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Abstract

The notion of a RM algebra, introduced recently, is a generalization of
many other algebras of logic. The class of RM algebras contains (weak-)BCC
algebras, BCH algebras, BCI algebras, BCK algebras and many others. A
RM algebra is an algebra A = (A; —,1) of type (2,0) satisfying the identi-
ties: £ > x =1 and 1 — = = z. In this paper we study the set of maximal
elements of a RM algebra, branches of a RM algebra and moreover transla-
tion deductive systems of a RM algebra giving so called the Representation
Theorem for RM algebras.
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1. INTRODUCTION

In 1966, Imai and Iséki [2, 5] defined two classes of algebras called BCK algebras
and more generalized BCI algebras as algebras connected with some logics. In
1983, Hu and Li [1] introduced BCH algebras as a generalization of BCI alge-
bras. In 1991, Ye [10] defined the notion of BZ algebras (called also weak-BCC
algebras). In 2009, Meng [6] introduced the notion of CI algebras (called RME
algebras in [3, 4]). In [3] Iorgulescu found some new distinct generalizations of
BCK algebras, in particular, pre-BCI, pre-BZ, pre-BBBZ and RME algebras. All
of these above algebras are contained in the class of RM algebras. A RM algebra
is an algebra A = (A4;—,1) of type (2,0) satisfying the identities: = — =z =1
and 1 — x = z. Recently, Walendziak [9] investigated deductive systems and
congruences in RM algebras. He introduced the notion of a translation deductive
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system in a RM algebra, gave its elementary properties and constructed quotient
algebra A/D of a RM algebra A via a translation deductive system D of A.

In Section 3 of this paper we investigate some special subsets of a RM algebra
A. We study the set G(A) of all maximal elements of a RM algebra A and
give some properties and characterizations of it. We show that the set G(A)
is a subalgebra of some RM algebras A. In Section 3 we also study so called
branches of a RM algebra, that is, sets B(a) = {z € A : x — a = 1}, where
a € G(A). We prove that branches determined by different elements are disjoint
and a RM algebra is a set-theoretic union of branches. In Section 4 we give
further investigations of translation deductive systems of a RM algebra. Among
other things we prove the Representation Theorem for RM algebras. In Section
2, some necessary material needed in the sequel is presented.

2. PRELIMINARIES

Let A = (A;—,1) always means an algebra of type (2,0). An algebra A can
satisfy the following list of properties [3]:

(An) z—sy=1l=y—z=>x=y,

) z—oy=1= (y—=2) = (x—2) =1,

(T

B) @—=y) > ((z—=2) > (z—y) =1,
BB) (z—=y) = ((y—=2) = (@—2) =1,
©€) @=(y—=2) > y—(—=2)=1
Ex) 2= (y = 2)=y— (v = 2),

(L) x> 1=1,
M) 1 >sz=ur,
N)l—oz=1= z=1,
(Re) x >z =1,
D) z = ((z—y) =y =1,

M zrz—oy=1= (z—=y —(z—x) =1,
)

r)

r—=y=1=(@y—2) = xz—2z=1
From [3] we have the following:
) + (Ex) imply (C),
Re) + (Ex) imply (D),
) +

( (D

(Re) + (Ex) + (An) imply (M),
4) (M) + (BB) imply (D),
5) (M) imply (N),
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(6) (Ex) imply (B) < (BB),
(7) (M) + (B) imply (Re), (*), (**) and (T),
(8) (M) + (BB) imply (B), (C), (D), (Re), (*), (**) and (Tr).

An algebra A is a RM algebra [3] if it satisfies the axioms: (Re) and (M). A
proper RM algebra is a RM algebra not satisfying (Ex), (An), (L), (B).

Example 2.1 [4]. Let A = {a,b,1} and define the binary operation — on A by
the following table:

H@‘Q\L
o = | o

a
1
1
a

— = Q-

Then A = (A;—,1) is a (proper) RM algebra.

Recall now the definitions of BCK, BCI, BCH and BE algebras. An algebra
Ais a:
e BCK algebra if it satisfies the axioms: (Re), (M), (B), (Ex), (L) and (An).
e BCI algebra if it satisfies the axioms: (Re), (M), (B), (Ex) and (An).
e BCH algebra if it satisfies the axioms: (Re), (Ex) and (An).
e BE algebra if it satisfies the axioms: (Re), (M), (Ex) and (L).

So, all these algebras are (non-proper) RM algebras. From [3] we have other
(non-proper) RM algebras. A RM algebra A is a:

RME algebra if it satisfies (Ex).

pre-BCI algebra if it satisfies (Ex) and (B).
pre-BCK algebra if it satisfies (L), (Ex) and (*).
pre-BBBZ algebra if it satisfies (BB).

In the paper we consider RM algebras with (D): RME, pre-BBBZ, pre-BCI,
pre-BCK, BCK, BCI, BCH and BE algebras, and RM algebras with (Ex): RME,
pre-BCI, pre-BCK, BCK, BCI, BCH and BE algebras.

Proposition 2.2. A RM algebra with (Ex) satisfies the following for all x,y, z:

r—=y—2)=1 y—=>(x—2) =1,
(x—=y)—=l=@x—1)—=(y—1),
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Proof. (1) Follows immediately by (Ex).
(2) By (Re) and (Ex) we have:

(=1 —=>@y—1)= y— ((z—=y) = (r—y))
z—y) = (2= (y—y))

(
(r —=y) = (z = 1)]
(

(3)By (Ex),y = l=y—=(r—y)=r—(y—y =21
4) By D),z — ((x —-1)—=1)=1,sofrom(3),z >1=((r—1)—1)—>1 =

Let A = (A;—,1) be an algebra of type (2,0). We define the binary relation
< on A by: for all z,y € A,

r<y & rz—y=1

In (proper) RM, RME and BE algebras < is only reflexive, in BCH algebra it is
reflexive and antisymmetric, in pre-BCK, pre-BCI and pre-BBBZ algebras it is
reflexive and transitive and in BCK and BCI algebras it is an order relation.

3. SPECIAL SUBSETS OF RM ALGEBRAS

Let A be a RM algebra. By G(A) we denote the set of all maximal elements of
A, that is,

GA) ={acA:a<z=2=a}
From (N), 1 € G(A).

Remark. If a RM algebra A satisfies (L), then G(A) = {1}. That is a trivial
case, so we will consider RM algebras without (L).

Lemma 3.1. Let A be a RM algebra. Then

(1) Ifa= (a — ) — x for any a,x € A, then a € G(A).

2 {red:iz=(xr—>1)—=>1}C{z—1:2€ A}

Proof. (1) Let y € A be such that a <y, that is, a - y = 1. Then, a = (a —
y) > y=1—y=y. Thus, a € G(A).

(2) If x = (x — 1) — 1, then putting z — 1 = a we obtain z = a — 1 for some
acA So,zef{a—1:aeA}. |
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Proposition 3.2. Let A be a RM algebra with (D) and a € A. Then the following
are equivalent:

(1) a € G(A),

(2) a=(a—x) = x for any x € A.

Proof. (1) = (2). By (D) we have a < (a — z) — z. Since a € G(A),
a=(a—z)—zx.

(2) = (1). Follows from (1) of Lemma 3.1. ]

Proposition 3.3. Let A be a RM algebra with (D). Then the following hold for
any a,b € G(A) and z € A:

(1) a<b=a=b,

(2

) a
B)a—z=(a—z)—>2)—>01,
(4)

Proof. (1) Obvious.
(2), (3) Follow immediately from Proposition 3.2.

=(a—1)—1,

a—r=b—x=a=0>.

(4) Assume a — x = b — x. Then, by Proposition 3.2, a = (a —» z) > 2 = (b —
x) —x =0 ]

Proposition 3.4. Let A be a RM algebra with (Ex). Then the following are
equivalent for any a,x,y € A:

(1) a € G(A),

(2

) a
B)r—=a=(a—>y) = (x—y),
(4)

Proof. (1) = (2). Follows from Proposition 3.2.

=(a—z) >,

r—a=((x—a) =y —y.

(2) = (3). By (Ex) and (2) we have (a —» y) > (x 2 y) =2 — (e = y) > y) =
T — a.

(3) = (4). By (M) and (3) we have ((z = a) = y) >y = ((zr = a) > y) —
(1—>y)—1—>(w—>a)—m—>a

(4) = (1). Let a,x € A and let a < . Then, a — = = 1. Hence, by (M) and (4)

it followsa=1—-a=((1 —»a) - 2) >z =(a = x) > x=1— 2=z Thus,
aeG(A) ]

Theorem 3.5. Let A be a RM algebra with (Ex). For any a,b € G(A) and
x € A the following hold:
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6) z—>1eG(A).
Proof. (1) From (2) of Proposition 3.3 and (Ex) we have
(a—=1)—=b=(@—=1)—=(b—1)—=1)
=b-=1)—=(a—1) —1)
=0b—=1) —>a.
2) Follows immediately from (3) of Proposition 3.4.
3) We get it by (2) of Proposition 2.2 and (2).

)
)

4) Tt follows by Proposition 3.4.
),

(
(
(
(5), (6) We get them by (4). ]

From (1) of Proposition 3.3, (3) of Proposition 3.4 and (5) of Theorem 3.5
we obtain the following theorem.

Theorem 3.6. Let A be a RM algebra with (Ex). Then (G(A); —,1) is a subal-
gebra of A. Precisely, it is a BCI algebra.

Theorem 3.7. Let A be a RM algebra with (Ex). Then,
GA ={zeA:z=x—1)=>1}={z—=1:2€ A}
Proof. By (2) of Proposition 3.3 and (2) of Lemma 3.1 we get
GA C{zeA:z=(r—1)=>1}C{zr—1:2€ A}
Next, by (6) of Theorem 3.5,
{x =>1:2€ A} CG(A)
and the proof is complete. [ |

Remark. If A is without (Ex), then G(.A) does not have to be equal to {z —
1:xz € A}. Indeed, let A be an algebra with an operation — defined as follows:

—>‘0 a b 1
O(1 1 1 b
all 1 a b
b |10 a 1 1
110 a b 1
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Then A = (A4;—,1) is a RM algebra without (Ex), G(A) = {1} and {x — 1:
z e A} = {b,1}.

Let A be a RM algebra with (Ex). Since G(A) is a BCI algebra by Theo-
rem 3.6, the following fact is well-known [8].

Theorem 3.8. Let A = (A;—,1) be a RM algebra with (Ex). Define, xoy =
(x = 1) > yand 2=t =2 = 1 for any v,y € G(A). Then, (G(A);0,7! 1)
is an Abelian group, called an adjoint group of this RM algebra A. In this case
r—y=yox ! for any x,y € G(A).

Let A be a RM algebra. We say that a subset D of A is a deductive system
of A if it satisfies:
(1) 1e D,
(2) forall z,y € A,ifx € D and z — y € D, then y € D.
It is obvious that {1} and A are deductive systems of A.

Proposition 3.9 [9]. Let A be a RM algebra and D be a deductive system of A.
Then, for any z,y € A, x <y and x € D imply y € D.

A deductive system D of a RM algebra A is called closed if © — 1 € D for
all z € D.

Proposition 3.10 [7]. Let A be a RM algebra with (Ex). A deductive system of
A is closed if and only if it is a subalgebra of A.

Proposition 3.11 [9]. Every deductive system of a finite RM algebra with (Ex)
1s closed.

Let A be a RM algebra. Define a set
KA ={zreA:z<1}.
It is not difficult to see that K(A) N G(A) = {1}.

Proposition 3.12 [9]. If A is a RM algebra with (Ex), then K(A) is a closed
deductive system of A.

Remark that G(A) does not have to be a deductive system of a RM algebra
A, what shows the following example.

Example 3.13. Let A = {a,b,c,d, 1} and define the binary operation — on A
by the following table:

—la b ¢ d 1
al|l a a a a
b la 1 ¢ d 1
cla b 1 1 1
dla 1 1 1 1
1|la b ¢ d 1
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Then A = (A4;—,1) is a RM algebra. Note that G(A) = {a, 1} is not a deductive
system of A.

Let A be a RM algebra and X be a subset of A. Note that if Y = X NG(A),
then
Y={reX:z=(x—1) —1}.

Proposition 3.14. Let A be a RM algebra with (Ex). If D is a (closed) deductive
system of A, then D' = DN G(A) is a (closed) deductive system of G(A).

Proof. Let D' = DN G(A). Obviously, 1 € D'. Let z,y € G(A) be such that
x,x =y € D'. Then, x,x -y € D and x,x — y € G(A). Hence, y € D. Since
y € G(A) it follows that y € D’. Thus, D’ is a deductive system of G(A). If
z € D' =DNG(A), then z € D and = € G(A). Then, obviously z — 1 € G(A)
and since D is closed, also x — 1 € D. Hence, x —+ 1 € D' and D’ is closed. =

Now, we consider subsets of a RM algebra called branches. Let A be a RM
algebra. For any a € A we define a subset B(a) of A as follows:

B(a)={x € A:z <a}.

Note that B(a) is non-empty, because a < a gives a € B(a). Observe that
B(1) = K(A). If a € G(A), then the set B(a) is called a branch of A.

Theorem 3.15. Let A be a RM algebra with (Ex) and let x,y € A. The following
are equivalent:

(1) z,y € B(a) for some a € G(A),
(2)
B) z—>1=y—1,
(4) z—>b=y—bforallbeG
(5)

A),
5 z—=>b<y—bforallbe G(A).

(
(A)

Proof. (1) = (2). If x,y € B(a), then x < a and y < a, that is, z > a=1=
y — a. By (3) of Proposition 3.4, (a - y) = (x = y) =2 - a=1¢€ K(A).
Now, from (3) of Theorem 3.5, (a —» y) - 1=y — a =1, whence a — y < 1,
that is, a - y € K(A). Since K(A) is a deductive system of A, x — y € K(A).
(2) = (3). Let x,y € A be such that x — y € K(A). Then, x — y < 1. Now,
by (2) of Proposition 2.2, 1 = (x - y) - 1 = (z — 1) —» (y — 1). Hence,
x — 1 <y — 1. Since, by (6) of Theorem 3.5, x - 1€ G(A),z 1=y — 1.
(3) = (4). Let x,y € A be such that z — 1 =y — 1. Take arbitrary b € G(A).
Then, by (3) of Proposition 3.4, x - b=(b—->1) > (z—=1)=0b—1) = (y —
)=y —b.
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(4) = (5). Obvious.

(5) = (1). Let z,y € A be such that z — b <y — b for all b € G(A). Let
y € B(a) for some a € G(A). Then, y —a =1, 0z — a < 1. Since, by (4) of
Theorem 3.5, z — a € G(A), we obtain x — a = 1, that is, z € B(a). ]

Corollary 3.16. Let A be a RM algebra with (Ex). Let x € A and a € G(A).
Then the following are equivalent:

(1) z € B(a),

(2) 2 —>b=a—bforallbe G(A).

Proposition 3.17. Let A be a RM algebra with (Ex). Let x,y € A and a,b €
G(A). If x € B(a) and y € B(b), then x — y € B(a — b).

Proof. Let x € B(a) and y € B(b) for some a,b € G(A). Then, by (2) of
Proposition 2.2 and Corollary 3.16,

(r—=y)—-1l=@x—>1)—(y—1)
=(a—>1)—=(b—=1)
=(a—b)— 1

Thus, by Theorem 3.15, x — y and a — b belong to the same branch of A, that
is,z >y € B(a—0D). ]

Theorem 3.18. Let A be a RM algebra with (Ex). Then the following hold:
(1) B(a)N B(b) =0 for a,b e G(A) and a # b,

(2) x € B(a) for all x € A and unique a € G(A),

3) A=Uaeq Bla),

(4) z <y ory<ximply z,y € B(a) for some a € G(A).

Proof. (1) Let z € B(a) N B(b), where a # b. Then, by Corollary 3.16, 1 = z —
b=a — b, whence a < b. Since a € G(A), we get a = b, which is a contradiction.

(2) Let z € A. Let us put a = (x — 1) — 1. By Theorem 3.5, a € G(.A), and by
D), z € B(a). Uniqueness of a follows from (1).

(3) Follows from (2).

(4) Assume z < y. Then z — y = 1, that is, z — y € K(A). Now, by Theorem
3.15, z,y € B(a) for some a € G(A). We have similar proof in the case y < z. m

Proposition 3.19. Let A be a RM algebra with (Ex). The following are equiv-
alent:

(1) A=G(A),
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(2) B(a) ={a} for alla € G(A),

(3) K(A) = {1}.

Proof. (1) = (2). Let a,x € A= G(A). If z € B(a), then x < a and by (1) of
Proposition 3.3, z = a.

(2) = (1). Let a € A. Assume a < x, where x € A. Then, a - 2 =1 € K(A).
By Theorem 3.15, a,z € B(b) = {b} for some b € G(A). Hence, x = a = b and
so, A= G(A).

(2) = (3). Obvious.

(3) = (2). Let z € A and a € G(A). Assume x € B(a). Then, by Theorem 3.15,
a— x € K(A) ={1}. Hence, a < z, and since a € G(A), it follows z = a. ]

Next theorem implies Proposition 3.11.

Theorem 3.20. Let A be a RM algebra with (Ex) and let G(A) be finite. Then
every deductive system of A is closed.

Proof. Let D be a deductive system of A and let D' = DN G(A). Let € D.
By Theorem 3.18, there exists unique a € G(A) such that z € B(a). Hence,
x—a=1€ D,soa€D. Thus,

ae DNG(A) =D

By Theorem 3.5 and Corollary 3.16, a - 1 = x — 1 € G(A). Now, suppose
x —1¢ D. Then, a — 1 ¢ D, that is, a — 1 € A\D. Hence,

a— 1€ (A\D)NGA) = GA\D'.

By Proposition 3.14, D’ is a deductive system of G(A). Since G(A) is finite, we
have, by Proposition 3.11, that D’ is closed. Thus, @ — 1 € D’ and we obtain a
contradiction. So, x — 1 € D and therefore, D is closed. [ |

4. TRANSLATION DEDUCTIVE SYSTEMS

A deductive system D of a RM algebra A is called a translation deductive system
if it satisfies the following condition for all x,y,z € A,

r—=yy—cse€D=(r—2) = (y—=2),(z—2)—(2—y) €D.

Let T'(A) be the set of all translation deductive systems of 4. Obviously, A €
T(A). Note that, in general, {1} is not a translation deductive system. It is not
difficult to see that {1} is not a translation deductive system of the RM algebra
A from Example 2.1.
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Proposition 4.1. Let A be a RM algebra with (Ex). Then K(A) is a closed
translation deductive system of A.

Proof. By Proposition 3.12, K(A) is a closed deductive system of A. To prove
that it is a translation deductive system, let * — y,y — = € K(A). Then, by
Theorem 3.15, 2 —+ 1=y — 1. Forany 2 € Awehave (x - 2) = 1=(z —> 1) =
(z—=1)=(y—1) —(z— 1) =(y — z) — 1, which means, by Theorem 3.15,
(x = 2) = (y = 2) € K(A). Similarly, (z = z) = (z = y) € K(A). Thus,
K (A) is a translation deductive system of A. |

Let A be a RM algebra. For D € T'(A) we define
T~pYy & x—y,y—>xeD.
We say that 6 € Con(A) is a R-congruence on A if
(R) x—yll, y — 201 = 2x0y.

Proposition 4.2 [9]. If A is a RM algebra and D € T(A), then ~p is a R-
congruence.

Proposition 4.3 [9]. For any RM algebra A, there is a one-to-one corespondence
between the R-congruences on A and the closed translation deductive systems

of A.
Let A be a RM algebra and D € T(A). For x € A we write [z]p = {y € A:
x ~p y}. We note that = ~p y if and only if [z]p = [y]p, that is,
[z]p =[ylp & 2=y, y—zeD.
In particular,
[zlp=[lp © z=1—z,20—1€D.

Denote A/D = {[z]p : = € A}. Set [z]p = [y]p = [* — y|p. The operation
—' is well-defined and (A/D;—',[1]p) is a RM algebra, called the quotient RM
algebra of A modulo D.

Theorem 4.4. Let A be a RM algebra with (Ex). Then A/K(A) is isomorphic
with G(A).

Proof. For any a € G(A), note that, by Theorem 3.15,
la]l k) ={r € At a ~ga v}
={r€eA:a—z,x —ac KA}
={xe€A:z€ B(a)}
= B(a).
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Now, define a function f : G(A) = A/K(A) by

f(a) = [a]g(ay = B(a).

Obviously, f is a homomorphism and by Theorem 3.18, f is bijective. Therefore,
A/K(A) is isomorphic with G(A). |

From Theorems 3.6 and 4.4 we have the following fact.

Corollary 4.5. Let A be a RM algebra with (Ex). Then A/K(A) is a BCI

algebra.

Proposition 4.6 [9]. Let A and B be RM algebras and let f : A — B be a ho-
momorphism. If f(A) satisfies (An), then Kerf is a closed translation deductive
system of A.

Lemma 4.7. Let f : A — B be a homomorphism between RM algebras and let
A be with (An). Then f is injective if and only if Kerf = {1}.

Proof. 1f f is injective, then obviously Kerf = {1}, because f(1) = 1. Assume
Kerf = {1}. Let 2,y € A be such that f(x) = f(y). Then, f(x —y) = f(z) —
fly)=1and f(y = z) = f(y) — f(x) =1, that is, = y,y — = € Kerf = {1}.
Hence, by (An), x =y and f is injective. [

Remark. If A is without (An), then Kerf = {1} does not imply a homomor-
phism f : A — B is injective. Indeed, let A be an algebra with an operation —
defined as follows: ‘

»—t@Q\L
S = =

a 1
1 1
1 1
a 1
Then A = (A4;—,1) is a RM algebra without (An). Let f: A — A be defined by

f(a) =a, f(b) =a and f(1) = 1. Then f is a non-injective homomorphism with
Kerf = {1}.

Theorem 4.8. Let A be a RM algebra with (Ex) and (An). If G(A) is a trans-
lation deductive system of A, then A/G(A) is isomorphic with K(A). Moreover,
[z]qa) # Wlaa) for all x,y € B(a) such that x # y, where a € G(A).

Proof. Since G(A) is a (closed) translation deductive system of A, we have
A/G(A) is a RM algebra with (Ex). Define a function f: K(A) — A/G(A) as
follows:

f(z) = [w]G(A) for all z € K(A).
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Obviously, f is a homomorphism. Now, note that

Kerf = {z € K(A) : f(2) = [2]aa) = [Uow) = G(A)}
={reKA:z=1—-2€GA)}
= {1}.
Hence, by Lemma 4.7, f is injective. Further, take x € A and a = (z — 1) — 1.

Then a € G(A) and = € B(a). Hence, by Theorem 3.15, a — x € K(A). Thus,
since [a]g(4) = [1]c(a), we have

fla— )

alaa) = [2laay

e = [laa
A)-

x]G(

a — x]G(A)
!
/

=
=
=
=

Hence, f is also surjective. Therefore f is an isomorphism.

Moreover, take z,y € B(a) such that  # y, where a € G(A). Hence,
by Theorem 3.15, v — y,y — = € K(A). Assume [7]ga) = [Y]g(a)- Then,
x—=y,y—>x€G(A),thatis,z > y=1=y — z. By (An), z = y and we get a
contradiction. Thus, [z]ga) # W]aa)- |

Theorem 4.9 (Representation Theorem for RM algebras). Assume A is a RM
algebra with (Ex) and (An). Then A is isomorphic with K(A) x G(A) if and only
if G(A) is a translation deductive system of A.

Proof. Let B be the direct product K (A) x G(A). Let A be isomorphic with 5.
It is not difficult to see that, by Theorem 3.7, G(B) = {(1,a) : a € G(.A)} and for
any isomorphism f : A — B we have f(G(A)) = G(B). Hence, if 7 : B — K(A)
is the projection, then G(A) = Ker(nf). Thus, G(A) is a (closed) translation
deductive system of A by Proposition 4.6.

Conversely, assume that G(A) is a translation deductive system of 4. Obvi-
ously, it is closed. Hence, A/G(A) is a RM algebra (with (Ex) and (An)). We
know that A/G(A) is isomorphic with K(A) and A/K(A) is isomorphic with
G(A). Hence it suffices to prove that A is isomorphic with A/G(A) x A/K(A).
Let C be the direct product A/G(A) x A/K(A). Define a function f: A — C as

follows:
flx) = ([x]G(A), [ﬁ]K(A)) for all x € A.

Obviously, f is a homomorphism. First, note that

Kerf ={z e A: f(x) = ([t]a) [Z]kw)) = (Meey, Mrw) }
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={recd:z=1-2reGA andz=1—z€ K(A)}
={reA:ze€GANK(A)}
= {1}.

Hence, by Lemma 4.7, f is injective.

Further, let ([2]g(a), [Y]k(a)) € C. Denote a = (x — 1) = 1 and b = (y —
1) — 1. Then, a,b € G(A). Since, by Proposition 34, (a —» z) =z =a € G(A)
and v — (@ = x) = a = 1 € G(A), we have [z]g4) = [a = T]ga). Moreover,
since y € B(b), we get by Theorem 3.15, b — y,y — b € K(A). Hence, [y|x4) =
[b]K(.A) . ThUS,

([z]aay, Wk ) = ([a = 2laeay, bl a)) -

Let z= (b - 1) — (a — z). Since a,z € B(a), we have a — x € K(A) = B(1)
by Theorem 3.15, and z € B((b — 1) — 1) = B(b) by Proposition 3.17, whence
2]k (4) = [bl i (4)- Moreover, by (Ex) and Proposition 3.4, we have

(a—z)—z=(@—z)=>(b—1)—=(a—z)=0b—>1) >1=be G(A)
and
z—=(a—z)=((b—1) = (a—2x) = (a—z)=b—1€cG(A).

These mean that [z]g(4) = [@ = z]g(a)- Thus,

f(2) = (o) [Frw) = (la = 2oy, Blrw) = (#lew): Wrw)
that is, f is surjective. So, f is an isomorphism and A is isomorphic with C. =

Theorem 4.10. Let A be a RM algebra with (Ex) and let D be a closed trans-
lation deductive system of A. The following are equivalent:

(1) A/D = G(A/D),

(2) K(A) €D,

(3) for any x,y € A, ifx -y € D, theny — x € D,

(4) for any x,y € A, ifx <y andy € D, then x € D,

(5) forany x,y € A, ifx >y €D andy € D, then x € D,

(6) for anyx € A, ifx - 1€ D, thenxz € D.

Proof. (1) = (2). Let x € K(A). Then = < 1, whence [z]p < [1]p. By (1) and
Proposition 3.3(1), [z]p = [1]p. Thus, z € D.

(1) = 3). If « — y € D, then [z]p =’ [ylp = [r = y|p = [1]p. Hence,
[z]p < [ylp and by (1), [z]p = [y|p. So, y =z € D.
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(2) = (4). Assume K(A) C D. Take z,y € A such that z <y and y € D. Then,
x —y=1¢€ K(A). From Theorem 3.15 it follows that also y — x belongs to
K(A) C D. Hence, since y € D and D is a deductive system of A, we get = € D.

(3) = (4). Let z,y € Abesuch that x <yandy € D. Thenxz - y=1¢€ D
and by (3),y = z € D. Since y € D and D is a deductive system of A, it follows
r€D.

(4) = (5). If x - y € D and y € D, then by (Ex) and Proposition 2.2(2),
y—=>((z—=1)—=1)=(xx—>1) —=(y—1) = (xr —y) = 1€ D because D is
closed. Since D is a deductive system of A, (z — 1) — 1 € D. Now, by (D) and
(4), x € D.

(5) = (6). Obvious.

(6) = (1). Let z € A be such that [z]p < [1]p. Then, [z — 1]p = [z]p =’

1]p = [1]p, so z — 1 € D. By (6), z € D, which means [z]p = [1]p. Hence,

K(A/D) ={[1]p} and by Proposition 3.19 we obtain (1). |
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