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Abstract

We introduce and study strongly generalized radical-supplemented mod-
ules (or briefly sgrs-modules). With the notation Radg(R) := ∩{K : K ≤
RR,K is both essential and maximal}, we prove that (under some mild con-
ditions on a ring R) every right R-module is a sgrs-module if and only if

R
Soc(R) is right perfect and the idempotents lift module Radg(R).
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1. Introduction

Throughout this article, all rings are associative with unity, and all modules are
unital right modules. Let R be a ring. If MR and NR are modules, we use the
following notations: if N ⊆ M , then N ≤ M denote N is a submodule of M .
A submodule S ≤ M is called small (in M), denoted by S << M , if for every
submodule L ≤ M , the equality S + L = M implies L = M . By Rad(M) we
denote the intersection of all maximal submodules of M , equivalently the sum of
all small submodules of M (see [3, 2.7]).

A module direct sum decomposition A⊕B = M of M is determined by the
two conditions (i) A+B = M and (ii) A∩B = 0. In this case A and B are known
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as direct complements of each other. As a proper generalization of the concept,
direct complement a submodule B ≤ M is called a supplement of a submodule
A ≤ M if B is minimal subject to A+B = M , or equivalently, M = A+B and
A ∩ B << B (see, for instance, [3, 20.1]). If every submodule of M has a sup-
plement in M , then M is called a supplemented module. Zöschinger [15] studied
the module M such that Rad(M) has a supplement in M and called it radical

supplemented module. As a proper generalization Büyükaşik and Türkmen [2]
called a module M strongly radical supplemented (briefly srs) if every submodule
containing the radical Rad(M) has a supplement. Carrying on in this direction
we shall introduce and study strongly generalized radical supplemented modules
or briefly sgrs-modules. These modules are different from the existing ones in the
literature.

A submodule T ≤ M is called an essential submodule of M if T ∩K 6= 0 for
every K(6= 0) ≤ M and it is denoted by T�M . An R-moduleM is called singular

if there exists R-modulesA�B such thatM ∼= B/A. Following [6, Definition 2.10]
a submodule L ≤ M is called δ-supplement of a submoduleN ≤ M if M = N+L,
and for any proper submoduleK of L with L

K
singular, M 6= N+K. The module

M is called δ-supplemented if every submodule of M has a δ-supplement in M . A
submodule X ≤ M is called generalized small (briefly, g-small) if for every T �M
with M = X+T we have T = M , this is written as X <<g M (in [14], it is called
an e-small submodule of M and denoted by X <<e M). If T is both essential
and maximal submodule of M , then T is called a generalized maximal submodule

of M . The intersection of all generalized maximal submodules of M is called the
generalized radical of M and it is denoted by Radg(M) (in [14], it is denoted by
RadeM). If M have no generalized maximal submodules, then the generalized
radical of M is defined by Radg(M) = M . Let U and V be submodules of M . If
M = U + V and M = U + T with T � V implies that T = V , or equivalently,
M = U + V and U ∩ V <<g V , then V is called a g-supplement of U in M . M is
called a G-supplemented module, if every submodule of M has a g-supplement in
M (see [5] and [9, Definition 2], where it is called e-supplemented). Notice that
a δ-supplemented module is G-supplemented. In Definition 2 we called a module
M is strongly generalized radical supplemented (or briefly sgrs-module) if every
submodule of M containing the generalized radical Radg(M) has a g-supplement
in M .

Thus we have the following summarized picture of all the above mentioned
modules.

We shall see in Example 1 (below) that all the arrows are strict-inclusions in
the above situation.

For the other definitions in this note, we refer to [1, 3] and [12].

We note that there are some important properties of g-small submodules in
[5, 9] and [14].
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Lemma 1 (see [14] and [8]). For an R-module M and for K,N ≤ M , the

following conditions hold.

(i) If K ≤ N and N <<g M , then K <<g M .

(ii) If K <<g N , then K is a g-small submodule of every submodule of M which

contains N .

(iii) If f : M −→ N is an R-module homomorphism and K <<g M , then

f(K) <<g N .

(iv) If K <<g L and N <<g T for L, T ≤ M , then K +N <<g L+ T .

Corollary 1. (i) Let M be an R-module and K ≤ N ≤ M . If N <<g M , then
N
K

<<g
M
K
.

(ii) Let M be an R-module, K <<g M and L ≤ M . Then K+L
L

<<g
M
L
.

Lemma 2 [5, Lemma 5]. Let M be an R-module. Then Radg(M) =
∑

L<<gM
L.

Lemma 3. The following assertions are hold for an R-module M .

(i) If M is an R-module, then mR <<g M for every m ∈ Radg(M).

(ii) If N ≤ M , then RadgN ≤ Radg(M).

(iii) If K,L ≤ M , then Radg(K) +Radg(L) ≤ Radg(K + L).

(iv) If f : M −→ N is an R-module homomorphism, then f(RadgM) ≤ Radg(N).

(v) If L ≤ M , then
Radg(M+L)

L
≤ Radg

(

M
L

)

.

(vi) Let M = ⊕i∈IMi. Then Radg(M) = ⊕i∈IRadg(Mi).

Proof. (i), (ii), (iii), (iv), (v) follows from Lemma 1 and Lemma 2 (we use [1,
Lemma 5.19] as essential criteria for a module), where (vi) follows from (i) and
(ii) (see [4, Lemma 4]).

2. Strongly generalized radical-supplemented modules

Definition. We call a module M strongly generalized radical supplemented mod-

ule (or briefly sgrs-module) if every submodule N of M with Radg(M) ≤ N has
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a g-supplement in M . In other words for any U ≤ M with Radg(M) ≤ U , there
exists V ≤ M such that U + V = M and U ∩ V <<g V .

Example 1. (i) [13, Example 4.3] Let F be a field, consider I =

(

F F
0 F

)

and R = {(x1, . . . , xn, x, x, . . . ) : n ∈ N, xi ∈ M2(F ), x ∈ I}. Notice that
R is a ring under component-wise operations. Here, Rad(R) = Radg(R) =

{(x1, . . . , xn, x, x, . . . ) : n ∈ N, xi ∈ M2(F ), x ∈ J}, where J =

(

0 F
0 0

)

. R is not

semiregular. Hence RR is not supplemented but RR is
δ-supplemented and hence RR is a sgrs-module.

(ii) [3, Example 20.12] ConsiderQ as a Z-module. SinceRadg(Q) = Rad(Q) =
Q, Q is a sgrs-module. But, since Q is not supplemented and every non-zero sub-
module of Q is essential in Q, Q is not G-supplemented as a Z-module.

(iii) (see [6, Example 2.14] and [3, Example 17.10]) Let R = Z and M = Q
Z
=

⊕∞
i=1Mi with each Mi = Zp∞ := {r ∈ Q : pnr ∈ Z for some n}, where p is a prime

number. Then Radg(M) = ⊕iRadg(Mi) = ⊕iMi = M is essential in M . But
since the p-component of M is M that is not artinian, M is not supplemented by
[12, p. 370]. Since M is singular, M is not G-supplemented.

(iv) [13, Example 4.1] Let F be a field and Fi = F for all i ∈ N. Consider
R =< ⊕∞

i=1Fi, 1∏∞

i=1
Fi

>, which is an F - subalgebra of
∏∞

i=1 Fi generated by
⊕∞

i=1Fi and 1∏∞

i=1
Fi
. Note that R is not semisimple and the Jacobson radical,

J(R) = 0. Therefore, R is not semilocal and hence RR is not a srs-module.
However RR is a sgrs-module (see Theorem 8 below).

We now discuss some properties of sgrs-modules.

Proposition 1. Every factor module and homomorphic image of a sgrs-module

are sgrs-modules.

Proof. Let L ≤ N ≤ M with Radg
(

M
L

)

≤ N
L
. Since,

Radg(M+L)
L

≤ Radg
(

M
L

)

, we
have Radg(M) ≤ N . By, assumption, N has g-supplement K (say) in M . So we
have N +K = M and N ∩K <<g K. Now it is easy to see that N

L
+ K+L

L
= M

L

and N
L
∩ K+L

L
= (N∩K)+L

L
<<g

K+L
L

. Therefore, K+L
L

is a g-supplement of N
L

in
M
L
. The remain is clear.

We now aim to show that any finite sum of sgrs-submodules is a sgrs-module.
For that we need the following lemma.

Lemma 4. Let M be an R-module and let M1 and N be submodules of M with

Radg(M) ≤ N . If M1 is a sgrs-module and M1 +N has a g-supplement in M ,

then N has a g-supplement.
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Proof. Let L be a g-supplement of M1 + N in M . Then L + (M1 + N) =
M with L ∩ (M1 + N) <<g L. Since, Radg(M1) ≤ Radg(M) ≤ N , we have
Radg(M1) ≤ (L+N) ∩M1. Then (L+N) ∩M1 has a g-supplement (say) K in
M1, because M1 is an sgrs-module. Therefore, M = ((L+N) ∩M1 +K) +N +
L = ((L + N) ∩ M1) + K + (N + L) = K + (N + L) = N + (K + L). Since,
N +K ≤ N +M1, L ∩ (N +K) ≤ L ∩ (M1 +N) <<g L, hence N ∩ (K + L) ≤
(N +L)∩K+(N+K)∩L <<g K+L. This shows that K+L is a g-supplement
of N .

Proposition 2. Let M = M1 +M2, where M1 and M2 are sgrs-modules. Then

M is a sgrs-module.

Proof. Suppose that N ≤ M with Radg(M) ≤ N . Clearly, M1 +M2 + N has
the trivial g-supplement 0 in M , and so by Lemma 4, M1 +N has g-supplement
in M . Applying the lemma once again, we obtain a g-supplement for N in M .

Corollary 2. Every finite sum of sgrs-modules is a sgrs-module.

LetM be an R-module. Recall that an R-moduleN is said to beM -generated

if N is a homomorphic image of a direct sum of copies of M .

Lemma 5. Let M be a sgrs-module. Then every finitely M -generated module is

sgrs-module.

Proof. Clear from Proposition 1 and Corollary 2.

Corollary 3. Let R be a ring. Then RR is a sgrs-module if and only if every

finitely generated R-module is a sgrs-module.

Following [8, Definition 2] a module M is called g-semilocal if M
Radg(M) is a

semisimple module.

Proposition 3. Every sgrs-module is g-semilocal.

Proof. Let U
Radg(M) be a submodule of M

Radg(M) . Since M is a sgrs-module, there

exists a submodule V of M such that M = U + V and U ∩ V <<g V . Since,
U ∩ V <<g V , by Lemma 1(iv), U ∩ V ≤ Radg(M). Hence we have, M

Radg(M) =

U+V
Radg(M) =

U
Radg(M) +

V+Radg(M)
Radg(M) and U

Radg(M) ∩
(V+Radg(M))

Radg(M) =
Radg(M)+(U∩V )

Radg(M) =
Radg(M)
Radg(M) = 0. Thus, M is g-semilocal.

Corollary 4. Let M be a sgrs-module. Then M = M1 ⊕M2, where M1 is semi-

simple, Radg(M)�M2 and M2

Radg(M) is semisimple.

Proof. Follows from Proposition 3 and [7, Proposition 2.1 ].



68 S. Das and A.M. Buhphang

Recall that a submodule V ≤ M is called a weak g-supplement of U ≤ M if
M = U + V and U ∩ V <<g M . The module M is called weakly g-supplemented

if every submodule of M has a weak g-supplement in M [8, Definition 1].

Example 2. (i) [11, Example 2.1] Let R be a DVR (that is, a local Dedekind
domain) and K be the quotient field of R. Then the left R-module K is injective
(see [1, Exercise 18. (2)]). LetM = ⊕IK, where I is an infinite index set, be a left
R-module. Since R is noetherian, M is injective and Radg(M) = Rad(M) = M .
Therefore M is a sgrs-module but it is not weakly g-supplemented.

(ii) [8, Example 1] Let p and q be prime numbers and consider the ring
R = Zp,q = {a

b
∈ Q : p . b, q . b}. Then R is a commutative domain with exactly

two maximal ideals pR and qR and every non-zero ideal is essential in R. Here,
RR is weakly g-supplemented but is not a sgrs-module.

We have noticed above that the concept of weakly g-supplemented modules
and sgrs-modules are quite independent from each other. However we have the
following result.

Proposition 4. Assume M is a sgrs-module with Radg(M) <<g M . Then M
is weakly g-supplemented.

Proof. Follows from Proposition 3 and [8, Lemma 13].

Observe that the Z-module M = Q⊕ Z
p2Z

for any prime p, is sgrs-module by
Proposition 2 but not a G-supplemented module. So, we try to explore conditions
for which a sgrs-module will be a G-supplemented module. Clearly if Radg(M)
is semisimple (see [10, Lemma 2.4]) then any sgrs-module M is G-supplemented.
In fact we have the following:

Proposition 5. Assume M be a sgrs-module with Radg(M) a G-supplemented

submodule. Then M is G-supplemented.

Proof. Let U be a submodule of M . By assumption, Radg(M + U) has a g-
supplement X, (say) in M . Again Radg(M) is G-supplemented, hence (X+U)∩
Radg(M) has a g-supplement Y (say) in Radg(M). Then X + Y is the required
g-supplement of U in M .

The following results which appeared for amply g-supplemented modules in
[9, Theorem 5] generalizes to sgrs-modules.

Proposition 6. Let M be a module. Then M is Artinian if and only if M is

a sgrs-module and satisfies DCC on g-supplement submodules and on g-small

submodules.

Corollary 5. Let M be finitely generated. Then M is Artinian if and only if M

is a sgrs-module satisfying DCC on g-small submodules.
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Now using the same technique as in proof (1) ⇒ (2) of [13, Lemma 1.2] we
have the following.

Lemma 6. Let A and B be two submodules of a module M with M = A + B.

Then A⊕N is essential in M for some submodule N of B.

Proof. By Zorn’s Lemma, there always exists a submoduleN of B maximal with
respect to the property A∩N = 0. Let 0 6= m ∈ M . We may assume that m /∈ N .
By the maximality of N , we have A∩ (N +mR) 6= 0. Take, 0 6= a = n+mr ∈ A,
where n ∈ N and r ∈ R. Then mr = a− n ∈ A+N . Since A ∩N = 0, we have
mr 6= 0. Therefore, (A⊕N) ∩mR 6= 0.

Notice that Radg(R) = δ(R) := the intersection of all essential maximal
right ideals of R (see [13, Theorem 1.6]). Following [13, Definition 3.1 and The-
orem 3.6]), a ring R is called δ-semiperfect if R

Radg(R) is a semisimple ring and

idempotents lift modulo Radg(R).

Before stating the next theorem, we insert a remark here.

Remark 7. For any two right ideals I and J of a ring R with I ≤ J such that
J
I
is a singular module, then I need not be essential in J .

For instance, consider R = Z⊕ Z
2Z . Then I = 0⊕ 0 and J = 0⊕ Z

2Z are right
ideals of R with I ≤ J and J

I
is singular R-module but I is not essential in J .

Theorem 8. Let R be a ring with Radg(R) <<g R and such that whenever any

two right ideals I ≤ J of R satisfy the property that if J
I
singular then I � J .

Then RR is a sgrs-module if and only if R is a δ-semiperfect ring.

Proof. By using [6, Theorem 3.3], we only show that every right ideal of R has
a g-supplement in RR. Let I be a right ideal of R. Since RR is a sgrs-module, we
have I + δ(R) +K = R with (I + δ(R))∩K <<g K for some right ideal K of R.
Now by Lemma 6 we can find a submodule N of δ(R) such that (I +K)∩N = 0
and (I + K) ⊕ N essential in R, Thus, R = I + (K ⊕ N) + δ(R) implies that
R = I+(K⊕N) (since, δ(R) <<g R) and I ∩ (K⊕N) <<g (K⊕N). Therefore,
K +N is the required g-supplement of I in R. The other direction is clear (see
[13, Theorem 3.6]).

Remark 9. Consider the ring, R = Z(6) = {a
b
∈ Q : a, b ∈ Z, gcd(b, 6) = 1}

consisting of integers localized away from the ideal 6Z (of Z) (see [1, Exercise
27.(4)]). This ring is a classic example of a ring where idempotents do not lift
modulo the Jacobson radical (which is denoted by J(R)), since R

J(R)
∼= Z

6Z has
four idempotents and R has only the trivial idempotents. Observe, here that
Radg(R) = δ(R) = J(R) = 6R, Radg(R) <<g R and R

Radg(R) is semisimple but

RR is not a sgrs-module.
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Recall that for a ring R the right socle of R, denoted by Soc(R), is defined
as the sum of all its minimal right ideals and can be shown to coincide with the
intersection of all the essential right ideals of R. Moreover Soc(R) is a two sided-
ideal of R (see [1, Proposition 9.7]). Following [13, Definition 3.1 and Theorem
3.8]), a ring R is called δ-perfect if R

Soc(R) is right perfect and idempotents lift

modulo Radg(R).

Theorem 10. Let Λ be a countable set, R a ring such that Radg(⊕i∈ΛR) <<g

⊕i∈ΛR and such that for any two right ideals I ≤ J of R if J
I
singular then I�J .

Then the following statements are equivalent:

(i) R is a δ-perfect ring.

(ii) Every right R-module is δ-supplemented.

(iii) Every right R-module is G-supplemented.

(iv) Every right R-module is strongly-generalized-radical-supplemented (sgrs-
module).

Proof. (i)⇔(ii) follows from [6, Theorem 3.4].

(ii)⇒(iii) is clear from the fact that if N is a δ-small submodule of M , then
N is a g-small submodule of M .

(iii)⇒(iv) is clear. So, it remains to see (iv)⇒(i). By Theorem 8, R is
δ-semiperfect. By [13, Theorem 3.7 and Theorem 3.8] we only need to show

that Rad
(

R
Soc(R)

)

(= δ(R)
Soc(R) by [13, Corollary 1.7]) is right T -nilpotent. For

this we shall use the technique of [1, Lemma 28.1]. Let F = ⊕NR be a free
right R-module with basis x1, x2, . . . , xi, . . . , i ∈ N, and G the submodule of F
spanned by yi = xi−xi+1ai, i ∈ N, where a1, a2, a3, . . . , is a sequence of elements
from δ(R) = Radg(R). Then, F = G + δ(F ). By hypothesis, δ(F ) <<g F
and hence by Lemma 6, F = G ⊕ B for some submodule B of δ(F ). By [1,
Lemma 28.2], there exists n ∈ N such that Ran+1an · · · a1 = Ranan−1 · · · a1.
Therefore, ran+1anan−1 · · · a1 = anan−1 · · · a1 for some r in R, and thus (1 −
ran+1)anan−1 · · · a1 = 0. Therefore, anan−1 · · · a1 ∈ Soc(R). Hence, Rad

(

R
Soc(R)

)

is right T -nilpotent and R is right δ-perfect.

3. sgrs-modules over Dedekind domains

Throughout this section, unless otherwise stated, all rings that we consider are
assumed to be commutative.

If R is an integral domain the torsion submodule of M is defined as

T (M) = {m ∈ M : mr = 0 for some non-zero r ∈ R}.

A module M (over an integral domain) is called a torsion module if T (M) = M .
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The following example shows that over a nonlocal domain every torsion mod-
ule need not be sgrs-module.

Example 3. Let Z be the ring of integers and let p be a prime in Z: Consider
the Z-module M = ⊕n≥1Zpn where Zpn = Z

pnZ
. Then M is a torsion module. To

see that M is not a sgrs-module, consider the submodule pM of M . Since M
pM

is
a semisimple module, we have Rad(M) ≤ pM . Now, using the same technique
as in [2, Example 2.2], it can be proved that pM does not have a g-supplement
in M , i.e., M is not a sgrs-module.

Recall that a module M over an integral domain R is called divisible if M =
Mr for all non-zero r ∈ R (see [12, 16.6]). A module M over an arbitrary ring is
coatomic if every proper submodule of M is contained in a maximal submodule
of M (see [15] for the definition). Note that a module M is coatomic if and only
if for every submodule N of M , Rad

(

M
N

)

= M
N

implies N = M . Semisimple
modules and finitely generated modules are the examples of coatomic modules.

Lemma 11. Let R be a Dedekind domain and M an R-module. If N is a g-small

submodule of M , then N is coatomic.

Proof. Let N be a g-small submodule of M and take L ≤ N with Rad
(

N
L

)

= N
L
.

Then
(

N
L

)

P = N
L

for every maximal ideal P of R. Since R is a Dedekind domain

then N
L

is divisible and hence an injective R-module. Therefore N
L
⊕ K

L
= M

L
for

some K ≤ M . Then N + K = M which further implies that N ′ ⊕ K = M for
some N ′ ≤ N (by Lemma 6) and N = N ′ ⊕ L. But, by [14, Proposition 2.3]
N + K = M implies that M

K
is semisimple and hence N

L
∼= N ′ is semisimple.

Therefore Rad
(

N
L

)

= 0, consequently N = L. Thus N is coatomic.

Lemma 12. Let M be a sgrs-module over a Dedekind domain and U be a sub-

module of M with Radg(M) ≤ U . Then, every g-supplement of U is coatomic.

Proof. By Proposition 3, M
Radg(M) is semisimple. So, M

U
is semisimple as a factor

module of M
Radg(M) . Suppose that V is g-supplement of U inM . Then, M = U+V

and U ∩ V <<g V . Now in the following exact sequence 0 −→ U ∩ V −→ V −→
V

U∩V
−→ 0 both U∩V (by Lemma 11) and V

U∩V

(

∼= M
U

)

are coatomic. Therefore,
V is coatomic by [15, Lemma 1.5.(a)].

Abelian groups (Z-modules), which do not contain divisible subgroups other
than 0 are known as reduced groups. Denote

P (M) :=
∑

{L ≤ M : L has no maximal submodules}.

The following result is well-known:
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Let R be a Dedekind domain. Then an R-moduleM has no non-zero divisible
submodules if and only if P (M) = 0.

Following Zöschinger [15, Definition (before Lemma 1.5)] (for any ring R) an
R-module M is said to be a reduced module if P (M) = 0.

The following proposition is an analogue of [2, Proposition 3.2].

Proposition 7. Let R be a nonlocal domain and let M be a reduced R-module.

If M is a sgrs-module, then M = T (M) +Radg(M).

Proof. Suppose that T (M) + Radg(M) 6= M . Since, Radg(M) ≤ T (M) +
Radg(M), there exist L ≤ M such that T (M) + Radg(M) + L = M and L ∩
(T (M)+Radg(M)) <<g L. Now M being reduced we have a maximal submodule
K of L such that K ′ = T (M) + Radg(M) + K is a maximal submodule of M .
(To see K ′ maximal in M , write X = T (M) + Radg(M) and consider K0 ≤ M
such that X + K ≤ K0 ≤ M . Then K being maximal in L, we have either
L ∩ K0 = K or L ∩ K0 = L. But L ∩ K0 = K implies that K0 = X + K and
L ∩ K0 = L implies that K0 = M , as required). Then K ′ has a g-supplement
V in M . Now K ′ being maximal, one can find a cyclic submodule V0 of V such
that K ′ + V0 = M , and so V0

∼= R
I
for some nonzero I ≤ R. Therefore, V0 is a

torsion submodule of M , and so V0 ≤ T (M). Hence, we have M = K ′ + V0 =
T (M) + Radg(M) + K + V0 = T (M) + Radg(M) + K = K ′, a contradiction.
Therefore, M = T (M) +Radg(M).

The next three results can be proved in a similar fashion for sgrs-module
as they appeared in [2, Proposition 3.3, Proposition 3.4 and Proposition 3.5] for
srs-modules, hence we only state them.

Proposition 8. Let R be a domain and M an R-module. Suppose that M =
T (M) +Radg(M) and T (M) is G-supplemented. Then M is a sgrs-module.

Proposition 9. Let R be a Dedekind domain and M an R-module. Then M is

a sgrs-module if and only if the reduced part N of M is a sgrs-module.

Proposition 10. Let R be a nonlocal Dedekind domain and M a sgrs-module.

Then M = T (M) +Radg(M).
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