odd positive
integer k. Therefore,

mn(even)
∑

k=n

s1(k) > 0 and

mn(even)
∑

k=n

s2(k) < 0.
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Taking summation over k from n to mn in (3.8),

mn
∑

k=n

(−1)k

B2
k

=
mn
∑

k=n

( −1

B2
k
+B2

k−1 + 1
+

1

B2
k+1 +B2

k
+ 1

)

−
mn
∑

k=n

s1(k)

=
−1

B2
n +B2

n−1 + 1
+

1

B2
mn+1 +B2

mn + 1
−

mn
∑

k=n

s1(k).

For odd mn, we write

mn
∑

k=n

(−1)k

B2
k

=
−1

B2
n +B2

n−1 + 1
+

1

B2
mn+1 +B2

mn + 1
− s1(mn)−

mn−1
∑

k=n

s1(k)

=
−1

B2
n +B2

n−1 + 1
−

B2
mn−1 + 1

B2
mn(B

2
mn +B2

mn−1 + 1)
−

mn−1
∑

k=n

s1(k).

Since
∑

mn−1
k=n

s1(k) > 0, from the above identity, it follows that
∑

mn

k=n

(−1)k

B2
k

<

−1
B2

n+B2
n−1

+1
. When mn is even, we can write

mn
∑

k=n

(−1)k

B2
k

=
−1

B2
n+B2

n−1+1
+

1

B2
mn+1+B2

mn+1
− s1(n)− s1(n+ 1)−

mn
∑

k=n+2

s1(k)

=
−1

B2
n +B2

n−1 + 1
−

mn
∑

k=n+2

s1(k)

−

[

s1(n) + s1(n+ 1)−
1

B2
mn+1 +B2

mn + 1

]

.

It can be easily checked that s1(n) + s1(n+ 1)− 1
B2

mn+1
+B2

mn+1
> 0 and

∑

mn

k=n+2 s1(k) > 0. Therefore,

mn
∑

k=n

(−1)k

B2
k

<
−1

B2
n +B2

n−1 + 1
,

which completes the first part of the theorem. On the other hand, taking sum-
mation over k from n to mn in (3.9), we get

mn
∑

k=n

(−1)k

B2
k

=

mn
∑

k=n

(

−1

B2
k
+B2

k−1

+
1

B2
k+1 +B2

k

)

−

mn
∑

k=n

s2(k)

=
−1

B2
n +B2

n−1

+
1

B2
mn+1 +B2

mn

−
mn
∑

k=n

s2(k).



212 U.K. Dutta and P.K. Ray

Since
∑

mn

k=n
s2(k) < 0 for even mn and therefore

mn
∑

k=n

(−1)k

B2
k

=
−1

B2
n +B2

n−1

+
1

B2
mn+1 +B2

mn

−

mn
∑

k=n

s2(k) >
−1

B2
n +B2

n−1

.

For odd mn, we proceed as follows.

mn
∑

k=n

(−1)k

B2
k

=
−1

B2
n +B2

n−1

+
1

B2
mn+1 +B2

mn

−

mn
∑

k=n

s2(k) =
−1

B2
n +B2

n−1

+
1

B2
mn+1 +B2

mn

−
[

s2(n) + s2(n+ 1) + s2(mn)
]

−
mn−1
∑

k=n+2

s2(k).

It can be easily checked that s2(n)+s2(n+1)+s2(mn) < 0 and
∑

mn−1
k=n+2 s2(k) < 0.

Therefore,
mn
∑

k=n

(−1)k

B2
k

>
−1

B2
n +B2

n−1

.

This finishes the proof.

The following results deal with the finite alternating sums of reciprocals of
even and odd-indexed balancing numbers. The proofs are analogous to Theorems
7 and 8.

Theorem 11. For any positive integer m ≥ 2 and any even integer n ≥ 2,

⌊(

mn
∑

k=n

(−1)k

B2k

)−1 ⌋

= B2n +B2n−2.

Theorem 12. For any odd positive integer n and any integer m ≥ 2,

⌊(

mn
∑

k=n

(−1)k

B2k

)−1 ⌋

= −(B2n +B2n−2 + 1).

Theorem 13. For any even positive integer n and any integer m ≥ 2,

⌊(

mn
∑

k=n

(−1)k

B2k+1

)−1 ⌋

=

{

B2n+1 +B2n−1 − 1, if m = 2 ;
B2n+1 +B2n−1, if m ≥ 3.

Theorem 14. For any odd positive integer n and any integer m ≥ 2,,

⌊(

mn
∑

k=n

(−1)k

B2k+1

)−1 ⌋

= −(B2n+1 +B2n−1 + 1).
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The following result concerns with the finite alternating sums of reciprocals
of product of two consecutive balancing numbers.

Theorem 15. For any positive integers n ≥ 1 and m ≥ 2,

⌊(

mn
∑

k=n

(−1)k

BkBk+1

)−1⌋

=

{

Bn−1Bn +BnBn+1, if n is even ;
−(Bn−1Bn +BnBn+1 + 1), if n is odd.

Proof. Consider

(3.10) S1(k) =
1

Bk−1Bk +BkBk+1
−

(−1)k

BkBk+1
−

1

BkBk+1 +Bk+1Bk+2

and

(3.11) S2(k) =
1

Bk−1Bk +BkBk+1 + 1
−

(−1)k

BkBk+1
−

1

BkBk+1 +Bk+1Bk+2 + 1
.

For even k, both S1(k) and S2(k) are negative. Now,

S1(k) + S1(k + 1)

=
1

Bk−1Bk +BkBk+1
−

1

BkBk+1
+

1

Bk+1Bk+2
−

1

Bk+1Bk+2 +Bk+2Bk+3

=
1

Bk+1Bk+2

(

1 +
Bk+1

Bk+3

) −
1

BkBk+1

(

1 +
Bk+1

Bk−1

)

=
1

Bk+1Bk+2 + (1 +BkBk+2)
Bk+2

Bk+3

−
1

BkBk+1 + (1 +BkBk+2)
Bk

Bk−1

=
1

Bk+1Bk+2 +BkBk+1 +
Bk+Bk+2

Bk+3

−
1

Bk+1Bk+2 +BkBk+1 +
BkBk+2

Bk−1

> 0,

as
Bk +Bk+2

Bk+3
<

BkBk+2

Bk−1
.

In a similar manner, we can check that S2(k)+S2(k+1) < 0 for any even integer
k ≥ 2. Taking summation over k from n to mn in (3.10), we have

mn
∑

k=n

(−1)k

BkBk+1
=

mn
∑

k=n

[

1

Bk−1Bk +BkBk+1
−

1

BkBk+1 +Bk+1Bk+2

]

−

mn
∑

k=n

S1(k)

=
1

Bn−1Bn +BnBn+1
−

1

BmnBmn+1 +Bmn+1Bmn+2

−

[

S1(n) + S1(n+ 1) + S1(mn)

]

−
mn−1
∑

k=n+2

S1(k).
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It can be easily checked that S1(n)+S1(n+ 1)+S1(mn) > 0 and
∑

mn−1
k=n+2 S1(k) >

0. Therefore,
mn
∑

k=n

(−1)k

BkBk+1
<

1

Bn−1Bn +BnBn+1
.

Similarly, with the help of (3.11), we can prove that

mn
∑

k=n

(−1)k

BkBk+1
>

1

Bn−1Bn +BnBn+1 + 1
,

which completes the theorem for even n. Considering

S3(k) =
−1

Bk−1Bk +BkBk+1 + 1
−

(−1)k

BkBk+1
+

1

BkBk+1 +Bk+1Bk+2 + 1

and

S4(k) =
−1

Bk−1Bk +BkBk+1
−

(−1)k

BkBk+1
+

1

BkBk+1 +Bk+1Bk+2
,

we can prove that

−1

Bn−1Bn +BnBn+1
<

mn
∑

k=n

(−1)k

BkBk+1
<

−1

Bn−1Bn +BnBn+1 + 1
.

This completes the proof of the theorem.

Similarly, the following results can be proved.

Theorem 16. For any positive integers n ≥ 1 and m ≥ 2,

(i)

⌊(

mn
∑

k=n

(−1)k

B2
2k

)−1⌋

=

{

B2
2n +B2

2n−2, if n is even ;
−(B2

2n +B2
2n−2 + 1), if n is odd.

(ii)

⌊(

mn
∑

k=n

(−1)k

B2
2k−1

)−1⌋

=

{

B2
2n−1 +B2

2n−3, if n is even ;
−(B2

2n−1 +B2
2n−3 + 1), if n is odd.

(iii)

⌊(

mn
∑

k=n

(−1)k

B2k−1B2k+1

)−1⌋

=

{

B2
2n +B2

2n−2 − 1, if n is even ;
−(B2

2n +B2
2n−2), if n is odd.

(iv)

⌊(

mn
∑

k=n

(−1)k

B2kB2k+2

)−1⌋

=

{

B2
2n+1 +B2

2n−1 − 1, if n is even ;
−(B2

2n+1 +B2
2n−1), if n is odd.

The following are the corresponding results for Lucas-balancing numbers Cn

which can be analogously shown.

Theorem 17. For any positive integers n ≥ 1 and m ≥ 2,
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(i)

⌊(

mn
∑

k=n

(−1)k

Ck

)−1⌋

=

{

Cn + Cn−1 − 1, if n is even ;
−(Cn + Cn−1), if n is odd.

(ii)

⌊(

mn
∑

k=n

(−1)k

C2k

)−1⌋

=

{

C2n + C2n−2 − 1, if n is even ;
−(C2n + C2n−2), if n is odd.

(iii)

⌊(

mn
∑

k=n

(−1)k

C2k+1

)−1⌋

=

{

C2n+1 + C2n−1 − 1, if n is even ;
−(C2n+1 + C2n−1), if n is odd.

(iv)

⌊(

mn
∑

k=n

(−1)k

C2
k

)−1⌋

=

{

C2
n + C2

n−1 − 1, if n is even ;
−(C2

n + C2
n−1), if n is odd.

(v)

⌊(

mn
∑

k=n

(−1)k

CkCk+1

)−1⌋

=

{

Cn−1Cn + CnCn+1 − 1, if n is even ;
−(Cn−1Cn + CnCn+1), if n is odd.

(vi)

⌊(

mn
∑

k=n

(−1)k

C2
2k

)−1⌋

=

{

C2
2n + C2

2n−2 − 1, if n is even ;
−(C2

2n + C2
2n−2), if n is odd.

(vii)

⌊(

mn
∑

k=n

(−1)k

C2
2k−1

)−1⌋

=

{

C2
2n−1 + C2

2n−3 − 1, if n is even ;
−(C2

2n−1 + C2
2n−3), if n is odd.

(viii)

⌊(

mn
∑

k=n

(−1)k

C2k−1C2k+1

)−1⌋

=

{

C2
2n + C2

2n−2 − 1, if n is even ;
−(C2

2n + C2
2n−2), if n is odd.

(ix)

⌊(

mn
∑

k=n

(−1)k

C2kC2k+2

)−1⌋

=

{

C2
2n+1 + C2

2n−1 − 1, if n is even ;
−(C2

2n+1 + C2
2n−1), if n is odd.
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