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Abstract

Let R be a ring with center Z(R). A mapping f : R → R is said
to be strong commutativity preserving (SCP) on R if [f(x), f(y)] = [x, y]
and is said to be strong anti-commutativity preserving (SACP) on R if
f(x) ◦ f(y) = x ◦ y for all x, y ∈ R. In the present paper, we apply the
standard theory of differential identities to characterize SCP and SACP
derivations of prime and semiprime rings.
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1. Introduction

In everything that follows (unless otherwise mentioned), R will denote an asso-
ciative ring with center Z(R), U and Q stand for its Utumi quotient ring and
Martindale ring of quotients respectively. The center of U (and Q) is denoted by
C and called the extended centroid of R (more details of these objects can be
found in [5]). Recall, a ring R is said to be a prime ring if aRb = (0) implies
a = 0 or b = 0 and is called a semiprime ring if aRa = (0) implies a = 0 for all
a, b ∈ R. For any a, b ∈ R, the symbol [a, b] = ab − ba denotes the commutator
and a◦b = ab+ba denotes the anti-commutator. An additive subgroup L is called
Lie ideal of R if [L,R] ⊆ L and an additive subgroup J of R is called Jordan
ideal of R if J ◦ R ⊆ J . For more information about Jordan ideals one may see
[31]. By a derivation of R, we mean an additive mapping ψ : R → R such that
ψ(ab) = ψ(a)b + aψ(b) for each a, b ∈ R. For a fixed element k ∈ R, a mapping
ψk : R → R such that a 7→ [k, a] for all a ∈ R is called the inner derivation of
R associated with k, which is an immediate example of a derivation. A mapping
Φ : R → R is called the generalized derivation of R if there exists a derivation ψ
of R such that Φ(ab) = Φ(a)b+ aψ(b) for all a, b ∈ R. Let f : R → R be a map-
ping such that [a, b] = 0 implies [f(a), f(b)] = 0 for all a, b ∈ R. Then f is called
a commutativity preserving map on R. For instance, let φ be an automorphism
(or anti-automorphism) of R and g be a mapping that maps R into Z(R). Then
a mapping f : R → R defined by

f(u) = λφ(u) + g(u)

for all u ∈ R and some fixed λ ∈ Z(R) is a commutativity preserving map on
R. More generally, a mapping f : R → R is said to be strong commutativity
preserving (SCP) on R if [a, b] = [f(a), f(b)] for all a, b ∈ R. Analogously, f is
called strong anti-commutativity preserving (SACP) on R if a◦b = f(a)◦f(b) for
all a, b ∈ R. By our best knowledge, Bell and Daif [7], Brešar and Miers [10] first
time investigated SCP mappings on prime and semiprime rings simultaneously.

In the recent literature there are many papers on commutativity of prime
and semiprime rings with commutator and anti-commutator constraints involving
elements of the rings and the images of the elements under suitable mappings
(see [1, 3, 8, 14, 19, 20, 31] and the references therein). In [7], Bell and Daif
initiated the concept of SCP derivations and obtained the following result: If
a semiprime ring R admits a derivation which is SCP on a right ideal I, then
I ⊆ Z(R). In particular, R is commutative if I = R. At the same time, Brešar
and Miers [10] characterized the nature of additive SCP mappings of semiprime
rings. In fact, they proved that any additive SCP mapping φ of a semiprime ring
R must takes the form φ(x) = λx+ ξx where λ ∈ C, λ2 = 1 and ξ is an additive
mapping of R into C. In [14], Deng and Ashraf proved that if a semiprime ring
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R admits a derivation ψ and a mapping f satisfying [f(x), ψ(y)] = [x, y] for all
x, y ∈ R, then R is commutative. Further, Ma et al. [28] described the structure
of the generalized derivations which are SCP on appropriate subsets of prime
and semiprime rings. Recently, Liu et al. [27] presented a systematic study of
SCP generalized derivations on Lie ideals of prime rings and described their all
possible forms.

In the meanwhile, many authors obtained some interesting outcomes from
SACP mappings as well. In 2002, Ashraf and Rehman [3] obtained the commu-
tativity of prime rings admitting derivations which are SACP on nonzero ideals.
Further, Bell and Rehman [8] obtained the description of generalized derivation
Φ satisfying Φ(x) ◦ Φ(y) = ±(x ◦ y) on unital rings. Recently, Ali and Huang
[2] examined the SACP derivations of semiprime rings. Specifically, they proved:
Let R be a 2-torsion free semiprime ring and I a nonzero ideal of R. Let ψ
be a derivation of R such that ψ(x) ◦ ψ(y) = ±(x ◦ y) for all x, y ∈ I, then ψ

is commuting on I. Moreover, if ψ(I) 6= 0, then R contains a nonzero central
ideal. In addition, Huang [19] proved a similar result which is stated as: Let
R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R
admits a generalized derivation Φ associated with a nonzero derivation ψ such
that (Φ(x ◦ y))n = x ◦ y for all x, y ∈ I, then R is commutative. Continuing in
this vein, we mainly investigate the following situations:

1. (Φ(x) ◦Φ(y))m = (x ◦ y)n

2. [Φ(xm),Φ(yn)]k = [xm, yn]k

on prime as well as semiprime rings, where Φ is generalized derivation of R linked
with derivation ψ. We also extend a classical theorem of Herstein ([17], Theorem
2). The following remarks will be used in this sequel.

Remark 1. Let R be a prime ring and U the Utumi quotient ring of R. It
is a well-known fact that every derivation of R can be uniquely extended to a
derivation of U. In 1999, Lee ([24], Theorem 3) proved that every generalized
derivation Φ on a dense right ideal of R associated with a derivation ψ can be
uniquely extended to a generalized derivation of U. Furthermore, the extended
generalized derivation takes the form Φ(x) = αx + ψ(x) for all x ∈ U, for some
α ∈ U.

Remark 2. In [22] Kharchenko proved a very fundamental result which is stated
as: Let R be a prime ring, ψ be a nonzero derivation and I be a nonzero ideal of
R. Let P (x1, x2, . . . , xn, ψ(x1), ψ(x2), . . . , ψ(xn)) be a differential identity in I,
i.e.,

P (x1, x2, . . . , xn, ψ(x1), ψ(x2), . . . , ψ(xn)) = 0 for all x1, x2, . . . , xn ∈ I.

Then one of the following holds:
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1. ψ is Q-inner derivation, i.e., there exists a β ∈ Q such that ψ(x) = [β, x] for
all x ∈ R and I satisfies the generalized polynomial identity P (x1, x2, . . . , xn,
[β, x1], [β, x2], . . . , [β, xn]) = 0;

2. I satisfies the generalized polynomial identity P (x1, x2, . . . , xn, t1, t2, . . . ,
tn) = 0.

2. The results in prime rings

Theorem 3. Let R be a prime ring and I a nonzero ideal of R. If Φ : R → R
is a generalized derivation of R associated with a nonzero derivation ψ such that
(Φ(x) ◦Φ(y))m = (x ◦ y)n for all x, y ∈ I, where m,n ≥ 1 are fixed integers, then
R is commutative.

Proof. By the given hypothesis, we have (Φ(x)◦Φ(y))m = (x◦y)n for all x, y ∈ I.
In case, Φ = 0, then we have (x ◦ y)n = 0 for all x, y ∈ I. If char(R) 6= 2, we may
get (2x2)n = 0 for all x ∈ I, which is a contradiction by Xu [32]. If char(R) = 2,
then we find (x ◦ y)n = 0 = [x, y]n for all x, y ∈ I. In view of Herstein ([18],
Theorem 2), we find I ⊆ Z(R) and hence R is commutative.

Henceforth, we assume that Φ 6= 0 and

(Φ(x) ◦Φ(y))m = (x ◦ y)n

for all x, y ∈ I. By Remark 1, we have ((αx + ψ(x)) ◦ (αy + ψ(y)))m = (x ◦ y)n

for all x, y ∈ I and where α ∈ Q. It is equivalent to

((αx ◦ αy) + (αx ◦ ψ(y)) + (ψ(x) ◦ αy) + (ψ(x) ◦ ψ(y)))m = (x ◦ y)n

for all x, y ∈ I.
By Kharchenko’s (Remark 2) theory of differential identities, we may split

the proof into two parts:
Suppose that ψ is a Q-outer derivation. Then I satisfies the generalized

polynomial identity ((αx ◦ αy) + (αx ◦ s) + (r ◦ αy) + (r ◦ s))m = (x ◦ y)n. In
particular for x = y = 0, I satisfies polynomial identity (r ◦ s)n = 0. Then R is
commutative, by the similar arguments given above.

On the other hand, let ψ be a Q-inner derivation induced by an element
β ∈ Q, i.e., ψ(x) = [β, x] for all x ∈ R. Thus the hypothesis yields

(1) ((αx ◦ αy) + (αx ◦ [β, y]) + ([β, x] ◦ αy) + ([β, x] ◦ [β, y]))m = (x ◦ y)n

for all x, y ∈ I. Set P(x, y) = ((αx ◦ αy) + (αx ◦ [β, y]) + ([β, x] ◦ αy) + ([β, x] ◦
[β, y]))m − (x ◦ y)n. As we know that I,R and Q satisfy same GPI, so (1) is also
a GPI for Q. That means, P(x, y) = 0 for all x, y ∈ Q. In case, the center C of
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Q is infinite, we have P(x, y) = 0 for all x, y ∈ Q ⊗C C (see [26], Proposition),
where C denotes the algebraic closure of C. Since Q and Q⊗C C both are prime
and centrally closed, with the aid of results due to Erickson et al. ([15], Theorem
2.5 and Theorem 3.5) we may replace R by Q or Q⊗C C according as C is finite
or infinite. Thus, we may assume that C = Z(R) and R is centrally closed C-
algebra (i.e., RC = R), which is either finite or algebraically closed. A theorem
by Martindale ([29], Theorem 3) gives that R (or RC) is a primitive polynomial
ring having nonzero socle and the commuting division ring D, which is a finite
dimensional central division algebra over Z(R). Since Z(R) is either finite or
algebraically closed, D and Z(R) must coincide.

Moreover, by Jacobson ([21], pg no. 75), R is isomorphic to a dense ring of
linear transformations of some vector space V over Z(R), i.e., R ∼= End(VZ(R)).
If V is finite dimensional over Z(R), then the density of R on V implies that
R ∼=Mk(Z(R)), where k denotes the dimension of V over Z(R).

Suppose that dim(V) ≥ 3. Next, we intend to show that for any v ∈ V,
the set {v, βv} is linearly dependent over Z(R). If v = 0 we have nothing to
prove. Suppose that v 6= 0. If the set {v, βv} is linearly independent over Z(R),
so as dim(V) ≥ 3 there exits some w ∈ V such that {v, βv,w} is also linearly
independent set. By the density of R in End(VZ(R)), there exist x, y ∈ R such
that

xv = 0; xβv = −w; xw = w; xβw = 0
yv = 0; yβv = −v; yw = 0; yβw = v + w

with all these in hand, from the assumptions, we obtain that (αx ◦ αy)v = (αx ◦
[β, y])v = ([β, x] ◦ αy)v = 0 and ([β, x] ◦ [β, y])v = −v. That yields

0 = (((αx ◦ αy) + (αx ◦ [β, y]) + ([β, x] ◦ αy) + ([β, x] ◦ [β, y]))m − (x ◦ y)n)v

= (−1)mv,

which is a contradiction. Hence the set {v, βv} must be linearly dependent over
Z(R). That means there exists some λ ∈ Z(R) such that βv = vλ for all v ∈ V.
Now, we claim that λ does not depend on the choice of v ∈ V. If it is so, let v,w ∈
V. Now, if v and w are linearly independent over Z(R), then by assumption there
exist λ1, λ2, λ3 ∈ Z(R) such that βv = vλ1, βw = wλ2 and β(v+w) = (v+w)λ3.
Thus, we have

vλ1 + wλ2 = βv + βw = β(v + w) = (v + w)λ3

i.e., v(λ1 − λ3) + w(λ2 − λ3) = 0.

Since v and w are linearly independent, the above equation yields that λ1 = λ2 =
λ3. In the latter case, if v and w are linearly dependent over Z(R), i.e., v = wδ

for some δ ∈ Z(R). Then we obtain vλ1 = βv = βwδ = wλ2δ = wδλ2 = vλ2
implying that λ1 = λ2.
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Now, for any r ∈ R and v ∈ V, we have r(βv) = r(vλ). On the other hand
β(rv) = rvλ. Together these relations yield [r, β]v = 0 for all v ∈ V, r ∈ R.
Since V is a left faithful irreducible R-module, we infer that [R, β] = (0), i.e.,
β ∈ Z(R) and so ψ = 0, which violates our assumption. Now suppose that
dim(V) ≤ 2. In this case R is a simple GPI-ring with unity and so it is a central
simple algebra which is finite dimensional over its center. In light of Lanski
([23], Lemma 2), it follows that there exists a suitable field (say) F such that
R ⊆ Mk(F) and moreover Mk(F) and R satisfy the same GPI. In case k ≥ 3,
then by the same argument as above we arrive at a contradiction. Obviously, if
k = 1, R is commutative. Thus, we may assume that k = 2, i.e., R ⊆ M2(F),
where M2(F) satisfies

((αx ◦ αy) + (αx ◦ [β, y]) + ([β, x] ◦ αy) + ([β, x] ◦ [β, y]))m − (x ◦ y)n = 0.

Denote by eij the usual unit matrix with 1 at (i, j)-entry and 0 elsewhere. By

choosing x = y = e12 and β =

(

β11 β12
β21 β22

)

in the above identity and then right

multiplying by e12, one can easily get e12(βe12)
2n = 0. That is,

(

0 (β21)
2n

0 0

)

= 0

and it implies β21 = 0. Similarly, we can get β12 = 0. Thus in all, we see that β is
a diagonal matrix inM2(F). Let µ ∈ Aut(M2(F)). Since ((µ(α)µ(x)◦µ(α)µ(y))+
(µ(α)µ(x)◦[µ(β), µ(y)])+([µ(β), µ(x)]◦µ(α)µ(y))+([µ(β), µ(x)]◦[µ(β), µ(y)]))m−
(µ(x) ◦ µ(y))n = 0, so µ(β) must be diagonal matrix in M2(F). In particular, let
µ(x) = (1 − eij)x(1 + eij) for i 6= j. Then µ(β) = β + (βii − βjj)eij , that is
βii = βjj for i 6= j. It implies that β is central in M2(F), which leads to ψ = 0, a
contradiction. Hence, the proof is completed.

Corollary 4. Let R be a prime ring and I a nonzero ideal of R. If R admits a
generalized derivation which is strong anti-commutativity preserving (SACP) on
I, then R is commutative.

It may be relevant here to mention that a Jordan ideal need not to be an ideal

of a ring, but the converse is true always. For example, let R = {

(

a b

0 c

)

:

a, b, c ∈ Z2}, where Z2 denotes the ring of integers modulo 2. Then it is not

difficult to check that the subset J = {

(

a b

0 a

)

: a, b ∈ Z2} is a Jordan ideal

but not an ideal of R. However, the above ring is neither prime nor 2-torsion free.
But in view of [31], we may say that in prime rings with 2-torsion free condition,
the Jordan ideals are close to the ideals. Consequently, we have the following
result:

Corollary 5. Let R be a prime ring with 2-torsion free condition and J a nonzero
Jordan ideal of R. If Φ : R → R is a generalized derivation of R associated with
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a nonzero derivation ψ such that (Φ(x)◦Φ(y))m = (x◦y)n for all x, y ∈ J , where
m,n ≥ 1 are fixed integers, then R is commutative.

Proof. If J ⊆ Z(R), then by Lemma 3 of [30], R is commutative. Let us suppose
that J 6⊆ Z(R). Thus, using Lemma 2.2 of [31] we get that J contains a nonzero
two sided ideal I = 2R[[J ,J ],J ]R. The given hypothesis is

(Φ(x) ◦Φ(y))m = (x ◦ y)n

for all x, y ∈ I. Hence the conclusion follows from Theorem 3.

For any x, y ∈ R and each non-negative integer n, define [x, y]n inductively
by [x, y]0 = x, [x, y]1 = [x, y] = xy − yx and [x, y]i = [[x, y]i−1, y] for all i ≥ 1.
If there exists a positive integer n such that [x, y]n = 0 for all x, y ∈ R, then
R is said to satisfy an Engel condition. A famous results of Herstein [17] proves
that: Let R be a prime ring with 2-torsion free condition, which admits a nonzero
derivation ψ such that [ψ(x), ψ(y)] = 0 for all x, y ∈ R, then R is commutative.
In the following theorem, we prove a more generalized version of this result:

Theorem 6. Let R be a prime ring with 2-torsion free condition and I a nonzero
ideal of R. If Φ : R → R is a generalized derivation of R associated with a nonzero
derivation ψ such that [Φ(x), ψ(y)]m = 0 for all x, y ∈ I, where m ≥ 1 a fixed
integer, then R is commutative.

Proof. By the given hypothesis, we have

(2) [Φ(x), ψ(y)]m = 0 for all x, y ∈ I.

In light of Remark 1, we have Φ(x) = αx + ψ(x) for some α ∈ Q and Eq. (2)
becomes

[αx,ψ(y)]m + [ψ(x), ψ(y)]m = 0 for all x, y ∈ I.

In the view of Kharchenko (see Remark 2), either ψ is the inner derivation as-
sociated with an element β ∈ Q or I satisfies the polynomial identity [αx, t]m +
[s, t]m = 0. In the latter case, for x = 0, we may infer that [s, t]m = 0 =
[Is(t), t]m−1 for all s, t ∈ I, where Is denotes the inner derivation of R asso-
ciated with s. In view of Lanski ([23], Theorem 1), either R is commutative or
Is = 0, i.e., I ⊆ Z(R) in which case R is also commutative.

We now suppose that ψ(x) = [β, x] for all x ∈ R. Then I satisfies the non-
trivial generalized polynomial identity

(3) [αx, [β, y]]m + [[β, x], [β, y]]m = 0.

Since we know that I, R and Q satisfy same GPIs, we have

(4) [αx, [β, y]]m + [[β, x], [β, y]]m = 0 for all x, y ∈ R.
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As implications in the proof of Theorem 3, we see thatR is the primitive ring with
nonzero socle and Z(R) as the associated division ring. If V is finite dimensional
over Z(R), then the density of R implies that R ∼= Mk(Z(R)), where k denotes
the dim(V) over Z(R).

Suppose that dim(V) ≥ 2, otherwise we are done. We shall show that for
any v ∈ V, the set {v, βv} is linearly dependent over Z(R). If v = 0 we have
nothing to prove. Therefore, for v 6= 0 we assume that the set {v, βv} is linearly
independent over Z(R).

If β2v 6∈ Span{v, βv}, then the set {v, βv, β2v} is linear independent over
Z(R). By the density of R in End(VZ(R)), there exist x, y ∈ R such that

xv = 0; xβv = −βv; xβ2v = 0

yv = 0; yβv = v; yβ2v = 3βv.

with all these, we find that

0 = ([αx, [β, y]]m + [[β, x], [β, y]]m)v = βv

which is not possible. It forces that β2v ∈ Span{v, βv}. Thus, for some a, b ∈
Z(R), we have β2v = va+ βvb.

Again with the density of R in End(VZ(R)), there exist x, y ∈ R such that

xv = 0; xβv = −βv

yv = 0; yβv = v

In the view of our assumptions, we obtain

0 = ([αx, [β, y]]m + [[β, x], [β, y]]m)v

= (−1)m2m−1(2βv − vb),

where b ∈ Z(R). The assumption of 2-torsion freeness on R forces that b 6= 0 and
implying that the set {v, βv} is linearly dependent over Z(R), a contradiction.
Thus, for each v ∈ V, βv = vλ for some λ ∈ Z(R). As in the proof of Theorem
3, by standard arguments we can show that λ is not depending on the choice of
v ∈ V. Thence, βv = vλ for all v ∈ V and a fixed λ ∈ Z(R). In an analogous
manner, we conclude that ψ = 0, which is not so. It completes the proof.

In [16], Filippis and Scudo introduced a mappings f : R → R such that
[f(x), f(y)]k = [x, y]k for all x, y ∈ R, where k is a fixed positive integer. They
call it strong Engel-condition preserving (SEP for brevity). Before, giving our
next theorem on SEP generalized derivations, we give some useful lemmas.

Lemma 7. Let R be a 2-torsion free prime ring. If L1 and L2 are noncentral
Lie ideals of R, then [L1,L2] is also a noncentral Lie ideal of R.
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Proof. Firstly, it is not difficult to see that L = [L1,L2] is a Lie ideal of R. If
possible, let us assume that L ⊆ Z(R). In case Z(R) = (0), we have [u, v] = 0 for
all u ∈ L1 and v ∈ L2. That is, u ∈ CR(L2). By Lemma 2 of [9], we get u ∈ Z(R)
and hence L1 ⊆ Z(R), a contradiction. In the latter case, we find [u, v] ∈ Z(R)
for all u ∈ L1 and v ∈ L2. It gives, [u, [u, v]] = 0 for all u ∈ L1 and v ∈ L2.

That is, I2u(L2) = (0), where Iu stands for the inner derivation of L induced by
u and defined as Iu(x) = [u, x] for all x ∈ L. In light of Theorem 1 of [9], we get
L2 ⊆ Z(R), which is an absurd. It completes the proof.

Lemma 8. Let g be a polynomial in n noncommuting variables u1, u2, . . . , un
with relatively prime integer coefficients. Then the following are equivalent:

(i) Every ring satisfying the polynomial identity g = 0 has nil commutator ideal.

(ii) Every semiprime ring satisfying g = 0 is commutative.

(iii) For every prime p the ring of 2× 2 matrices over Zp fails to satisfy g = 0.

Theorem 9. Let R be a prime ring with 2-torsion free condition and I a nonzero
ideal of R. If Φ : R → R is a generalized derivation of R associated with a
nonzero derivation ψ, such that [Φ(xm),Φ(yn)]k = [xm, yn]k for all x, y ∈ I,
where m,n, k ≥ 1 are fixed integers, then R is commutative.

Proof. By the given hypothesis, we have

[Φ(xm),Φ(yn)]k = [xm, yn]k

for all x, y ∈ I. A theorem due to Chuang ([11], Theorem 2) says that I,R and
Q satisfy same GPIs, hence we have [Φ(xm),Φ(yn)]k = [xm, yn]k for all x, y ∈ R.
If Φ = 0, we have [xm, yn]k = 0 for all x, y ∈ R, which is a polynomial identity in
noncommuting variables x, y and we denote it by Ω(x, y). If possible, assume that
for some prime integer p the ring M2(GF (p)) satisfies Ω(x, y). Choosing x = e11
and y = e11 + e21, where eij denotes the 2× 2 matrix with 1 in (ij)th-entry and 0
elsewhere. With these choices, we see that Ω(x, y) 6= 0, a contradiction. In view
of Lemma 8, R is commutative, again a contradiction. Henceforth, let Φ 6= 0. If
we denote by G and H the additive subgroups generated by the sets {xm : x ∈ R}
and {yn : y ∈ R} respectively, it is easy to see that

[Φ(u),Φ(v)]k = [u, v]k for all u ∈ G, v ∈ H.

On the other hand, Chuang ([13], Main Theorem) proved that the additive sub-
group generated by noncentral polynomial in a prime ringR contains a noncentral
Lie ideal L, unless when char(R)=2 andR =M2(F ). Our assumption of 2-torsion
freeness in R implies that G contains a noncentral Lie ideal L1 or xm ∈ Z(R) for
all x ∈ R. Analogously, H contains a noncentral Lie ideal L2 or yn ∈ Z(R) for
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all y ∈ R. Of course, we must assume xm and yn are not central, in view of our
assumption. Thus, we have

[Φ(u),Φ(v)]k = [u, v]k for all u ∈ L1, v ∈ L2.

Since L = [L1,L2] is a Lie ideal of R contained in L1 ∩ L2, it follows that
[Φ(u),Φ(v)]k = [u, v]k for all u, v ∈ L. Now, Corollary 4 of [16] forces L is central,
again a contradiction (see Lemma 7). This completes the proof.

Corollary 10. Let R be a prime ring with 2-torsion free condition and I a
nonzero ideal of R. If R admits a generalized derivation which is strong Engel-
commutativity preserving (SEP) on I, then R is commutative.

Corollary 11. Let R be a prime ring with 2-torsion free condition and J a
nonzero Jordan ideal of R. If Φ : R → R is a generalized derivation of R asso-
ciated with a nonzero derivation ψ such that [Φ(xm),Φ(yn)]k = [xm, yn]k for all
x, y ∈ J , where m,n, k ≥ 1 are fixed integers, then R is commutative.

3. Examples

The following examples demonstrate that the hypothesis of primeness on the ring
R is not redundant. Let G be any ring.

1. Let R = {

(

x y

0 0

)

: x, y ∈ G} and I = {

(

0 x

0 0

)

: x ∈ G}. Then R is a

ring with usual operations and I is an ideal of R. Let us define a map Φ : R → R
such that a 7→ λe11a − ae11, where λ is a fixed integer and a map ψ : R → R
such that a 7→ e11a − ae11 for all a ∈ R. It is not difficult to see that Φ is
a generalized derivation associated with derivation ψ. Moreover, for any fixed
positive integers m,n, k these mappings satisfy the identities (Φ(x) ◦ Φ(y))m =
(x ◦ y)n; [Φ(x), ψ(y)]k = 0 and [Φ(xm),Φ(yn)]k = [xm, yn]k for all x, y ∈ I.
However, R is not commutative.

2. Let R = {

(

x y

0 z

)

: x, y ∈ G} and I = {

(

0 x

0 0

)

: x ∈ G}. Then R is a ring

with usual operations and I is an ideal of R. Let us define a map Φ : R → R such

that

(

x y

0 z

)

7→

(

x ny

0 0

)

, where n is a fixed integer and a map ψ : R → R

such that

(

x y

0 z

)

7→

(

0 (n − 1)y
0 0

)

. One may easily check that Φ is a gen-

eralized derivation associated with derivation ψ satisfying the following identities:
(Φ(x) ◦ Φ(y))m = (x ◦ y)n; [Φ(x), ψ(y)]k = 0 and [Φ(xm),Φ(yn)]k = [xm, yn]k for
all x, y ∈ I and for fixed integers m,n, k ≥ 1. But R is not commutative.
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4. The results in semiprime rings

Theorem 12. Let R be a semiprime ring and Φ : R → R be a generalized
derivation of R associated with a derivation ψ. Suppose that (Φ(x) ◦ Φ(y))m =
(x ◦ y)n for all x, y ∈ R, where m,n ≥ 1 are fixed integers, then there exists
a central idempotent element e in U such that on the direct sum decomposition
R = eU

⊕

(1 − e)U, the derivation ψ vanishes identically on eU and the ring
(1− e)U is commutative.

Proof. Let R be a semiprime ring and Φ is a generalized derivation of R. By Lee
[24], Φ takes the form Φ(x) = αx + ψ(x) for some fixed α ∈ U and a derivation
ψ on U.

((αx+ ψ(x)) ◦ (αy + ψ(y)))m = (x ◦ y)n

for all x, y ∈ R. Again, by Lee ([25], Theorem 3), R and U satisfy the same
differential identities. Then

((αx ◦ αy) + (αx ◦ ψ(y)) + (ψ(x) ◦ αy) + (ψ(x) ◦ ψ(y)))m = (x ◦ y)n

for all x, y ∈ U. Let B be the complete Boolean algebra of idempotents in C,

where Z(U) = C (see [12], pg no. 38) and M be any maximal ideal of B. Since
U is B-algebra which is orthogonal complete (see [12], pg no. 42), MU is a prime
ideal of U, which is invariant under ψ (see [6], Proposition 2.5.1). Let U = U

MU
,

which is clearly a prime ring and ψ denotes the derivation induced by ψ on U,
i.e., ψ(q) = ψ(q) for any q ∈ U. Thus, ψ has the same nature in U as ψ has in
U. Now, from Theorem 3 it follows that either U is commutative or ψ is zero.
That means, either [U,U ] ⊆ MU or ψ(U) ⊆ MU for all maximal ideal M of B.
Therefore we must have ψ(U)[U,U ] ⊆ MU , where MU varies over all minimal
prime ideals of U. Since

⋂

MU = (0), we infer that ψ(U)[U,U ] = (0).

By applying the theory of orthogonal completion for semiprime rings (see [5],
Chapter 3), we see that there exists a central idempotent element e in U such
that on U = eU

⊕

(1− e)U, the derivation ψ vanishes identically on eU and the
ring (1− e)U is commutative.

By using same arguments as used in the proof of above theorem, we may
conclude with the following (for the sake of brevity, we omit the proof here):

Theorem 13. Let R be a semiprime ring with 2-torsion free condition and Φ :
R → R be a generalized derivation of R associated with a derivation ψ. Suppose
that [Φ(xm),Φ(yn)]k = [xm, yn]k for all x, y ∈ R, where m,n, k ≥ 1 are fixed
integers, then there exists a central idempotent element e in U such that on the
direct sum decomposition R = eU

⊕

(1−e)U, the derivation ψ vanishes identically
on eU and the ring (1− e)U is commutative.



60 G.S. Sandhu, D. Kumar and B. Davvaz

Corollary 14 (Theorem 2.1, [4]). Let m ≥ 1, n ≥ 1 be fixed integers and let R
be a semiprime ring with 2-torsion free condition. If R admits a derivation ψ

such that [ψ(xm), ψ(yn)] = [xm, yn] for all x, y ∈ R, then R is commutative.

Corollary 15. If R is a semiprime ring with 2-torsion free condition, which
admits a SCP generalized derivation Φ associated with a nonzero derivation ψ,
then R is commutative.

Theorem 16. Let R be semiprime ring with 2-torsion free condition and Φ : R →
R be a generalized derivation of R associated with a derivation ψ. Suppose that
[Φ(x), ψ(y)]m = 0 for all x, y ∈ R, where m ≥ 1 a fixed integer, then there exists
a central idempotent element e in U such that on the direct sum decomposition
R = eU

⊕

(1 − e)U, the derivation ψ vanishes identically on eU and the ring
(1− e)U is commutative.
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