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Abstract

Let L be a lattice, I(L) be the set of ideals of L and S be a subset of
I(L). In this paper, we introduce an undirected Cayley graph of L, denoted
by ΓL,S with elements of I(L) as the vertex set and, for two distinct vertices
I and J , I is adjacent to J if and only if there is an element K of S such that
I ∨K = J or J ∨K = I. We study some basic properties of the graph ΓL,S

such as connectivity, girth and clique number. Moreover, we investigate the
planarity, outerplanarity and ring graph of ΓL,S .
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1. Introduction

The inquiry of graphs relevant to various algebraic structures is a very large and
growing area of research. In particular, Cayley graphs have attracted serious
attention in the literature, since they have many useful applications, see [10, 13,
15,17,18,20] for examples of recent results and further references. Several other
classes of graphs associated with algebraic structures have also been actively
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investigated. For example, comaximal graphs of a lattice have been considered
in [1], Cayley graphs of partially ordered sets have been studied in [2]. In [2]
the authors introduce and investigate a new analogue of the fundamental notion
of a Cayley graph for the case of lattices. The original definition of a Cayley
graph was introduced by Cayley in 1878 [6] to explain the concept of abstract
groups described by a set of generators. In the last 50 years, the theory of Cayley
graphs has grown into a substantial branch in algebraic graph theory. We refer
the reader to [7, 10–12,14,19] for more details.

Recently in [3], the concept of the Cayley sum graphs of a commutative ring
is defined as follows.

Let R be a commutative ring, I(R) be the set of all ideals of R and S be a
subset of I∗(R) = I(R)\{0}. The Cayley sum graph, denoted by Cay+(I(R), S),
is an undirected graph whose vertex set is the set I(R) and two distinct vertices
I and J are adjacent whenever I +K = J or J +K = I, for some ideal K in S.

In this paper we extend the concept of the Cayley sum graph of ideals of
a commutative ring, for a lattice. Let L be a lattice, I(L) be the set of ideals
of L and S be a subset of I(L). We define an undirected Cayley graph of L,
denoted by ΓL,S with elements of I(L) as the vertex set and, for two distinct
vertices I and J , I is adjacent to J if and only if there is an element K in S such
that I ∨K = J or J ∨K = I. In Section 2, we state some prelimaneries about
lattices. In Section 3, we study some basic properties of the graph ΓL,S such as
connectivity, girth and clique number. In Section 4, we investigate the planarity,
outerplanarity and ring graph of ΓL,S.

Now we recall some definitions and notations on graphs. We use the standard
terminology of graphs following [5]. In a graph G, the distance between two
distinct vertices a and b, denoted by d(a, b), is the length of the shortest path
connecting a and b, if such a path exists; otherwise, we set d(a, b) := ∞. The
diameter of a graph G is diam(G) = sup{d(a, b) : a and b are distinct vertices of
G}. The girth of G, denoted by girth(G), is the length of the shortest cycle in
G, if G contains a cycle; otherwise, we set girth(G) := ∞. Also, for two distinct
vertices a and b in G, the notation a − b means that a and b are adjacent. A
vertex a in a graph G is said to be a pendant vertex if deg(a) = 1. A graph G
is said to be connected if there exists a path between any two distinct vertices,
and it is complete if it is connected with diameter one. We use Kn to denote
the complete graph with n vertices. We say that G is totally disconnected if no
two vertices of G are adjacent. Also, G is called an empty graph if its vertex-set
is empty. A clique of a graph is a complete subgraph of it and the number of
vertices in a largest clique of G, denoted by ω(G), is called the clique number of
G. The chromatic number of a graph G, denoted by χ(G), is the minimal number
of colors which can be assigned to the vertices of G in such a way that every two
adjacent vertices have different colors. A subset X of the vertices of G is called
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an independent set if the induced subgraph on X has no edges. The maximum
size of an independent set in a graph G is called the independence number of G
and is denoted by α(G). For a graph G and a subset S of the vertex set V (G),
by NG[S] we mean the set of vertices in G which are in S or adjacent to a vertex
in S. If NG[S] = V (G), then S is said to be a dominating set (of vertices in G).
The domination number of a graph G, denoted by γ(G), is the minimum size of
a dominating set of the vertices in G. For a positive integer r, an r-partite graph

is one whose vertex-set can be partitioned into r subsets so that no edge has both
ends in any one subset. A complete r-partite graph is one in which each vertex
is joined to every vertex that is not in the same subset. The complete bipartite
graph (2-partite graph) with part sizes m and n is denoted by Km,n. A graph is
said to be planar if it can be drawn in the plane so that its edges intersect only at
their ends. A subdivision of a graph is any graph that can be obtained from the
original graph by replacing edges by paths. A remarkable simple characterization
of the planar graphs was given by Kuratowski in 1930. Kuratowski’s Theorem
says that a graph is planar if and only if it contains no subdivision of K5 or K3,3

(cf. [6, p. 153]).

Suppose that G is a graph with p vertices and q edges. Also assume that C is
a cycle of G. A chord in G is any edge joining two nonadjacent vertices in C. A
primitive cycle is a cycle without chords. Moreover, we say that a graph G has the
primitive cycle property (PCP ) if any two primitive cycles intersect in at most
one edge. The free rank of G, denoted by frank(G), is the number of primitive
cycles of G. Also, the number rank(G) := q − p + r, where r is the number of
connected components of G, is called the cycle rank of G. The cycle rank of G
can be expressed as the dimension of the cycle space of G. These two numbers
satisfy the inequality rank(G) ≤ frank(G), as is seen in [9, Proposition 2.2]. In
the second section of [9], the authors provided a characterization of graphs such
that the equality occurs. The precise definition of a ring graph can be found in
Section 2 of [9]. Roughly speaking, ring graphs can be obtained starting with a
cycle and subsequently attaching paths of length at least two that meet graphs
already constructed in two adjacent vertices. They showed that, for the graph
G, the following conditions are equivalent:

(i) G is a ring graph,

(ii) rank(G) = frank(G),

(iii) G satisfies PCP and G does not contain a subdivision of K4 as a subgraph.

The following lemma is useful.

Lemma 1.1 [4, Lemma 7.78]. Let G be a graph with vertex set V . If G is 2-
connected and deg(v) ≥ 3 for all v ∈ V , then G contains a subdivision of K4 as

a subgraph.
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2. Basic definitions and properties

In this section, firstly we recall some definitions and notations on lattices. For
lattice definitions not given here, we refer to [16].

A lattice is a set L with two binary operation ∧ and ∨ on L satisfying the
following conditions: for all a, b, c ∈ L,

1. a ∧ a = a, a ∨ a = a,

2. a ∧ b = b ∧ a, a ∨ b = b ∨ a,

3. (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c, and

4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

Note that in every lattice a∧ b = a always implies that a∨ b = b. In the next
theorem, we recall an equivalent definition of a lattice with respect to a partial
order relation which will be used in this paper.

Theorem 2.1 [16, Theorem 2.3]. Let L be a lattice. One can define an order ≤
on L as follows:

For any a, b ∈ L, we set a ≤ b if and only if a ∧ b = a. Then (L,≤) is an

ordered set in which every pair of elements has a greatest lower bound (g.l.b.) and
a least upper bound (l.u.b.). Conversely, let P be an ordered set such that, for

every pair a, b ∈ P , g.l.b.(a, b), l.u.b.(a, b) ∈ P . For each a and b in P , we define

a ∧ b := g.l.b.(a, b) and a ∨ b := l.u.b.(a, b). Then (P,∧,∨) is a lattice.

Let x and y be two distinct elements of L. Whenever x ≤ y and there is no
element z in P such that x ≤ z ≤ y, we say y covers x. An element x of L which
covers 0 is called an atom, and Atom(L) denotes the set of all atoms of L.

Definition 2.2 [8, Definition 39]. A non-empty subset I of a lattice L is called
an ideal of L if and only if the following conditions are satisfied:

(i) For a, b ∈ I, a ∨ b ∈ I.

(ii) For a ∈ I and c ∈ L, a ∧ c ∈ I.

An ideal I of L is proper if I 6= L.

Theorem 2.3 [8, Theorem 59]. For an ideal I of L, the following conditions are

satisfied:

(i) If a ∈ I and b ≤ a, then b ∈ I.

(ii) If a ∨ b ∈ I, then we have a, b ∈ I.

Let I and J be ideals of a lattice L. Consider the set C of all elements c of L
such that c ≤ a ∨ b, for some elements a ∈ I and b ∈ J . Clearly, C is non-empty,
because it obviously contains every element of I and of J . Also, by [8, Theorem
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65], C is the least ideal (with respect to inclusion) containing I and J . We write
I ∨ J for C. The ideal I ∨ J is said to be the ideal generated by the set-union
S = I ∪ J . If S consists of a single element a, then the ideal generated by the
set {a} is called the principal ideal generated by a; it consists of all x ≤ a and
will be denoted by [a]ℓ (see [8, Definition 41]). It is easy to see that, for each two
principal ideals [a]ℓ and [b]ℓ, we have the following equalities:

[a]ℓ ∧ [b]ℓ = [a ∧ b]ℓ, [a]ℓ ∨ [b]ℓ = [a ∨ b]ℓ.

A maximal ideal of L is a proper ideal which is maximal among all ideals of
L. We denote the set of all maximal ideals of L by Max(L). Also, one can easily
check that the set

J(L) :=
⋂

m∈Max(L)

m

is an ideal of L. We call it the Jacobson radical of L.

3. Basic properties of the cayley graph ΓL,S

Let L be a lattice, I(L) be the set of all ideals of L and I
∗(L) = I(L) \ {L}. Let

S be a non-empty subset of I(L). We define the graph ΓL,S, as an undirected
graph with I(L) as the vertex set, and two distinct vertices I and J are adjacent
if and only if there is a vertex K in S such that I ∨K = J or J ∨K = I. For all
vertices I, L ∨ I = L, that is, if L ∈ S, then L is adjacent to all vertices of I(L)
and ΓL,S is a refinement of star graph. Thus we assume that L /∈ S.

Now suppose that I(L) has at least one maximal ideal and that M1 and M2

are two distinct maximal ideals such that M1 is adjacent to M2. Therefore there
exists a vertex K ∈ S such that M1∨K = M2 or M2∨K = M1, and hence either
M1 ⊆ M2 or M2 ⊆ M1, which is impossible. Thus the set of maximal ideals
forms an independent set in ΓL,S . Now let L be a lattice such that Atom(L) 6= ∅.
Clearly [a]ℓ = {0, a}, where a ∈ Atom(L). Similarly, the set of the ideals [a]ℓ,
where a ∈ Atom(L), forms an independent set in ΓL,S.

Proposition 3.1. Let S be a singleton subset of I∗(L). Then ΓL,S is discon-

nected.

Proof. Suppose that S = {I}, and that J is any vertex distinct from I. If J ⊆ I,
then I is adjacent to J and J is not adjacent to any vertex of ΓL,S, and if I ⊆ J ,
then I is not adjacent to J . Now suppose that I and J are not comparable.
Then clearly I is not adjacent to J . Therefore the set A = {J : J ⊆ I} forms a
component of ΓL,S and hence the graph ΓL,S is not connected.

Lemma 3.2. Let S = {I, J} ⊆ I
∗(L). Then the graph ΓL,S is connected if and

only if I ∨ J = L.
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Proof. Suppose that I ∨ J = L. Clearly L is adjacent to both vertices I and
J . We claim that ΓL,S has no isolated vertex. Now if K ∈ I

∗(L) and K is an
isolated vertex, then K ∨ I = K and K ∨ J = K, and hence I, J ⊆ K. Therefore
K = L, which is a contradiction. Thus it is enough to show that, for any vertex
K, there is a path between K and L. As K is not an isolated vertex, there is a
vertex K ′ such that K is adjacent to K ′. Hence K ∨ I = K ′ or K ′ ∨ I = K for
some I ∈ S. If K ∨ I = K ′, then I ⊆ K ′, and hence K ′ ∨ J = L, which means
that K ′ is adjacent to L. Also, if K ′ ∨ I = K, then I ⊆ K and K ∨ J = L,
which implies that K is adjacent to L. A similar argument for K ∨ J = K ′ or
K ′ ∨ J = K, shows that, for any vertex K, there is a path between K and L.

Conversely assume that ΓL,S is connected. Suppose on the contrary that
I ∨ J 6= L. Let K = I ∨ J and B = {F : F ∈ I(L) and F ⊆ K}. Suppose that
F ∈ B and T /∈ B. It is clear that F ∨ I and F ∨ J lies in B, and also T ∨ I
and T ∨ J are not in B. Hence F is not adjacent to T . Therefore B forms a
component of ΓL,S and hence the graph ΓL,S is not connected.

Theorem 3.3. Let S = {I, J} and the graph ΓL,S be connected. Then diam(ΓL,S)
≤ 4 and girth(ΓL,S) ≤ 4.

Proof. In view of the proof of Lemma 3.2, for every vertex K that is not adjacent
to L, there is a vertex K ′ such that K ′ is adjacent to K and L. Now let N and T
be two distinct non adjacent vertices such that they are not adjacent to L. Then
there are vertices N ′ and T ′ such that we have the path N − N ′ − L − T ′ − T ,
and hence its diameter is less than or equal to four.

Now let K be a vertex distinct from L, I and J . Then we consider the
following three cases:

Case 1. K ⊆ I and K ⊆ J . In this case K is adjacent to both I and J , and
hence we have the cycle, K − I − L− J −K of length four.

Case 2. K ⊆ I and K * J . If K ∨ J = L, then K is adjacent to L, and
hence there is a cycle L −K − I − L of length three. If T = K ∨ J 6= L, then
T ∨ I = L, and hence there is a cycle of length four as T −K − I − L− T .

Case 3. K * I and K * J . Put F = K ∩ I and G = F ∨ J . Therefore F is
adjacent to I. If G = L, then there is a cycle F − I −L−F of length three, and
if G 6= L, then G∨ I = L and hence we have a cycle I −F −G−L− I of length
four.

Proposition 3.4. Let S = {I1, I2, . . . , In} ⊆ I
∗(L). Then the graph ΓL,S is

connected if and only if I1 ∨ I2 ∨ · · · ∨ In = L.

Proof. First assume that I1 ∨ I2 ∨ · · · ∨ In = L. Suppose that there are two
ideals Ij and Ik in S such that Ij ∨ Ik = L, for some 1 ≤ j 6= k ≤ n. Therefore,
by Lemma 3.2, the result holds. So we assume that for each proper subset of
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S, say {Ii1 , . . . , Iit}, where 1 6 i1 6 · · · 6 it 6 n, we have (Ii1 ∨ · · · ∨ Iit) 6= L.
Now let K be a vertex such that K is not adjacent to L. Hence K ∨ Ij 6= L, for
j = 1, 2, . . . , n. Put Kj = (K ∨ I1 ∨ · · · ∨ Ij−1) ∨ Ij . Therefore there is a path of
length at most n between K and Kn = L, and hence the graph is connected.

For the converse statement, assume that I1∨· · ·∨In 6= L. PutK = I1∨· · ·∨In
and let N = {F : F ∈ I(L) and F ⊆ K}. Now let F ∈ N and T /∈ N . It is clear
that F ∨ I and F ∨ J lies in N , and T ∨ I and T ∨ J are not in N , and hence F
is not adjacent to T . Therefore the graph ΓL,S is not connected.

Corollary 3.5. Let S = {I1, I2, . . . , In} ⊆ I
∗(L) and the graph ΓL,S be connected.

Then diam(ΓL,S) ≤ 2n, and also girth(ΓL,S) ≤ 4.

Proposition 3.6. Let ΓL,S be connected and K ∈ I
∗(L) be a pendant vertex.

Then K is adjacent to L.

Proof. Suppose that, for some I, J in S, K ∨ I 6= K ∨J . Then deg(K) ≥ 2, and
hence for all I, J in S, K ∨ I = K ∨ J . Put F = K ∨ I. So, for all I in S, I ⊆ F
and hence F = L.

Lemma 3.7. If K1 −K2 −K3 −K1 is a cycle of length three in the graph ΓL,S,

then {K1,K2,K3} is a chain in I(L).

Proof. If two vertices are adjacent in ΓL,S, then one of them is a subset of
another. Hence {K1,K2,K3} is a chain in I(L).

Proposition 3.8. Assume that S is a finite subset of I(L) and that ΓL,S has a

clique of size n. Then |S| ≥ n− 1.

Proof. By the definition of adjacency of vertices in ΓL,S, K1 is adjacent to K2

only if K1 ⊆ K2 or K2 ⊆ K1. Thus if the graph ΓL,S has a clique with n vertices
K1,K2, . . . ,Kn, then, by Lemma 3.7, the set {K1,K2, . . . ,Kn} is a chain in I(L).
Without loss of generality, we may assume that K1 ⊆ K2 ⊆ · · · ⊆ Kn. Hence
if |S| < n − 1, then K1 is not adjacent to each vertex Ki, for i = 2, . . . , n, and
hence {K1,K2, . . . ,Kn} is not a clique, which is a contradiction.

We say that a vertex I has the property P if I is comparable with at least
one of the elements in S or I is adjacent to L in ΓL,S .

Proposition 3.9. Let S = {I, J} and ΓL,S be connected. If all vertices of ΓL,S

has the property P , then S ∪ {L} is a dominating set in ΓL,S.

Proof. Let F be an arbitrary vertex in ΓL,S. Then we show that F is adjacent
to L, I or J . Since F has the property P , there is a vertex in S, say I, such that
I ⊆ F or F ⊆ I. If F ⊆ I, then clearly F is adjacent to I. Also if I ⊆ F , then,
since I∨J = L, we have that F ∨J = L, which means that F is adjacent to L.
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Lemma 3.10. Let S = {I} ⊆ I(L). Then there is no path of length greater than

2 in ΓL,S.

Proof. First we claim that if there is a path K1 − K2 − K3 of length 2 in
ΓL,S , then K1,K3 ⊆ K2. Since K1 is adjacent to K2, we have K1 ∨ I = K2 or
K2 ∨ I = K1. Also K3 is adjacent to K2. So K3 ∨ I = K2 or K2 ∨ I = K3.
Assume that K2 ∨ I = K1. Thus we have K3 ∨ I = K2 and this is impossible.
Hence K1 ∨ I = K2 and K3 ∨ I = K2. Therefore K1,K3 ⊆ K2. Now suppose
that there is a path K1 −K2 −K3 −K4 of length three in ΓL,S. By the above
discussion, we have K1,K3 ⊆ K2 and K2,K4 ⊆ K3 and this is impossible.

Proposition 3.11. Let S ⊆ I(L). Then ΓL,S has no cycle if and only if S = {I}
for some I ∈ I(L).

Proof. Assume that |S| ≥ 2 and I, J ∈ S. Put F = I ∩ J and G = I ∪ J . Then
it is clear that F − I −G− J − F is a cycle in ΓL,S. Now let S = {I}. Then, by
Lemma 3.10, it is clear that there is no cycle in ΓL,S.

4. Planarity of ΓL,S

In this section we assume that S ⊆ Max(L), |S| ≥ 2 and 0 ∈ L.

Notation 4.1. To simplify of notations, let S = {M1,M2, . . . ,Mn} be a subset
of maximal ideals of I∗(L). We set Si :=

{

F |F ⊆ Mi and F *
⋃

j 6=iMj

}

and

Sij :=
{

F |F ⊆ Mi ∩ Mj and F *
⋃

k 6=i,j Mk

}

and similarly S12···n := {F |F ⊆
M1 ∩M2 ∩ · · · ∩Mn}.

Remark 4.2. Let S = {M1,M2, . . . ,Mn} be a subset of maximal ideals of I∗(L).
If, for all 2 ≤ k ≤ n, Si1i2···ik = {0}, then the graph ΓL,S is a planar bipartite
graph as it is shown in Figure 1. In the case that n = 2, if S1 ∪ S2 = S and
S12 6= {0}, then ΓL,S is also a planar bipartite graph as it is shown in Figure 2,
where, for 1 ≤ k ≤ ℓ, Ak ∈ S12.

In the rest of this section, we assume that, for some 1 ≤ k ≤ n, Si1i2···ik 6= {0}.

Theorem 4.3. Let S be a subset of maximal ideals of I∗(L). Then ΓL,S is a

3-partite graph and diam(ΓL,S) ≤ 3.

Proof. Put X1 = {L}, X2 = S and X3 = I(L) \ (S ∪ {L}). As elements of
S are maximal ideals, X2 is an independent set and we claim that X3 is also
an independent set. For, if there are two vertices I and J in X3 such that I is
adjacent to J , then there is a vertex Mi ∈ S such that I ∨Mi = J or J ∨Mi = I,
and therefore either Mi ⊆ I or Mi ⊆ J . But Mi is a maximal ideal, and this is a
contradiction.
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Now, let I and J be two non adjacent vertices. We know that any vertex in
S is adjacent to L. So it is enough to consider the following cases:

Case 1. I ∈ X1. In this case J is in X3, and since ΓL,S is connected, J is
adjacent to a vertex of X2, and hence d(I, J) = 2.

Case 2. I ∈ X2 and J ∈ X3. In this situation we can easily see that d(I, J)
= 2.

Case 3. I, J ∈ X3. In this case if I, J ∈ S12···n, then for all vertices Mk in X2,
I, J are adjacent to Mk, and if I ∈ S12···n and J /∈ S12···n, then for each maximal
ideal Mk in X2, I is adjacent to Mk. If J and Mk are not comparable, then we
have the path J −L−Mk − I, and if J ⊆ Mk, then d(I, J) = 2. If I, J /∈ S12···n,
then there are elements Mi and Mj in X2 such that I * Mi and J * Mj . Thus
we have the path I − L− J .

By considering the above cases we have diam(ΓL,S) ≤ 3.

The following corollary follows from Theorem 4.3.

Corollary 4.4. Let S be a subset of maximal ideals of I∗(L). Then S ∪ {L} is

a dominating set for ΓL,S.

Now we study the planarity of ΓL,S in the case that S is a subset of maximal
ideals of I∗(L). Let |S| ≥ 3 and J(L) 6= 0. As 0, L and J(L) are adjacent to all
elements of S, we have ΓL,S has a subgraph isomorphic to K3,3. Thus ΓL,S is not
planar. Therefore we assume that J(L) = 0.

Lemma 4.5. Let S = {M1,M2,M3}. If |S123| > 1, then ΓL,S is not planar, and

if |S123| = 1, then we have the following statements:

1. If, for some i, j, |Sij | ≥ 2, then ΓL,S is not planar.

2. If, for all i, j, |Sij| ≤ 1, then ΓL,S is a planar graph.
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Proof. As |S123| > 1, there is a nonzero ideal F ∈ S123, and hence 0, L, F are
adjacent to every element of S. Therefore ΓL,S has a subgraph isomorphic to
K3,3 and it is not planar. Now suppose that |S123| = 1. For the first statement,
without loss of generality, we may assume that |S12| = 2 and F1, F2 ∈ S12.
Therefore we have a subdivision of K3,3 in ΓL,S as it is pictured in Figure 3, and
hence the graph ΓL,S is not planar.
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For the second statement, let |Sij | ≤ 1 for all i, j. Then ΓL,S is a planar
graph, as it is shown in Figure 4, where Fij ∈ Sij.
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Proposition 4.6. Let S be a subset of maximal ideals of I∗(L) with |S| ≥ 4.
Then we have the following statements:

(1) If, for some i1, i2, . . . , ik, with 3 ≤ k ≤ n−1, Si1i2···ik 6= {0} or S12···n 6= {0},
then ΓL,S is not planar.

(2) If, for all j1, j2, . . . , jk, with 3 ≤ k ≤ n−1, Sj1j2···jk = {0}, S12···n = {0} and

for some i, j, |Sij| ≥ 2, then ΓL,S is not planar.



Cayley sum graph 227

(3) If, for all i, j, |Sij | ≤ 1 and there are integers i1, i2, . . . , ik, k ≥ 3 such that

Si1i2 , Si2i3 , . . . , Sik−1ik , Si1ik are non empty or there are integers i, j1, j2, . . . , jk
such that Sijl 6= {0}, where l = 1, 2, . . . , k and k ≥ 3, then ΓL,S is not a pla-

nar graph.

Proof. (1) Let S = {M1,M2, . . . ,Mn}. If, for some j1, j2, . . . , jk, 3 ≤ k ≤ n− 1,
Sj1j2···jk 6= {0} or S1,2,...,n 6= {0}, then ΓL,S has a subgraph isomorphic to K3,3,
and hence ΓL,S is not planar.

(2) If, for some i, j, |Sij| ≥ 2 and F1, F2 ∈ Sij, then we have a subdivision of
K3,3 in ΓL,S as it is shown in Figure 5. Thus ΓL,S is not planar.
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(3) Suppose that there are integers i1, i2, . . . , ik, with k ≥ 3 such that Si1i2 ,
Si2i3 , . . . , Sik−1ik , Si1ik are non empty. Then ΓL,S has a subdivision of K3,3 as it
is shown in Figure 6. Now, assume that there are integers i, j1, j2, . . . , jk such
that Sijl 6= {0}, l = 1, 2, . . . , k and k ≥ 3. Then ΓL,S has a subdivision of K3,3 as
it is pictured in Figure 7.
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In the sequel of this section, we deal with the outerplanarity of ΓL,S. By [9],
we know that every outerplanar graph is a ring graph and every ring graph is a
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planar graph. Let S be a subset of maximal ideals of I∗(L) with |S| ≥ 3 and ΓL,S

is a planar graph. By Proposition 4.5, for all i, j, we have |Sij | ≤ 1, and if at
least one Sij is non-empty, then ΓL,S has an induced subgraph H that is satisfied
in the conditions of Lemma 1.1. Therefore ΓL,S has a subdivision isomorphic to
K4, as it is shown in Figure 8. Hence it is not a ring graph.
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By [9, Lemma 2.9], for n ≥ 3, K2,n is not a ring graph. Now if, for all i, j,
Sij = {0} and at least one of the Si’s is non-empty, then ΓL,S has an induced
subgraph isomorphic to K2,n, n ≥ 3, and by [9, Corollary 2.15], ΓL,S is not a
ring graph. Assume that |S| = 2. If S12 6= {0}, then ΓL,S has an induced
subgraph isomorphic to K2,3, which is not a ring graph, and if S12 = {0}, then
rank(ΓL,S) = frank(ΓL,S) = |S1|+ |S2|+ 1. Therefore ΓL,S is a ring graph.

By the above discussion we have the following theorem.

Theorem 4.7. Let S be a subset of maximal ideals of I∗(L). Then ΓL,S is a

ring graph if and only if |S| = 2 and S12 = {0}.
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Proposition 4.8. Let S be a subset of maximal ideals of I∗(L) with |S| = 2.
Then ΓL,S is an outerplanar graph if and only if S12 = {0} and, for i = 1, 2,
|Si| ≤ 1.

Proof. Assume that S12 6= {0} or, for some i, |Si| ≥ 2. Therefore ΓL,S has a
subdivision isomorphic to K2,3, and hence ΓL,S is not an outerplanar graph. It
is clear that if S12 = {0} and, for i = 1, 2, |Si| ≤ 1, then ΓL,S is outerplanar.
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