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Abstract

In this paper, we discuss sums of powers 1p +2p + · · ·+np and compute
both the exponential and ordinary generating functions for these sums. We
express these generating functions in terms of exponential and geometric
polynomials and also show their connection to other interesting series. In
particular, we show their connection to an interesting problem of Ovidiu
Furdui.
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1. Introduction

Sums of powers are very popular in mathematics. Especially interesting is their
connection to certain special numbers like Bernoulli and Stirling numbers – see,
for example the paper of Witula et al. [8]. The present paper is also dedicated
to these sums and their generating functions.

In 2014 Ovidiu Furdui published an interesting result in the form of Problem
96 in [6]. Namely, for every integer p ≥ 1 and every real number x we have

(1)

∞
∑

n=1

np

(

ex − 1−
x

1!
−

x2

2!
− · · · −

xn

n!

)

= ex
∫ x

0
Qp(t)dt,

where Qp is a polynomial of degree p, which satisfies the equation Qp+1(x) =
xQp(x) + xQ′

p(x) and Q1(x) = x.
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Here we want to connect this result to sums of powers. It is easy to see that for
every x,

(2)

∞
∑

n=2

(1p + 2p + · · ·+ (n− 1)p)
xn

n!
=

∞
∑

n=1

np

(

ex − 1−
x

1!
−

x2

2!
− · · · −

xn

n!

)

by changing the order of summation on the left hand side (which is easily justified)

∞
∑

n=2

(1p + 2p + · · · + (n− 1)p)
xn

n!
=

∞
∑

n=2

xn

n!

{

n−1
∑

k=1

kp

}

=
∞
∑

k=1

kp
∞
∑

n=k+1

xn

n!

=
∞
∑

k=1

kp
(

ex − 1−
x

1!
−

x2

2!
− · · · −

xk

k!

)

.

It is interesting to see how Problem 96 extend to the case when p is not a positive
integer. Equation (2) motivates us to study series as the one on the left hand side
there for arbitrary p. We shall do this in Section 2. In the process we shall provide
a new solution to Problem 96 and give more information about the polynomials
Qp. Later in Section 4 we shall discuss a problem similar to Problem 96 where
the exponential function ex is replaced by the function 1

(1−x)m . This will involve

the geometric polynomials defined in [3] and [5]. In the process we shall describe
the exponential generating function and the ordinary generating function for the
sums 1p + 2p + · · ·+ np.

2. Sums of powers

The following two series are listed as entries 5.2.17 (10) and 5.2.17 (12) in [7]

(3)

∞
∑

n=1

(

1 +
1

2
+ · · · +

1

n

)

xn

n!
= ex (γ + ln |x| − Ei(−x)) , x 6= 0,

(4)

∞
∑

n=1

(

13 + 23 + · · ·+ n3
) xn

n!
= ex

x

4
(x3 + 8x2 + 14x+ 4), ∀x.

Here Ei(x)is the exponential integral

Ei(x) = −

∫

∞

−x

e−t

t
dt = γ + ln |x|+

∞
∑

n=1

xn

n!n
,
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where x 6= 0. Clearly,

(5) Ei(−x) = γ + ln |x| −

∞
∑

n=1

(−1)n−1xn

n!n
,

d

dx
Ei(x) =

ex

x
,

d

dx
Ei(−x) =

e−x

x
.

We shall use also another exponential integral function

(6) Ein(x) =

∞
∑

n=1

(−1)n−1xn

n!n
= γ + ln |x| − Ei(−x) =

∫

∞

x

1− e−t

t
dt.

Ein(x) is an entire function as defined by the power series above which converges
for every x.

In terms of Ein(x) equation (3) becomes

(7)

∞
∑

n=1

(

1 +
1

2
+ · · ·+

1

n

)

xn

n!
= exEin(x).

This is the well-known exponential generating function for the harmonic numbers

Hn = 1 +
1

2
+ · · ·+

1

n
.

Obviously, the two series (3) and (4) are particular cases of the general series

(8) M(x, p) =

∞
∑

n=1

(1p + 2p + · · ·+ np)
xn

n!
,

where the function M(x, p) is defined for all real or complex numbers p and x.
We shall see that for certain values of p this series can be evaluated in closed
form.

For technical convenience we define two additional entire functions

E(x, p) =

∞
∑

n=1

npxn

n!
and

yp(x) =

∞
∑

n=2

(1p + 2p + · · ·+ (n− 1)p)
xn

n!
= M(x, p) −E(x, p).

Proposition 1. The following representation is true

M(x, p) = E(x, p) + ex
∫ x

0
e−tE(t, p)dt.

Proof. Differentiating the function yp(x) with respect to x we come to the
differential equation

y
′

p − yp = E(x, p)
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which can be written in the form

(e−xyp)
′ = e−xE(x, p)

and therefore, its solution is

yp(x) = ex
∫ x

0
e−tE(t, p)dt,

which gives the desired representation (see also Section 7 in [4]).

We consider now several special cases. First we consider the case when p =
−1. Then

ex
∫ x

0
e−t

{

∞
∑

n=1

tn

n!n

}

dt = −ex
∫ x

0

{

∞
∑

n=1

tn

n!n

}

de−t = −E(x,−1)+ex
∫ x

0

1− e−t

t
dt.

From here

M(x,−1) = ex
∞
∑

n=1

(−1)n−1xn

n!n

and (3) is proved.

Next we assume that p is a positive integer. In this case

(9) E(x, p) =

∞
∑

n=1

npxn

n!
=

(

x
d

dx

)p

ex = exϕp(x),

where ϕp(x) are the exponential polynomials discussed in [1, 2] and [3]. In these
papers a number of properties of ϕp(x) were proved. The coefficients of the
exponential polynomials are the Stirling numbers of the second kind S(p, k), that
is,

ϕp(x) =

p
∑

k=0

S(p, k)xk.

We have ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2 + x, ϕ3(x) = x3 + 3x2 + x,. . . etc.

As pointed out in [1] and [2], these polynomials appeared as early as 1843
in the work of the prominent German mathematician Johann August Grünert
(1797–1872), who founded and edited Archiv der Mathematik und Physik (for
more details see [1]).

In terms of ϕp(x) we can write

(10) M(x, p) = exϕp(x) + ex
∫ x

0
ϕp(t)dt = ex

p
∑

k=0

S(p, k)

(

xk +
xk+1

k + 1

)

.
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Using the property of exponential polynomials ϕp(x) + ϕ′

p(x) = ϕp+1(x)/x (see
[2, 3]) we have

(11) M(x, p) = ex
∫ x

0
ϕp+1(t)

dt

t
= ex

p+1
∑

k=1

1

k
S(p + 1, k)xk .

For p = 3 this is the series (4) from the beginning of the section. For p = 1, 2
and p = 4 we have correspondingly,

(12)
∞
∑

n=1

(1 + 2 + · · · + n)
xn

n!
= ex

(

x2

2
+ x

)

(13)

∞
∑

n=1

(

12 + 22 + · · ·+ n2
) xn

n!
= ex

(

x3

3
+

3x2

2
+ x

)

(14)

∞
∑

n=1

(

14 + 24 + · · ·+ n4
) xn

n!
= ex

(

x5

5
+

5x4

2
+

25x3

3
+

15x2

2
+ x

)

etc.

Remark. For p = 0 the right hand side in (10) is ex(1 + x), while the left hand
side is just xex. To make this formula true also for p = 0 we need to write the
definition of M(x, p) in the form

M(x, p) =

∞
∑

n=0

(0p + 1p + 2p + · · ·+ np)
xn

n!

for every integer p ≥ 0 with the agreement 00 = 1. This adjustment is not needed
for the representation (11); when p = 0 both sides there are equal to xex.

3. Geometric polynomials

The exponential polynomials ϕp(x) are related to the exponential function as
demonstrated by property (9) above. We shall use also the geometric polynomials
ωp(x), p = 0, 1, . . . , which are similar to the exponential polynomials and are
related to the geometric series as shown in equation (16) below. They have the
form

(15) ωp(x) =

p
∑

k=0

S(p, k)k!xk
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where again S(p, k) are the Stirling numbers of the second kind. Thus

ω0(x) = 1, ω1(x) = x, ω2(x) = 2x2 + x, . . ..

The geometric polynomials have the property

(16)

(

x
d

dx

)p 1

1− x
=

∞
∑

n=0

npxn =
1

1− x
ωp

(

x

1− x

)

for every p = 0, 1, . . . , and every |x| < 1 (see [1] and [3]). Note that when p > 0
the summation in the middle term in (16) starts, in fact, from n = 1. For p = 0
we assume that 00 = 1.

Exchanging the order of summation we can immediately verify that when
p > 0 is an integer and |x| < 1,

∞
∑

n=1

(1p + 2p + · · ·+ np) xn =

∞
∑

n=1

xn

{

n
∑

k=1

kp

}

=

∞
∑

k=1

kp
∞
∑

n=k

xn

=

∞
∑

k=1

kpxk
∞
∑

n=0

xn =
1

1− x

∞
∑

k=1

kpxk =
1

(1− x)2
ωp

(

x

1− x

)

,

that is, we computed the generating function for the sums 1p + 2p + · · · + np,
namely,

(17)
∞
∑

n=1

(1p + 2p + · · · + np) xn =
1

(1− x)2
ωp

(

x

1− x

)

, |x| < 1.

For p = 0 this equality is not true. To make it true for p = 0 we write as above

(18)
∞
∑

n=0

(0p + 1p + 2p + · · · + np) xn =
1

(1− x)2
ωp

(

x

1− x

)

with 00 = 1.

The verification of the following identities is left to the reader. Everywhere
|x| < 1.

(19)
∞
∑

n=1

np

(

1

1− x
− 1− x− x2 − · · · − xn

)

=
x

(1− x)2
ωp

(

x

1− x

)

for every positive integer p. Also,

(20)
∞
∑

n=1

(

1

1p
+

1

2p
+ · · · +

1

np

)

xn =
1

1− x
Lip(x)



Sums of powers and special polynomials 281

where Lip(x) is the polylogarithm. In particular, we have the well-known series

(21)

∞
∑

n=1

(

1 +
1

2
+ · · · +

1

n

)

xn =
− ln(1− x)

1− x
.

4. More geometric polynomials and a result similar to

Problem96

Here we present extensions of (17) and (19). The series in (17) can be extended
in the following way.

Proposition 2. Let r ≥ 0 be an integer. Then for any integer p > 0 and every

|x| < 1,

(22)

∞
∑

n=1

(

n+ r
r

)

(1p + 2p + · · ·+ np) xn

=
1

r!

(

d

dx

)r ( xr

(1− x)2
ωp

(

x

1− x

))

,

where ωp(x) are the geometric polynomials defined in Section 3.

When r = 0 this is equation (17). The proof follows from the next lemma.

Lemma 3. Let the function f(x) = a0 + a1x + a2x
2 + · · · be analytic in a

neighborhood of the origin |x| < R. Then for every integer r ≥ 0 and every

|x| < R we have
∞
∑

n=0

(

n+ r
r

)

anx
n =

1

r!
{xrf(x)}(r) .

For the proof we compute directly

1

r!
{xrf(x)}(r) =

1

r!

(

d

dx

)r ∞
∑

n=0

anx
n+r=

1

r!

∞
∑

n=0

an (n + r)(n+ r−1) · · · (n+1)xn

=
∞
∑

n=0

(

n+ r
r

)

anx
n.

The proposition follows from Lemma 3 and (17). We assume that a0 = 0p = 0
and take

f(x) =
1

(1− x)2
ωp

(

x

1− x

)

.
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To proceed further we involve the generalized geometric polynomials ωn,r+1(x)
defined by

(23) ωn,r+1(x) =
1

r!

n
∑

k=0

S(n, k) (k + r)! xk

for integers r ≥ 0 and n ≥ 0. Clearly, when r = 0, ωn,1(x) = ωn(x). These
polynomials have the property

(24)

(

x
d

dx

)p 1

(1− x)r+1
=

∞
∑

n=0

(

n+ r
r

)

npxn =
1

(1− x)r+1
ωp, r+1

(

x

1− x

)

for any integer p ≥ 0 and |x| < 1 — see [3] and [5]. Note that when p > 0 the
summation in (24) starts from n = 1.

The above proposition implies the following result similar to Problem 96.

Corollary 4. For every integer r ≥ 0, every integer p > 0, and every |x| < 1 we

have

∞
∑

n=0

np

(

1

(1− x)r+1
− 1−

(

r + 1
1

)

x−

(

r + 2
2

)

x2 − · · · −

(

r + n
n

)

xn
)

(25) =
1

r!

(

d

dx

)r ( xr

(1− x)2
ωp

(

x

1− x

))

−
1

(1− x)r+1
ωp,r+1

(

x

1− x

)

.

When r = 0, equation (25) becomes equation (19). The construction of the left
hand side is based on the expansion

∞
∑

n=0

(

r + n
n

)

xn =
1

(1− x)r+1

for any |x| < 1.

Proof. First remember that
(

r + k
k

)

=

(

r + k
r

)

.

Now we compute by changing the order of summation

∞
∑

k=1

kp
(

1

(1− x)r+1
− 1−

(

r + 1
1

)

x−

(

r + 2
2

)

x2 − · · · −

(

r + k
k

)

xk
)

=

∞
∑

k=0

kp

{

∞
∑

n=k+1

(

n+ r
r

)

xn

}

=

∞
∑

n=1

(

n+ r
r

)

xn

{

n−1
∑

k=0

kp

}
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=

∞
∑

n=1

(

n+ r
r

)

xn

{

n
∑

k=1

kp

}

−

∞
∑

n=1

(

n+ r
r

)

npxn

=
1

r!

(

d

dx

)r ( xr

(1− x)2
ωp

(

x

1− x

))

−
1

(1− x)r+1
ωp, r+1

(

x

1− x

)

and the proof is completed.
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