THE CAYLEY SUM GRAPH OF IDEALS OF A LATTICE

Mojgan Afkhami ${ }^{1, *}$, Mehdi Hassankhani ${ }^{2}$
AND
Kazem Khashyarmanesh ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Neyshabur
P.O. Box 91136-899, Neyshabur, Iran
${ }^{2}$ Department of Pure Mathematics, Ferdowsi University of Mashhad P.O. Box 1159-91775, Mashhad, Iran
e-mail: mojgan.afkhami@yahoo.com
hassankhani@iauc.ac.ir
khashyar@ipm.ir

Abstract

Let L be a lattice, $\Im(L)$ be the set of ideals of L and S be a subset of $\mathfrak{I}(L)$. In this paper, we introduce an undirected Cayley graph of L, denoted by $\Gamma_{L, S}$ with elements of $\mathfrak{I}(L)$ as the vertex set and, for two distinct vertices I and J, I is adjacent to J if and only if there is an element K of S such that $I \vee K=J$ or $J \vee K=I$. We study some basic properties of the graph $\Gamma_{L, S}$ such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of $\Gamma_{L, S}$.

Keywords: lattice, Cayley graph, ring graph, outerplanar graph.
2010 Mathematics Subject Classification: 05C69, 05C75, 06B10.

1. Introduction

The inquiry of graphs relevant to various algebraic structures is a very large and growing area of research. In particular, Cayley graphs have attracted serious attention in the literature, since they have many useful applications, see $[10,13$, $15,17,18,20$] for examples of recent results and further references. Several other classes of graphs associated with algebraic structures have also been actively

[^0]investigated. For example, comaximal graphs of a lattice have been considered in [1], Cayley graphs of partially ordered sets have been studied in [2]. In [2] the authors introduce and investigate a new analogue of the fundamental notion of a Cayley graph for the case of lattices. The original definition of a Cayley graph was introduced by Cayley in 1878 [6] to explain the concept of abstract groups described by a set of generators. In the last 50 years, the theory of Cayley graphs has grown into a substantial branch in algebraic graph theory. We refer the reader to $[7,10-12,14,19]$ for more details.

Recently in [3], the concept of the Cayley sum graphs of a commutative ring is defined as follows.

Let R be a commutative ring, $I(R)$ be the set of all ideals of R and S be a subset of $I^{*}(R)=I(R) \backslash\{0\}$. The Cayley sum graph, denoted by $\mathrm{Cay}^{+}(I(R), S)$, is an undirected graph whose vertex set is the set $I(R)$ and two distinct vertices I and J are adjacent whenever $I+K=J$ or $J+K=I$, for some ideal K in S.

In this paper we extend the concept of the Cayley sum graph of ideals of a commutative ring, for a lattice. Let L be a lattice, $\Im(L)$ be the set of ideals of L and S be a subset of $\mathfrak{I}(L)$. We define an undirected Cayley graph of L, denoted by $\Gamma_{L, S}$ with elements of $\mathfrak{I}(L)$ as the vertex set and, for two distinct vertices I and J, I is adjacent to J if and only if there is an element K in S such that $I \vee K=J$ or $J \vee K=I$. In Section 2, we state some prelimaneries about lattices. In Section 3, we study some basic properties of the graph $\Gamma_{L, S}$ such as connectivity, girth and clique number. In Section 4, we investigate the planarity, outerplanarity and ring graph of $\Gamma_{L, S}$.

Now we recall some definitions and notations on graphs. We use the standard terminology of graphs following [5]. In a graph G, the distance between two distinct vertices a and b, denoted by $d(a, b)$, is the length of the shortest path connecting a and b, if such a path exists; otherwise, we set $d(a, b):=\infty$. The diameter of a graph G is $\operatorname{diam}(G)=\sup \{d(a, b): a$ and b are distinct vertices of $G\}$. The girth of G, denoted by $\operatorname{girth}(G)$, is the length of the shortest cycle in G, if G contains a cycle; otherwise, we set $\operatorname{girth}(G):=\infty$. Also, for two distinct vertices a and b in G, the notation $a-b$ means that a and b are adjacent. A vertex a in a graph G is said to be a pendant vertex if $\operatorname{deg}(a)=1$. A graph G is said to be connected if there exists a path between any two distinct vertices, and it is complete if it is connected with diameter one. We use K_{n} to denote the complete graph with n vertices. We say that G is totally disconnected if no two vertices of G are adjacent. Also, G is called an empty graph if its vertex-set is empty. A clique of a graph is a complete subgraph of it and the number of vertices in a largest clique of G, denoted by $\omega(G)$, is called the clique number of G. The chromatic number of a graph G, denoted by $\chi(G)$, is the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A subset X of the vertices of G is called
an independent set if the induced subgraph on X has no edges. The maximum size of an independent set in a graph G is called the independence number of G and is denoted by $\alpha(G)$. For a graph G and a subset S of the vertex set $V(G)$, by $N_{G}[S]$ we mean the set of vertices in G which are in S or adjacent to a vertex in S. If $N_{G}[S]=V(G)$, then S is said to be a dominating set (of vertices in G). The domination number of a graph G, denoted by $\gamma(G)$, is the minimum size of a dominating set of the vertices in G. For a positive integer r, an r-partite graph is one whose vertex-set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m, n}$. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$ (cf. [6, p. 153]).

Suppose that G is a graph with p vertices and q edges. Also assume that C is a cycle of G. A chord in G is any edge joining two nonadjacent vertices in C. A primitive cycle is a cycle without chords. Moreover, we say that a graph G has the primitive cycle property $(P C P)$ if any two primitive cycles intersect in at most one edge. The free rank of G, denoted by frank (G), is the number of primitive cycles of G. Also, the number $\operatorname{rank}(G):=q-p+r$, where r is the number of connected components of G, is called the cycle rank of G. The cycle rank of G can be expressed as the dimension of the cycle space of G. These two numbers satisfy the inequality $\operatorname{rank}(G) \leq \operatorname{frank}(G)$, as is seen in [9, Proposition 2.2]. In the second section of [9], the authors provided a characterization of graphs such that the equality occurs. The precise definition of a ring graph can be found in Section 2 of [9]. Roughly speaking, ring graphs can be obtained starting with a cycle and subsequently attaching paths of length at least two that meet graphs already constructed in two adjacent vertices. They showed that, for the graph G, the following conditions are equivalent:
(i) G is a ring graph,
(ii) $\operatorname{rank}(G)=\operatorname{frank}(G)$,
(iii) G satisfies $P C P$ and G does not contain a subdivision of K_{4} as a subgraph.

The following lemma is useful.
Lemma 1.1 [4, Lemma 7.78]. Let G be a graph with vertex set V. If G is 2 connected and $\operatorname{deg}(v) \geq 3$ for all $v \in V$, then G contains a subdivision of K_{4} as a subgraph.

2. BASIC DEFINITIONS AND PROPERTIES

In this section, firstly we recall some definitions and notations on lattices. For lattice definitions not given here, we refer to [16].

A lattice is a set L with two binary operation \wedge and \vee on L satisfying the following conditions: for all $a, b, c \in L$,

1. $a \wedge a=a, a \vee a=a$,
2. $a \wedge b=b \wedge a, a \vee b=b \vee a$,
3. $(a \wedge b) \wedge c=a \wedge(b \wedge c), a \vee(b \vee c)=(a \vee b) \vee c$, and
4. $a \vee(a \wedge b)=a \wedge(a \vee b)=a$.

Note that in every lattice $a \wedge b=a$ always implies that $a \vee b=b$. In the next theorem, we recall an equivalent definition of a lattice with respect to a partial order relation which will be used in this paper.

Theorem 2.1 [16, Theorem 2.3]. Let L be a lattice. One can define an order \leq on L as follows:

For any $a, b \in L$, we set $a \leq b$ if and only if $a \wedge b=a$. Then (L, \leq) is an ordered set in which every pair of elements has a greatest lower bound (g.l.b.) and a least upper bound (l.u.b.). Conversely, let P be an ordered set such that, for every pair $a, b \in P$, g.l.b. (a, b), l.u.b. $(a, b) \in P$. For each a and b in P, we define $a \wedge b:=$ g.l.b. (a, b) and $a \vee b:=$ l.u.b. (a, b). Then (P, \wedge, \vee) is a lattice.

Let x and y be two distinct elements of L. Whenever $x \leq y$ and there is no element z in P such that $x \leq z \leq y$, we say y covers x. An element x of L which covers 0 is called an atom, and $\operatorname{Atom}(L)$ denotes the set of all atoms of L.

Definition 2.2 [8, Definition 39]. A non-empty subset I of a lattice L is called an ideal of L if and only if the following conditions are satisfied:
(i) For $a, b \in I, a \vee b \in I$.
(ii) For $a \in I$ and $c \in L, a \wedge c \in I$.

An ideal I of L is proper if $I \neq L$.
Theorem 2.3 [8, Theorem 59]. For an ideal I of L, the following conditions are satisfied:
(i) If $a \in I$ and $b \leq a$, then $b \in I$.
(ii) If $a \vee b \in I$, then we have $a, b \in I$.

Let I and J be ideals of a lattice L. Consider the set C of all elements c of L such that $c \leq a \vee b$, for some elements $a \in I$ and $b \in J$. Clearly, C is non-empty, because it obviously contains every element of I and of J. Also, by [8, Theorem

65], C is the least ideal (with respect to inclusion) containing I and J. We write $I \vee J$ for C. The ideal $I \vee J$ is said to be the ideal generated by the set-union $S=I \cup J$. If S consists of a single element a, then the ideal generated by the set $\{a\}$ is called the principal ideal generated by a; it consists of all $x \leq a$ and will be denoted by $[a]^{\ell}$ (see [8, Definition 41]). It is easy to see that, for each two principal ideals $[a]^{\ell}$ and $[b]^{\ell}$, we have the following equalities:

$$
[a]^{\ell} \wedge[b]^{\ell}=[a \wedge b]^{\ell},[a]^{\ell} \vee[b]^{\ell}=[a \vee b]^{\ell}
$$

A maximal ideal of L is a proper ideal which is maximal among all ideals of L. We denote the set of all maximal ideals of L by $\operatorname{Max}(L)$. Also, one can easily check that the set

$$
J(L):=\bigcap_{\mathfrak{m} \in \operatorname{Max}(L)} \mathfrak{m}
$$

is an ideal of L. We call it the Jacobson radical of L.

3. Basic properties of the cayley graph $\Gamma_{L, S}$

Let L be a lattice, $\mathfrak{I}(L)$ be the set of all ideals of L and $\mathfrak{I}^{*}(L)=\Im(L) \backslash\{L\}$. Let S be a non-empty subset of $\mathfrak{I}(L)$. We define the graph $\Gamma_{L, S}$, as an undirected graph with $\mathfrak{I}(L)$ as the vertex set, and two distinct vertices I and J are adjacent if and only if there is a vertex K in S such that $I \vee K=J$ or $J \vee K=I$. For all vertices $I, L \vee I=L$, that is, if $L \in S$, then L is adjacent to all vertices of $\mathfrak{I}(L)$ and $\Gamma_{L, S}$ is a refinement of star graph. Thus we assume that $L \notin S$.

Now suppose that $\Im(L)$ has at least one maximal ideal and that M_{1} and M_{2} are two distinct maximal ideals such that M_{1} is adjacent to M_{2}. Therefore there exists a vertex $K \in S$ such that $M_{1} \vee K=M_{2}$ or $M_{2} \vee K=M_{1}$, and hence either $M_{1} \subseteq M_{2}$ or $M_{2} \subseteq M_{1}$, which is impossible. Thus the set of maximal ideals forms an independent set in $\Gamma_{L, S}$. Now let L be a lattice such that $\operatorname{Atom}(L) \neq \emptyset$. Clearly $[a]^{\ell}=\{0, a\}$, where $a \in \operatorname{Atom}(L)$. Similarly, the set of the ideals $[a]^{\ell}$, where $a \in \operatorname{Atom}(L)$, forms an independent set in $\Gamma_{L, S}$.

Proposition 3.1. Let S be a singleton subset of $\mathfrak{I}^{*}(L)$. Then $\Gamma_{L, S}$ is disconnected.

Proof. Suppose that $S=\{I\}$, and that J is any vertex distinct from I. If $J \subseteq I$, then I is adjacent to J and J is not adjacent to any vertex of $\Gamma_{L, S}$, and if $I \subseteq J$, then I is not adjacent to J. Now suppose that I and J are not comparable. Then clearly I is not adjacent to J. Therefore the set $A=\{J: J \subseteq I\}$ forms a component of $\Gamma_{L, S}$ and hence the graph $\Gamma_{L, S}$ is not connected.

Lemma 3.2. Let $S=\{I, J\} \subseteq \mathfrak{I}^{*}(L)$. Then the graph $\Gamma_{L, S}$ is connected if and only if $I \vee J=L$.

Proof. Suppose that $I \vee J=L$. Clearly L is adjacent to both vertices I and J. We claim that $\Gamma_{L, S}$ has no isolated vertex. Now if $K \in \mathfrak{I}^{*}(L)$ and K is an isolated vertex, then $K \vee I=K$ and $K \vee J=K$, and hence $I, J \subseteq K$. Therefore $K=L$, which is a contradiction. Thus it is enough to show that, for any vertex K, there is a path between K and L. As K is not an isolated vertex, there is a vertex K^{\prime} such that K is adjacent to K^{\prime}. Hence $K \vee I=K^{\prime}$ or $K^{\prime} \vee I=K$ for some $I \in S$. If $K \vee I=K^{\prime}$, then $I \subseteq K^{\prime}$, and hence $K^{\prime} \vee J=L$, which means that K^{\prime} is adjacent to L. Also, if $K^{\prime} \vee I=K$, then $I \subseteq K$ and $K \vee J=L$, which implies that K is adjacent to L. A similar argument for $K \vee J=K^{\prime}$ or $K^{\prime} \vee J=K$, shows that, for any vertex K, there is a path between K and L.

Conversely assume that $\Gamma_{L, S}$ is connected. Suppose on the contrary that $I \vee J \neq L$. Let $K=I \vee J$ and $B=\{F: F \in \Im(L)$ and $F \subseteq K\}$. Suppose that $F \in B$ and $T \notin B$. It is clear that $F \vee I$ and $F \vee J$ lies in B, and also $T \vee I$ and $T \vee J$ are not in B. Hence F is not adjacent to T. Therefore B forms a component of $\Gamma_{L, S}$ and hence the graph $\Gamma_{L, S}$ is not connected.

Theorem 3.3. Let $S=\{I, J\}$ and the graph $\Gamma_{L, S}$ be connected. Then $\operatorname{diam}\left(\Gamma_{L, S}\right)$ ≤ 4 and $\operatorname{girth}\left(\Gamma_{L, S}\right) \leq 4$.

Proof. In view of the proof of Lemma 3.2, for every vertex K that is not adjacent to L, there is a vertex K^{\prime} such that K^{\prime} is adjacent to K and L. Now let N and T be two distinct non adjacent vertices such that they are not adjacent to L. Then there are vertices N^{\prime} and T^{\prime} such that we have the path $N-N^{\prime}-L-T^{\prime}-T$, and hence its diameter is less than or equal to four.

Now let K be a vertex distinct from L, I and J. Then we consider the following three cases:

Case 1. $K \subseteq I$ and $K \subseteq J$. In this case K is adjacent to both I and J, and hence we have the cycle, $K-I-L-J-K$ of length four.

Case 2. $K \subseteq I$ and $K \nsubseteq J$. If $K \vee J=L$, then K is adjacent to L, and hence there is a cycle $L-K-I-L$ of length three. If $T=K \vee J \neq L$, then $T \vee I=L$, and hence there is a cycle of length four as $T-K-I-L-T$.

Case 3. $K \nsubseteq I$ and $K \nsubseteq J$. Put $F=K \cap I$ and $G=F \vee J$. Therefore F is adjacent to I. If $G=L$, then there is a cycle $F-I-L-F$ of length three, and if $G \neq L$, then $G \vee I=L$ and hence we have a cycle $I-F-G-L-I$ of length four.

Proposition 3.4. Let $S=\left\{I_{1}, I_{2}, \ldots, I_{n}\right\} \subseteq \mathfrak{I}^{*}(L)$. Then the graph $\Gamma_{L, S}$ is connected if and only if $I_{1} \vee I_{2} \vee \cdots \vee I_{n}=L$.

Proof. First assume that $I_{1} \vee I_{2} \vee \cdots \vee I_{n}=L$. Suppose that there are two ideals I_{j} and I_{k} in S such that $I_{j} \vee I_{k}=L$, for some $1 \leq j \neq k \leq n$. Therefore, by Lemma 3.2, the result holds. So we assume that for each proper subset of
S, say $\left\{I_{i_{1}}, \ldots, I_{i_{t}}\right\}$, where $1 \leqslant i_{1} \leqslant \cdots \leqslant i_{t} \leqslant n$, we have $\left(I_{i_{1}} \vee \cdots \vee I_{i_{t}}\right) \neq L$. Now let K be a vertex such that K is not adjacent to L. Hence $K \vee I_{j} \neq L$, for $j=1,2, \ldots, n$. Put $K_{j}=\left(K \vee I_{1} \vee \cdots \vee I_{j-1}\right) \vee I_{j}$. Therefore there is a path of length at most n between K and $K_{n}=L$, and hence the graph is connected.

For the converse statement, assume that $I_{1} \vee \cdots \vee I_{n} \neq L$. Put $K=I_{1} \vee \cdots \vee I_{n}$ and let $N=\{F: F \in \mathfrak{I}(L)$ and $F \subseteq K\}$. Now let $F \in N$ and $T \notin N$. It is clear that $F \vee I$ and $F \vee J$ lies in N, and $T \vee I$ and $T \vee J$ are not in N, and hence F is not adjacent to T. Therefore the graph $\Gamma_{L, S}$ is not connected.

Corollary 3.5. Let $S=\left\{I_{1}, I_{2}, \ldots, I_{n}\right\} \subseteq \mathfrak{I}^{*}(L)$ and the graph $\Gamma_{L, S}$ be connected. Then $\operatorname{diam}\left(\Gamma_{L, S}\right) \leq 2 n$, and also girth $\left(\Gamma_{L, S}\right) \leq 4$.

Proposition 3.6. Let $\Gamma_{L, S}$ be connected and $K \in \mathfrak{I}^{*}(L)$ be a pendant vertex. Then K is adjacent to L.

Proof. Suppose that, for some I, J in $S, K \vee I \neq K \vee J$. Then $\operatorname{deg}(K) \geq 2$, and hence for all I, J in $S, K \vee I=K \vee J$. Put $F=K \vee I$. So, for all I in $S, I \subseteq F$ and hence $F=L$.

Lemma 3.7. If $K_{1}-K_{2}-K_{3}-K_{1}$ is a cycle of length three in the graph $\Gamma_{L, S}$, then $\left\{K_{1}, K_{2}, K_{3}\right\}$ is a chain in $\mathfrak{J}(L)$.

Proof. If two vertices are adjacent in $\Gamma_{L, S}$, then one of them is a subset of another. Hence $\left\{K_{1}, K_{2}, K_{3}\right\}$ is a chain in $\mathfrak{I}(L)$.

Proposition 3.8. Assume that S is a finite subset of $\mathfrak{I}(L)$ and that $\Gamma_{L, S}$ has a clique of size n. Then $|S| \geq n-1$.

Proof. By the definition of adjacency of vertices in $\Gamma_{L, S}, K_{1}$ is adjacent to K_{2} only if $K_{1} \subseteq K_{2}$ or $K_{2} \subseteq K_{1}$. Thus if the graph $\Gamma_{L, S}$ has a clique with n vertices $K_{1}, K_{2}, \ldots, K_{n}$, then, by Lemma 3.7, the set $\left\{K_{1}, K_{2}, \ldots, K_{n}\right\}$ is a chain in $\mathfrak{I}(L)$. Without loss of generality, we may assume that $K_{1} \subseteq K_{2} \subseteq \cdots \subseteq K_{n}$. Hence if $|S|<n-1$, then K_{1} is not adjacent to each vertex K_{i}, for $i=2, \ldots, n$, and hence $\left\{K_{1}, K_{2}, \ldots, K_{n}\right\}$ is not a clique, which is a contradiction.

We say that a vertex I has the property P if I is comparable with at least one of the elements in S or I is adjacent to L in $\Gamma_{L, S}$.

Proposition 3.9. Let $S=\{I, J\}$ and $\Gamma_{L, S}$ be connected. If all vertices of $\Gamma_{L, S}$ has the property P, then $S \cup\{L\}$ is a dominating set in $\Gamma_{L, S}$.

Proof. Let F be an arbitrary vertex in $\Gamma_{L, S}$. Then we show that F is adjacent to L, I or J. Since F has the property P, there is a vertex in S, say I, such that $I \subseteq F$ or $F \subseteq I$. If $F \subseteq I$, then clearly F is adjacent to I. Also if $I \subseteq F$, then, since $I \vee J=L$, we have that $F \vee J=L$, which means that F is adjacent to L.

Lemma 3.10. Let $S=\{I\} \subseteq \Im(L)$. Then there is no path of length greater than 2 in $\Gamma_{L, S}$.

Proof. First we claim that if there is a path $K_{1}-K_{2}-K_{3}$ of length 2 in $\Gamma_{L, S}$, then $K_{1}, K_{3} \subseteq K_{2}$. Since K_{1} is adjacent to K_{2}, we have $K_{1} \vee I=K_{2}$ or $K_{2} \vee I=K_{1}$. Also K_{3} is adjacent to K_{2}. So $K_{3} \vee I=K_{2}$ or $K_{2} \vee I=K_{3}$. Assume that $K_{2} \vee I=K_{1}$. Thus we have $K_{3} \vee I=K_{2}$ and this is impossible. Hence $K_{1} \vee I=K_{2}$ and $K_{3} \vee I=K_{2}$. Therefore $K_{1}, K_{3} \subseteq K_{2}$. Now suppose that there is a path $K_{1}-K_{2}-K_{3}-K_{4}$ of length three in $\Gamma_{L, S}$. By the above discussion, we have $K_{1}, K_{3} \subseteq K_{2}$ and $K_{2}, K_{4} \subseteq K_{3}$ and this is impossible.

Proposition 3.11. Let $S \subseteq \mathfrak{I}(L)$. Then $\Gamma_{L, S}$ has no cycle if and only if $S=\{I\}$ for some $I \in \mathfrak{I}(L)$.

Proof. Assume that $|S| \geq 2$ and $I, J \in S$. Put $F=I \cap J$ and $G=I \cup J$. Then it is clear that $F-I-G-J-F$ is a cycle in $\Gamma_{L, S}$. Now let $S=\{I\}$. Then, by Lemma 3.10, it is clear that there is no cycle in $\Gamma_{L, S}$.

4. Planarity of $\Gamma_{L, S}$

In this section we assume that $S \subseteq \operatorname{Max}(L),|S| \geq 2$ and $0 \in L$.
Notation 4.1. To simplify of notations, let $S=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ be a subset of maximal ideals of $\mathfrak{I}^{*}(L)$. We set $S_{i}:=\left\{F \mid F \subseteq M_{i}\right.$ and $\left.F \nsubseteq \bigcup_{j \neq i} M_{j}\right\}$ and $S_{i j}:=\left\{F \mid F \subseteq M_{i} \cap M_{j}\right.$ and $\left.F \nsubseteq \bigcup_{k \neq i, j} M_{k}\right\}$ and similarly $S_{12 \cdots n}:=\{F \mid F \subseteq$ $\left.M_{1} \cap M_{2} \cap \cdots \cap M_{n}\right\}$.

Remark 4.2. Let $S=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ be a subset of maximal ideals of $\mathfrak{I}^{*}(L)$. If, for all $2 \leq k \leq n, S_{i_{1} i_{2} \cdots i_{k}}=\{0\}$, then the graph $\Gamma_{L, S}$ is a planar bipartite graph as it is shown in Figure 1. In the case that $n=2$, if $S_{1} \cup S_{2}=S$ and $S_{12} \neq\{0\}$, then $\Gamma_{L, S}$ is also a planar bipartite graph as it is shown in Figure 2, where, for $1 \leq k \leq \ell, A_{k} \in S_{12}$.

In the rest of this section, we assume that, for some $1 \leq k \leq n, S_{i_{1} i_{2} \cdots i_{k}} \neq\{0\}$.
Theorem 4.3. Let S be a subset of maximal ideals of $\mathfrak{I}^{*}(L)$. Then $\Gamma_{L, S}$ is a 3 -partite graph and $\operatorname{diam}\left(\Gamma_{L, S}\right) \leq 3$.

Proof. Put $X_{1}=\{L\}, X_{2}=S$ and $X_{3}=\Im(L) \backslash(S \cup\{L\})$. As elements of S are maximal ideals, X_{2} is an independent set and we claim that X_{3} is also an independent set. For, if there are two vertices I and J in X_{3} such that I is adjacent to J, then there is a vertex $M_{i} \in S$ such that $I \vee M_{i}=J$ or $J \vee M_{i}=I$, and therefore either $M_{i} \subseteq I$ or $M_{i} \subseteq J$. But M_{i} is a maximal ideal, and this is a contradiction.

Figure 1

Figure 2

Now, let I and J be two non adjacent vertices. We know that any vertex in S is adjacent to L. So it is enough to consider the following cases:

Case 1. $I \in X_{1}$. In this case J is in X_{3}, and since $\Gamma_{L, S}$ is connected, J is adjacent to a vertex of X_{2}, and hence $\mathrm{d}(I, J)=2$.

Case 2. $I \in X_{2}$ and $J \in X_{3}$. In this situation we can easily see that $\mathrm{d}(I, J)$ $=2$.

Case 3. $I, J \in X_{3}$. In this case if $I, J \in S_{12 \cdots n}$, then for all vertices M_{k} in X_{2}, I, J are adjacent to M_{k}, and if $I \in S_{12 \cdots n}$ and $J \notin S_{12 \cdots n}$, then for each maximal ideal M_{k} in X_{2}, I is adjacent to M_{k}. If J and M_{k} are not comparable, then we have the path $J-L-M_{k}-I$, and if $J \subseteq M_{k}$, then $\mathrm{d}(I, J)=2$. If $I, J \notin S_{12 \cdots n}$, then there are elements M_{i} and M_{j} in X_{2} such that $I \nsubseteq M_{i}$ and $J \nsubseteq M_{j}$. Thus we have the path $I-L-J$.

By considering the above cases we have $\operatorname{diam}\left(\Gamma_{L, S}\right) \leq 3$.
The following corollary follows from Theorem 4.3.
Corollary 4.4. Let S be a subset of maximal ideals of $\mathfrak{I}^{*}(L)$. Then $S \cup\{L\}$ is a dominating set for $\Gamma_{L, S}$.

Now we study the planarity of $\Gamma_{L, S}$ in the case that S is a subset of maximal ideals of $\mathfrak{I}^{*}(L)$. Let $|S| \geq 3$ and $J(L) \neq 0$. As $0, L$ and $J(L)$ are adjacent to all elements of S, we have $\Gamma_{L, S}$ has a subgraph isomorphic to $K_{3,3}$. Thus $\Gamma_{L, S}$ is not planar. Therefore we assume that $J(L)=0$.

Lemma 4.5. Let $S=\left\{M_{1}, M_{2}, M_{3}\right\}$. If $\left|S_{123}\right|>1$, then $\Gamma_{L, S}$ is not planar, and if $\left|S_{123}\right|=1$, then we have the following statements:

1. If, for some $i, j,\left|S_{i j}\right| \geq 2$, then $\Gamma_{L, S}$ is not planar.
2. If, for all $i, j,\left|S_{i j}\right| \leq 1$, then $\Gamma_{L, S}$ is a planar graph.

Proof. As $\left|S_{123}\right|>1$, there is a nonzero ideal $F \in S_{123}$, and hence $0, L, F$ are adjacent to every element of S. Therefore $\Gamma_{L, S}$ has a subgraph isomorphic to $K_{3,3}$ and it is not planar. Now suppose that $\left|S_{123}\right|=1$. For the first statement, without loss of generality, we may assume that $\left|S_{12}\right|=2$ and $F_{1}, F_{2} \in S_{12}$. Therefore we have a subdivision of $K_{3,3}$ in $\Gamma_{L, S}$ as it is pictured in Figure 3, and hence the graph $\Gamma_{L, S}$ is not planar.

Figure 3

For the second statement, let $\left|S_{i j}\right| \leq 1$ for all i, j. Then $\Gamma_{L, S}$ is a planar graph, as it is shown in Figure 4, where $F_{i j} \in S_{i j}$.

Figure 4
Proposition 4.6. Let S be a subset of maximal ideals of $\mathfrak{I}^{*}(L)$ with $|S| \geq 4$. Then we have the following statements:
(1) If, for some $i_{1}, i_{2}, \ldots, i_{k}$, with $3 \leq k \leq n-1, S_{i_{1} i_{2} \cdots i_{k}} \neq\{0\}$ or $S_{12 \cdots n} \neq\{0\}$, then $\Gamma_{L, S}$ is not planar.
(2) If, for all $j_{1}, j_{2}, \ldots, j_{k}$, with $3 \leq k \leq n-1, S_{j_{1} j_{2} \cdots j_{k}}=\{0\}, S_{12 \cdots n}=\{0\}$ and for some $i, j,\left|S_{i j}\right| \geq 2$, then $\Gamma_{L, S}$ is not planar.
(3) If, for all $i, j,\left|S_{i j}\right| \leq 1$ and there are integers $i_{1}, i_{2}, \ldots, i_{k}, k \geq 3$ such that $S_{i_{1} i_{2}}, S_{i_{2} i_{3}}, \ldots, S_{i_{k-1} i_{k}}, S_{i_{1} i_{k}}$ are non empty or there are integers $i, j_{1}, j_{2}, \ldots, j_{k}$ such that $S_{i j_{l}} \neq\{0\}$, where $l=1,2, \ldots, k$ and $k \geq 3$, then $\Gamma_{L, S}$ is not a planar graph.

Proof. (1) Let $S=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$. If, for some $j_{1}, j_{2}, \ldots, j_{k}, 3 \leq k \leq n-1$, $S_{j_{1} j_{2} \cdots j_{k}} \neq\{0\}$ or $S_{1,2, \ldots, n} \neq\{0\}$, then $\Gamma_{L, S}$ has a subgraph isomorphic to $K_{3,3}$, and hence $\Gamma_{L, S}$ is not planar.
(2) If, for some $i, j,\left|S_{i j}\right| \geq 2$ and $F_{1}, F_{2} \in S_{i j}$, then we have a subdivision of $K_{3,3}$ in $\Gamma_{L, S}$ as it is shown in Figure 5. Thus $\Gamma_{L, S}$ is not planar.

Figure 5
(3) Suppose that there are integers $i_{1}, i_{2}, \ldots, i_{k}$, with $k \geq 3$ such that $S_{i_{1} i_{2}}$, $S_{i_{2} i_{3}}, \ldots, S_{i_{k-1} i_{k}}, S_{i_{1} i_{k}}$ are non empty. Then $\Gamma_{L, S}$ has a subdivision of $K_{3,3}$ as it is shown in Figure 6. Now, assume that there are integers $i, j_{1}, j_{2}, \ldots, j_{k}$ such that $S_{i j_{l}} \neq\{0\}, l=1,2, \ldots, k$ and $k \geq 3$. Then $\Gamma_{L, S}$ has a subdivision of $K_{3,3}$ as it is pictured in Figure 7.

Figure 6
In the sequel of this section, we deal with the outerplanarity of $\Gamma_{L, S}$. By [9], we know that every outerplanar graph is a ring graph and every ring graph is a

Figure 7
planar graph. Let S be a subset of maximal ideals of $\mathfrak{I}^{*}(L)$ with $|S| \geq 3$ and $\Gamma_{L, S}$ is a planar graph. By Proposition 4.5, for all i, j, we have $\left|S_{i j}\right| \leq 1$, and if at least one $S_{i j}$ is non-empty, then $\Gamma_{L, S}$ has an induced subgraph H that is satisfied in the conditions of Lemma 1.1. Therefore $\Gamma_{L, S}$ has a subdivision isomorphic to K_{4}, as it is shown in Figure 8. Hence it is not a ring graph.

Figure 8
By [9, Lemma 2.9], for $n \geq 3, K_{2, n}$ is not a ring graph. Now if, for all i, j, $S_{i j}=\{0\}$ and at least one of the S_{i} 's is non-empty, then $\Gamma_{L, S}$ has an induced subgraph isomorphic to $K_{2, n}, n \geq 3$, and by [9 , Corollary 2.15], $\Gamma_{L, S}$ is not a ring graph. Assume that $|S|=2$. If $S_{12} \neq\{0\}$, then $\Gamma_{L, S}$ has an induced subgraph isomorphic to $K_{2,3}$, which is not a ring graph, and if $S_{12}=\{0\}$, then $\operatorname{rank}\left(\Gamma_{L, S}\right)=\operatorname{frank}\left(\Gamma_{L, S}\right)=\left|S_{1}\right|+\left|S_{2}\right|+1$. Therefore $\Gamma_{L, S}$ is a ring graph.

By the above discussion we have the following theorem.
Theorem 4.7. Let S be a subset of maximal ideals of $\mathfrak{I}^{*}(L)$. Then $\Gamma_{L, S}$ is a ring graph if and only if $|S|=2$ and $S_{12}=\{0\}$.

Proposition 4.8. Let S be a subset of maximal ideals of $\mathfrak{I}^{*}(L)$ with $|S|=2$. Then $\Gamma_{L, S}$ is an outerplanar graph if and only if $S_{12}=\{0\}$ and, for $i=1,2$, $\left|S_{i}\right| \leq 1$.

Proof. Assume that $S_{12} \neq\{0\}$ or, for some $i,\left|S_{i}\right| \geq 2$. Therefore $\Gamma_{L, S}$ has a subdivision isomorphic to $K_{2,3}$, and hence $\Gamma_{L, S}$ is not an outerplanar graph. It is clear that if $S_{12}=\{0\}$ and, for $i=1,2,\left|S_{i}\right| \leq 1$, then $\Gamma_{L, S}$ is outerplanar.

Acknowledgements

The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

[1] M. Afkhami and K. Khashyarmanesh, The comaximal graph of a lattice, Bull. Malays. Math. Sci. Soc. 37 (2014) 261-269.
[2] M. Afkhami, Z. Barati and K. Khashyarmanesh, Cayley graphs of partially ordered sets, J. Algebras and its Appl. 12 (2013) 1250184-1250197. doi:10.1142/S0219498812501848
[3] M. Afkhami, Z. Barati, K. Khashyarmanesh and N. Paknejad, Cayley sum graphs of ideals of a commutative ring, J. Aust. Math. Soc. 96 (2014) 289-302. doi:10.1017/S144678871400007X
[4] M. Aigner, Combinatorial Theory (Springer-verlag, New York, 1997).
[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1976).
[6] A. Cayley, The theory of groups: graphical representations, Amer. J. Math. 1 (1878) 174-176.
[7] G. Cooperman, L. Finkelstein and N. Sarawagi, Applications of Cayley graphs, Appl. Algebra and Error-Correcting Codes (1990) 367-378.
[8] T. Donnellan, Lattice Theory (Pergamon Press, Oxford, 1968).
[9] I. Gitler, E. Reyes and R.H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 (2010) 430-441. doi:10.1016/j.disc.2009.03.020
[10] A.V. Kelarev, Graph Algebras and Automata (Marcel Dekker, New York, 2003).
[11] A.V. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30 (2004) 95-101.
[12] A.V. Kelarev and S.J. Quinn, A combinatorial property and Cayley graphs of semigroups, Semigroup Forum 66 (2003) 89-96.
doi:10.1007/s002330010162
[13] A.V. Kelarev, J. Ryan and Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math. 309 (2009) 5360-5369. doi:10.1016/j.disc.2008.11.030
[14] E. Konstantinova, Some problems on Cayley graphs, Linear Algebra Appl. 429 (2008) 2754-2769. doi:10.1016/j.laa.2008.05.010
[15] C.H. Li and C.E. Praeger, On the isomorphism problem for finite Cayley graphs of bounded valency, European J. Combin. 20 (1999) 1801-1808.
doi:10.1006/eujc.1998.0291
[16] J.B. Nation, Notes on Lattice Theory, Cambridge Studies in Advanced Mathematics, vol. 60 (Cambridge University Press, Cambridge, 1998).
[17] C.E. Praeger, Finite transitive permutation groups and finite vertex-transitive groups, Graph Symmetry: Algebraic Methods and Applications (Kluwer, Dordrecht, 1997) 277-318.
[18] A. Thomson and S. Zhou, Gossiping and routing in undirected triple-loop networks, Networks 55 (2010) 341-349.
doi:10.1002/net. 20327
[19] W. Xiao, Some results on diameters of Cayley graphs, Discrete Appl. Math. 154 (2006) 1640-1644.
doi:10.1016/j.dam.2005.11.008
[20] S. Zhou, A class of arc-transitive Cayley graphs as models for interconnection networks, SIAM J. Discrete Math. 23 (2009) 694-714. doi:10.1137/06067434X

Revised 8 March 2020
Accepted 15 June 2020

[^0]: *Corresponding author.

