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set S(L) = {a∗ | a ∈ L} is proved to be a Boolean algebra. Also, the notions
of ∗−congruence and kernel ideals are introduced in a quasi-p-ADL and
characterized kernel ideals. Finally, some equivalent conditions are given for
every ideal of a quasi-p-ADL to be a kernel ideal.

Keywords: pseudo-complementation, quasi pseudo-complementation, Al-
most Distributive Lattice (ADL), p-ADL, quasi-p-ADL.

2010 Mathematics Subject Classification: 06D99, 06D15.

1Corresponding author.

http://dx.doi.org/10.7151/dmgaa.1324


6 R.K. Bandaru and G.C. Rao

1. Introduction

A pseudo-complemented lattice is a lattice L with 0 such that to each a ∈ L,
the largest annihilating element of a exists in L. That is, there exists a∗ ∈ L
such that, for all x ∈ L, a ∧ x = 0 if and only if x ≤ a∗. Here a∗ is called
the pseudo-complement of a. For each element a of a pseudo-complemented lat-
tice L, a∗ is uniquely determined by a, so that ∗ can be regarded as a unary
operation on L. Moreover, each pseudo-complemented lattice contains the unit
element namely 0∗. It follows that every pseudo-complemented lattice L can be
regarded as an algebra (L,∨,∧, ∗, 0, 1) of type (2, 2, 1, 0, 0). The fact that the
class of pseudo-complemented distributive lattices is equationally definable was
first observed by Ribenboim in 1949. Also, in [5], it was proved that the class of
pseudo-complemented distributive lattices is generated by its finite members and
a complete description of the lattice of equational classes of pseudo-complemented
distributive lattices is given. In [8], Sankappanavar introduced a new class of al-
gebras, called semi-De Morgan algebras, as a common abstraction of De Morgan
algebras and distributive pseudocomplemented lattices and studied its proper-
ties. Also, he studied several important subvarieties of semi-De Morgan algebras,
such as demi-p-lattices, weak Stone algebras and almost p-lattices. In [3], Frink
studied about the pseudo-complemented semilattice L and proved that the set
L∗ = {a∗ | a ∈ L}, where ∗ is a pseudo-complementation on L, becomes a Boolean
algebra. In [1], Cornish considered the kernels of ∗−congruences on distributive
pseudo-complemented lattices and studied its important properties. Later these
concepts were extended to the case of semi lattices by Blyth in [2] and to the case
of ADLs by Rao in [7].

The concept of pseudo-complementation in an ADL and the concept of Stone
ADL was given by Swamy, Rao and Nanaji Rao [9, 10]. They have proved that
there is a one-to-one correspondence between the pseudo-complementations on
an ADL L with 0 and the set of all maximal elements of L. Also, they proved that
if ∗ is a pseudo-complementation on an ADL L, then the set L∗ = {a∗ | a ∈ L}
is a Boolean algebra and the pseudo-complementation ∗ on L is equationally
definable. In [6] Rao et al. studied the properties of minimal prime ideals in
an ADL.

In this paper, we introduce the concept of quasi pseudo-complementation on
an ADL as a generalization of pseudo-complementation on an ADL like the con-
cept of almost p-lattice as a generalization of pseudo-complemented distributive
lattice. Here we extend the concept of almost p-lattice to the case of almost
distributive lattices and name it quasi-p-ADL. We give necessary and sufficient
conditions for a quasi-p-ADL to be a p-ADL and we prove that if ∗ is a quasi
pseudo-complementation on an ADL L then the set S(L) = {a∗ | a ∈ L} be-
comes a Boolean algebra. It is observed that there exists an induced surjective
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correspondence between the set of maximal elements and the set of quasi pseudo-
complementations on L, provided there is a quasi pseudo-complementation on L.
We introduce the concept of ∗−congruence, kernel ideals on a quasi-p-ADL and
give equivalent conditions under which every ideal of L is a kernel ideal.

2. Preliminaries

In this section, we give the definition and some elementary properties of a pseudo-
complemented ADL and Stone ADL [9, 10]. For the concept of ADL refer to [11]
and for the concept of minimal prime ideals in an ADL refer to [6].

Definition 2.1. Let (L,∨,∧) be an ADL with 0. Then a unary operation a 7→ a∗

on L is called a pseudo-complementation on L if, for any a, b ∈ L it satisfies the
following conditions:

(1) a ∧ b = 0 ⇒ a∗ ∧ b = b,

(2) a ∧ a∗ = 0,

(3) (a ∨ b)∗ = a∗ ∧ b∗.

L is called a Stone ADL if, for any x ∈ L, x∗ ∨ x∗∗ = 0∗.

If (L,∨,∧) is an ADL with 0 and ∗ is a pseudo-complementation on L, then
we say that (L,∨,∧, ∗, 0) is a pseudo-complemented ADL (p-ADL, for brevity).

In the following, we give an example of an ADL with a pseudo-complementation
which is not a Lattice.

Example 2.2. Let (X,∨,∧, 0) be a discrete ADL. Fix x0 6= 0 in X and define ∗
on X as follows

a∗ =

{

0, if a 6=0;
x0, if a = 0.

Then ∗ is a pseudo-complementation on X.

Now we give some elementary properties of pseudo-complementation.

Theorem 2.3. Let L be an ADL with 0 and ∗ a pseudo-complementation on L
and a, b ∈ L. Then we have the following:

(1) 0∗ is maximal element,

(2) 0∗∗ = 0,

(3) a∗∗ ∧ a = a,

(4) a∗∗∗ = a∗,

(5) a∗ ∧ b∗ = b∗ ∧ a∗,

(6) a ≤ b⇒ b∗ ≤ a∗,
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(7) a∗ ≤ (a ∧ b)∗ and b∗ ≤ (a ∧ b)∗,

(8) a ∧ b = 0 ⇔ a∗∗ ∧ b = 0,

(9) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

Definition 2.4. For any non-empty subset A of an ADL L with 0, define

A∗ = {x ∈ L | x ∧ a = 0, for all a ∈ A}.

This A∗ is an ideal of L and is called the annihilator ideal of A.

For any a ∈ L, we write [a]∗ for {a}∗ and is called annulet of L.
It can be easily observed that, for any subset A of L, A ∩A∗ = {0}.

Lemma 2.5. Let L be an ADL with 0 and a ∈ L. Then (a] = L if and only if a
is a maximal element.

Theorem 2.6. Let L be an ADL with 0. Then for any a ∈ L, the annulet [a]∗

is a principal ideal if and only if L has a pseudocomplementation.

Theorem 2.7. Let L be an ADL with 0 and ∗ a pseudo-complementation on L.
For any a∗, b∗ ∈ L∗, define a∗ ≤ b∗ if and only if a∗ ∧ b∗ = a∗. Then (L∗,≤) is a

Boolean algebra.

Corollary 2.8. Let L be an ADL with 0 and ∗ a pseudo-complementation on L.
Then the map f : L 7→ L∗ defined by f(a) = a∗∗ is an epimorphism.

Theorem 2.9. Let I be an ideal of L and F a filter of L such that I ∩ F = ∅.
Then there exists a prime ideal (filter) P of L such that I ⊆ P and P ∩ F = ∅
(F ⊆ P and P ∩ I = ∅).

3. Quasi pseudo-complementation on an ADL

In this section, we give the definition of a quasi pseudo-complementation on an
ADL with 0 and study some elementary properties of quasi pseudo-complementation.

Definition 3.1. Let (L,∨,∧) be an ADL with 0. Then a unary operation a 7→ a∗

on L is called a quasi pseudo-complementation on L if, for any a, b ∈ L, the
following are satisfied

(1) 0∗ is a maximal element,

(2) (a ∨ b)∗ = a∗ ∧ b∗,

(3) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗,

(4) a∗∗∗ = a∗,

(5) a ∧ a∗ = 0.
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If (L,∨,∧) is an ADL with 0 and ∗ a quasi pseudo-complementation on L
then we say that (L,∨,∧, ∗, 0) is a quasi pseudo-complemented ADL. For brevity,
we will call quasi pseudo-complemented ADL as q-p-ADL.

Note that every p-ADL is a q-p-ADL but converse need not be true which
we show in the following example.

Example 3.2. (i) Let L = {0, a, b, c}. Define two binary operations ∨ and ∧ on
L as follows:

∨ 0 a b c

0 0 a b c

a a a a a

b b a b a

c c a a c

∧ 0 a b c

0 0 0 0 0

a 0 a b c

b 0 b b 0

c 0 c 0 c

and define x∗ = 0 for all x 6= 0 and 0∗ = a. Then (L,∨,∧, 0) is a distributive
lattice and hence an ADL and ∗ is a quasi pseudo-complementation on L but not
a pseudo-complementation on L. We can observe that b ∧ c = 0 but b∗ ∧ c =
0 ∧ c = 0 6= c.

(ii) Let D = {0′, a′, b′} be a discrete ADL and L = {0, a, b, c} a distributive
lattice given in Example 3.2(i). Then

R = D × L =
{

(0′, 0), (0′, a), (0′, b), (0′, c), (a′, 0), (a′, a), (a′, b), (a′, c), (b′, 0),

(b′, a), (b′, b), (b′, c)
}

and hence (R,∨,∧, 0⋄) is an ADL which is not a lattice, where 0⋄ = (0′, 0),
under point-wise operation. Define (x, y)∗ = (0′, 0) for all (x, y) 6= (0′, 0) and
(0′, 0)∗ = (a′, a). Then ∗ is a quasi pseudo-complementation on R. But it is not a
pseudo-complementation on R because (0′, b)∧ (0′, c) = (0′, b∧c) = (0′, 0) implies
that (0′, b)∗ ∧ (0′, c) = (0′, 0) ∧ (0′, c) = (0′, 0) 6= (0′, c).

Example 3.3. Let (L,+, ·, 0) be a commutative regular ring. To each a ∈ L, let
a◦ be the unique idempotent element in L such that aL = a◦L. Define, for any
a, b ∈ L,

(i) a ∧ b = a◦b,

(ii) a ∨ b = a+ (1− a◦)b,

(iii) a∗ = 1− a◦,

then (L,∨,∧, 0) is an almost distributive lattice with 0 and ∗ is a quasi pseudo-
complementation on L.

Now we give some elementary properties of a quasi pseudo-complementation.

Lemma 3.4. Let L be an ADL with 0 and ∗ a quasi pseudo-complementation on

L. Then, for a, b ∈ L, we have the following:
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(1) a∗ ∧ a = 0,

(2) 0∗∗ = 0,

(3) a∗ ∧ b∗ = b∗ ∧ a∗,

(4) a∗ ∧ a∗∗ = 0,

(5) a ≤ b⇒ b∗ ≤ a∗,

(6) a ∧ b∗ ≤ a ∧ (a ∧ b)∗,

(7) (a ∨ b)∗ = (b ∨ a)∗,

(8) (a ∧ b)∗ = (b ∧ a)∗,

(9) a∗ ∧ (a∗ ∧ b)∗ = a∗ ∧ b∗,

(10) a ∧ b∗ = 0 ⇒ a∗ ∧ b∗ = b∗ and a∗∗ ∧ b∗∗ = a∗∗.

Proof. (1) a∗ ∧ a = a ∧ a∗ ∧ a = 0 ∧ a = 0.

(2) Since 0∗ is a maximal element, we have 0∗∨0 = 0∗. So that 0∗∗ = (0∗∨0)∗ =
0∗∗ ∧ 0∗ = 0.

(3) We know that for any a, b ∈ L, a∨0 = a and b∨0 = b. Therefore a∗∧0∗ = a∗

and b∗ ∧ 0∗ = b∗. Then a∗ ≤ 0∗ and b∗ ≤ 0∗ and hence a∗ ∧ b∗ = b∗ ∧ a∗.

(4) Since a∧a∗ = 0, we have (a∧a∗)∗∗ = 0∗∗ = 0. Hence, by Definition 3.1(3, 4),
a∗∗ ∧ a∗ = 0. Thus a∗ ∧ a∗∗ = a∗∗ ∧ a∗ ∧ a∗∗ = 0.

(5) Suppose a ≤ b. Then a ∨ b = b. So that b∗ = (a ∨ b)∗ = a∗ ∧ b∗ = b∗ ∧ a∗ by
(3). Hence b∗ ≤ a∗.

(6) Since a ∧ b ≤ b, by (4), we get b∗ ≤ (a ∧ b)∗ and hence a ∧ b∗ ≤ a ∧ (a ∧ b)∗

(7) (a ∨ b)∗ = a∗ ∧ b∗ = b∗ ∧ a∗ = (b ∨ a)∗.

(8) (a ∧ b)∗ = (a ∧ b)∗∗∗ = (a∗∗ ∧ b∗∗)∗ = (b∗∗ ∧ a∗∗)∗ = (b ∧ a)∗∗∗ = (b ∧ a)∗.

(9) a∗∧(a∗∧b)∗ = [a∨(a∗∧b)]∗ = [(a∨a∗)∧(a∨b)]∗∗∗ = [(a∨a∗)∗∗∧(a∨b)∗∗]∗ =
[0∗ ∧ (a ∨ b)∗∗]∗ = (a ∨ b)∗∗∗ = (a ∨ b)∗ = a∗ ∧ b∗.

(10) Suppose a∧b∗ = 0. Then b∗ = 0∗∧b∗ = (a∧b∗)∗∧b∗ = b∗∧(b∗∧a)∗ = b∗∧a∗.
So that b∗ ≤ a∗ and hence a∗∗ ≤ b∗∗. Therefore a∗∗ ∧ b∗∗ = a∗∗.

Now we prove that quasi-pseudo-complementation on an ADL is equationally
definable.

Theorem 3.5. Let L be an ADL with 0. Then ∗ is a quasi pseudo-complementation

on L if and only if

(1) (a ∧ b)∗ = (a ∧ b∗∗)∗

(2) 0∗ is a maximal element

(3) (a ∨ b)∗ = a∗ ∧ b∗

(4) (a ∧ b)∗ = (b ∧ a)∗

(5) a ∧ a∗ = 0.
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Proof. Suppose ∗ is a quasi pseudo-complementation on L and a, b ∈ L. Then
(2), (3), (4) and (5) follow from Definition 3.1 and Lemma 3.4. Now

(a ∧ b)∗ = (a ∧ b)∗∗∗

= (a∗∗ ∧ b∗∗)∗

= (a∗∗ ∧ b∗∗∗∗)∗

= (a ∧ b∗∗)∗∗∗

= (a ∧ b∗∗)∗.

Conversely, assume that the conditions hold. Let a, b ∈ L. Then

a∗ = (0∗ ∧ a)∗ = (0∗ ∧ a∗∗)∗ = a∗∗∗

and
(a ∧ b)∗∗ = ((a ∧ b)∗)∗

= ((a ∧ b∗∗)∗)∗

= ((a∗∗ ∧ b∗∗)∗)∗

= (a∗ ∨ b∗)∗∗∗

= (a∗ ∨ b∗)∗

= a∗∗ ∧ b∗∗.

Now we give necessary and sufficient conditions for a q-p-ADL to be a p-ADL.

Theorem 3.6. Let L be an ADL with 0 and ∗ is a quasi pseudo-complementation

on L. Then, for a, b ∈ L, the following are equivalent

(1) ∗ is a pseudo-complementation on L

(2) a∗∗ ∧ a = a

(3) a∗ ∧ b = (a ∧ b)∗ ∧ b

(4) [a]∗ ⊆ (a∗].

Proof. (1)⇒(2) is clear.
(2)⇒(1): Assume (2). Let a, b ∈ L and a ∧ b = 0. Then

b = b∗∗ ∧ b (by (2))
= 0∗ ∧ b∗∗ ∧ b
= (a∗ ∧ a∗∗)∗ ∧ b∗∗ ∧ b
= (a ∨ a∗)∗∗ ∧ b∗∗ ∧ b
= b∗∗ ∧ (a ∨ a∗)∗∗ ∧ b
= (b ∧ (a ∨ a∗))∗∗ ∧ b
= [(b ∧ a) ∨ (b ∧ a∗)]∗∗ ∧ b
= [0 ∨ (b ∧ a∗)]∗∗ ∧ b
= (b ∧ a∗)∗∗ ∧ b
= b∗∗ ∧ a∗∗∗ ∧ b
= a∗∗∗ ∧ b∗∗ ∧ b
= a∗ ∧ b.



12 R.K. Bandaru and G.C. Rao

Therefore ∗ is a pseudo-complementation on L. Similarly, we can prove (1) ⇔ (3)
and (1) ⇔ (4).

Now, we prove that if ∗ is a quasi pseudo-complementation on an ADL L,
the set S(L) = {a∗ | a ∈ L} = {a ∈ L | a = a∗∗} becomes a Boolean algebra.

Theorem 3.7. Let L be an ADL with 0 and ∗ a quasi pseudo-complementation

on L. For any a∗, b∗ ∈ S(L), define a∗ ≤ b∗ if and only if a∗ ∧ b∗ = a∗. Then
(S(L),≤) is a Boolean algebra.

Proof. Clearly ≤ is a partial ordering on S(L). Let a∗, b∗ ∈ S(L). Since (a∨b)∗ =
a∗∧b∗, we have a∗∧b∗ ∈ S(L) and a∗∧b∗ = b∗∧a∗. So that a∗∧b∗ is the greatest
lower bound of {a∗, b∗} in S(L). Now we prove that (a∗∗∧b∗∗)∗ is the lub of a∗, b∗

in the poset (S(L),≤). We have a∗∗∧b∗∗ ≤ b∗∗ and hence b∗ = b∗∗∗ ≤ (a∗∗∧b∗∗)∗.
Similarly, we get that a∗ ≤ (a∗∗ ∧ b∗∗)∗. Therefore (a∗∗ ∧ b∗∗)∗ is an upper bound
of {a∗, b∗} in S(L). Let c∗ ∈ S(L) and a∗ ≤ c∗, b∗ ≤ c∗. Then c∗∗ ≤ a∗∗ and
c∗∗ ≤ b∗∗. Hence c∗∗ ≤ a∗∗ ∧ b∗∗. Therefore (a∗∗ ∧ b∗∗)∗ ≤ c∗∗∗ = c∗. Thus
(a∗∗ ∧ b∗∗)∗ is the least upper bound of {a∗, b∗} in S(L) and we denote this by
a∗∨ b∗. Hence (S(L),≤) is a lattice.

It can be easily seen that (S(L),≤) is a bounded lattice in which 0∗ is the
greatest element and 0 is the least element. Let a∗ ∈ S(L). Then a∗∗ ∈ S(L),
a∗∨ a∗∗ = (a∗∗ ∧ a∗∗∗)∗ = 0∗ and a∗ ∧ a∗∗ = 0. Hence a∗∗ is the complement of
a∗ in S(L). Finally we prove that S(L) is distributive. Let a∗, b∗ and c∗ ∈ S(L).
Then,

a∗∨ (b∗ ∧ c∗) = [a∗∗ ∧ (b∗ ∧ c∗)∗]∗

= [a∗∗∗∗ ∧ (b∗∗ ∨ c∗∗)∗∗]∗ by definition 3.1
= [a∗∗ ∧ (b∗∗ ∨ c∗∗)]∗∗∗ by definition 3.1
= [a∗∗ ∧ (b∗∗ ∨ c∗∗)]∗ by definition 3.1
= [(a∗∗ ∧ b∗∗) ∨ (a∗∗ ∧ c∗∗)]∗

= (a∗∗ ∧ b∗∗)∗ ∧ (a∗∗ ∧ c∗∗)∗

= (a∗∨ b∗) ∧ (a∗∨ c∗).

Therefore a∗∨ (b∗ ∧ c∗) = (a∗∨ b∗) ∧ (a∗∨ c∗). Thus (S(L),≤) is a Boolean
algebra.

Corollary 3.8. Let L be an ADL with 0 and ∗ a quasi pseudo-complementation

on L. Then the map f : L 7→ S(L) defined by f(a) = a∗∗ is an epimorphism.

Definition 3.9. Two quasi pseudo-complementations ∗ and ⊥ on an ADL L
are said to be equivalent, denoted by ∗ ≈ ⊥, if 0∗ = 0⊥. Then clearly ≈ is an
equivalence relation on the set QPC(L), of all quasi pseudo-complementations
on L.
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Theorem 3.10. Let (L,∨,∧, 0) be an ADL with a quasi pseudo-complementation

∗ and M the set of all maximal elements in L. Then, for any m ∈ M, ∗m :
L × L → L defined by a∗m = a∗ ∧ m for all a ∈ L is again a quasi pseudo-

complementation on L and the correspondence m 7→ ∗m induces a bijection of M
onto QPC(L)/ ≈.

Proof. Let a, b ∈ L and m ∈ M. Then we can easily show that ∗m is a quasi
pseudo-complementation on L. Letm,n ∈M such that ∗m ≈ ∗n. Then 0∗m = 0∗n

which implies that 0∗ ∧m = 0∗ ∧ n and hence m = n since 0∗ is maximal in L.
Now, let ⊥ ∈ QPC(L). Then m = 0⊥ ∈M and 0⊥ = 0∗ ∧ 0⊥ = 0∗ ∧m = 0∗m and
hence ∗m ≈ ⊥. Thus m 7→ ∗m is a bijection of M onto QPC(L)/ ≈ .

Now we give some equivalent conditions for a q-p-ADL to be a Stone ADL.

Theorem 3.11. Let L be a q-p-ADL. Then the following are equivalent.

(i) L is a Stone ADL.

(ii) a∗ ∨ a∗∗ = 0∗ for all a ∈ L.

Proof. (i)⇒(ii) is clear. Assume (ii). Let a ∈ L. Then a∗ ∨ a∗∗ = 0∗ implies
that (a∗ ∨ a∗∗)∧ a = 0∗ ∧ a which gives a∗∗ ∧ a = a. Hence, by Theorem 3.6, L is
pseudo-complemented and hence L is a Stone ADL.

Theorem 3.12. Let L be a q-p-ADL. Then the following are equivalent.

(i) L is a Stone ADL.

(ii) For any a, b ∈ L, (a ∧ b)∗ = a∗ ∨ b∗.

Proof. Assume (i). Suppose a, b ∈ L and x = (a∧b)∗. Then a∧b∧x = 0 implies
that a∗ ∧ b ∧ x = b∧ x which gives a∗∗ ∧ b∧ x = 0. So that b∗ ∧ a∗∗ ∧ x = a∗∗ ∧ x
and hence b∗ ∨ (a∗∗ ∧ x) = b∗. Now, a∗ ∨ b∗ = a∗ ∨ [b∗ ∨ (a∗∗ ∧ x)] = a∗ ∨ (b∗ ∨ x).
Thus (a∗ ∨ b∗)∧ x = [a∗ ∨ (b∗ ∨ x)] ∧ x = x. Now (a∧ b)∗ = (a∗ ∨ b∗) ∧ (a ∧ b)∗ =
[a∗ ∧ (a∧ b)∗]∨ [b∗ ∧ (a∧ b)∗] = a∗ ∨ b∗. Conversely, assume (ii). Let a ∈ L. Then
a∗ ∨ a∗∗ = (a ∧ a∗)∗ = 0∗. Hence, by Theorem 3.11, (i) follows.

There are no hidden difficulties to prove the following theorem. Hence we
omit its proof.

Theorem 3.13. Let L be a q-p-ADL. Then the following are equivalent.

(i) L is a Stone ADL,

(ii) S(L) is a sublattice of L,

(iii) (a ∨ b)∗∗ = a∗∗ ∨ b∗∗ for all a, b ∈ L,

(iv) a ∧ b = 0 implies a∗ ∨ b∗ = 0∗ for all a, b ∈ L.
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Definition 3.14. Let L be an ADL with 0. An element b in L is said to be a
semi-complement of the element a in L if a ∧ b = 0. We denote the set of all
semi-complements of a by S(a).

Lemma 3.15. Let L be an ADL with a ∈ L. Then S(a) is an ideal of L.

Lemma 3.16. Let L be a q-p-ADL. Then the following are equivalent.

(i) L is a p-ADL.

(ii) S(a) = (a∗] for all a ∈ L.

Definition 3.17. An ideal I of an ADL L is called a direct factor if there exists
an ideal J of L such that I ∩ J = {0} and I ∨ J = L.

Now we prove the following.

Theorem 3.18. Let L be a q-p-ADL. Then L is a Stone ADL if and only if, for

any a ∈ L, the ideal S(a) = (a∗] is a direct factor of L.

Proof. Suppose L is a Stone ADL and a ∈ L. Then a∗∨a∗∗ = 0∗ and S(a) = (a∗].
Now a∗∧a∗∗ = 0 and a∗∨a∗∗ = 0∗ implies that (a∗]∧(a∗∗] = (0] and (a∗]∨(a∗∗] =
L. Hence (a∗] is a direct factor of L. Conversely, assume that S(a) = (a∗] is a
direct factor of L, for all a ∈ L. Then there exists an ideal J in L such that
(a∗] ∩ J = {0} and (a∗] ∨ J = L. Write 0∗ = b ∨ (a∗ ∧ x) for some x ∈ L, b ∈ J .
Also a∗ ∧ b ∈ (a∗] ∧ J which implies that a∗∗ ∧ b = b and a∗∗ ∨ b = b. Now,
0∗ = (a∗∗∧0∗)∨0∗ = (a∗∗∧0∗)∨((a∗∨b)∧0∗) = (a∗∗∨a∗∨b)∧0∗ = (a∗∨a∗∗)∧0∗.
Hence 0∗ = (a∗ ∧ 0∗) ∨ (a∗∗ ∧ 0∗) = (a ∨ 0)∗ ∨ (a∗ ∨ 0)∗ = a∗ ∨ a∗∗. Thus L is a
Stone ADL.

4. Kernel ideals in q-p-ADLs

In this section, we introduce the notions of ∗−congruences and kernel ideals on
a q-p-ADL L. We give a necessary and sufficient condition for a congruence
on L to be a ∗−congruence and we characterize kernel ideals. Finally we give
equivalent conditions for every ideal of L to become a kernel ideal. We can recall
that a congruence relation on an ADL (L,∨,∧, 0) is an equivalence relation θ,
compatible with the operations ∨ and ∧. Throughout this section, L stands for a
q-p-ADL (L,∨,∧, 0) with quasi pseudo-complementation ∗, otherwise we specify.

Definition 4.1. A congruence relation θ on a q-p-ADL L is called a ∗−congruence
if it satisfies the following condition:

(a, b) ∈ θ implies that (a∗, b∗) ∈ θ for all a, b ∈ L.
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The following example shows that every congruence on a q-p-ADL need not
be a ∗−congruence.

Example 4.2. Let R = D×L = {(0′, 0), (0′, a), (0′, b), (0′, c), (a′, 0), (a′, a), (a′, b),
(a′, c), (b′, 0), (b′, a), (b′, b), (b′, c)} be a q-p-ADL as in Example 3.2(ii). Now con-
sider two congruence relations θ1 and θ2 on R = D × L whose partitions A1 and
A2 are respectively given by

A1 =
{

{(0′, 0), (0′, a), (0′, b), (0′, c), (a′, a)}, {(a′, 0), (a′, b), (a′, c)},

{(b′, 0), (b′, a), (b′, b), (b′, c)}
}

and

A2 =
{

{(0′, 0), (0′, a), (0′, b), (0′, c)}, {(a′, 0), (a′, a), (a′, b), (a′, c)},

{(b′, 0), (b′, a), (b′, b), (b′, c)}
}

.

Then clearly θ1 is a ∗−congruence on R = D×L. But θ2 is not a ∗−congruence
on R = D×L, because ((0′, b), (0′, 0)) ∈ θ2 and ((0′, b)∗, (0′, 0)∗) = ((0′, 0), (a′, a))
/∈ θ2.

Now we give an equivalent condition for a congruence relation on q-p-ADL
L to be ∗−congruence.

Theorem 4.3. A congruence relation θ on L is a ∗−congruence if and only if

(a, 0) ∈ θ implies that (a∗, 0∗) ∈ θ for any a ∈ L.

Proof. Let θ be a ∗−congruence on L and a ∈ L. Then (a, 0) ∈ θ implies
(a∗, 0∗) ∈ θ. Conversely, assume that the condition holds and (a, b) ∈ θ. Then
(b, a) ∈ θ which implies that (b∧a∗, 0) ∈ θ and hence ((b∧a∗)∗, 0∗) ∈ θ. Therefore
(a∗ ∧ b∗, a∗) = (a∗ ∧ (a∗ ∧ b)∗, a∗ ∧ 0∗) ∈ θ. Similarly, we can obtain that (a∗ ∧
b∗, b∗) ∈ θ. Hence (a∗, b∗) ∈ θ. Thus θ is a ∗−congruence on L.

We proved that S(L) = {x ∈ L | x∗∗ = x} is a Boolean algebra in which for
any a, b ∈ S(L), a∨

¯
b = (a∗ ∧ b∗)∗. In a pseudo-complemented distributive lattice,

the relation θ defined by (x, y) ∈ θ if and only if x∗ = y∗ is a congruence called
the Glivenko congruence. Now, we prove that the same θ is a ∗−congruence
relation on a q-p-ADL L and we show that L/θ is a Boolean algebra under this
∗−congruence θ on L

Theorem 4.4. Let L be a q-p-ADL. Then L/θ is a Boolean algebra under the

∗−congruence relation θ on L defined by (x, y) ∈ θ if and only if x∗ = y∗.
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Proof. Clearly θ is an equivalence relation on L. Suppose (a, b) ∈ θ and c ∈
L. Then a∗ = b∗ and hence (a ∨ c)∗ = a∗ ∧ c∗ = b∗ ∧ c∗ = (b ∨ c)∗. Again
(a ∧ c)∗ = (a∗∗ ∧ c∗∗)∗ = (b∗∗ ∧ c∗∗)∗ = (b ∧ c)∗. Hence (a ∨ c, b ∨ c) ∈ θ
and (a ∧ c, b ∧ c) ∈ θ. Then θ is a congruence relation on L. Clearly θ is a
∗−congruence. Now define λ : L/θ → S(L) by λ([a]θ) = a∗∗ for all [a]θ ∈
L/θ. Clearly λ is well-defined, one-one and onto. Let [a]θ, [b]θ ∈ L/θ. Now
λ([a]θ ∧ [b]θ) = λ([a ∧ b]θ) = (x ∧ y)∗∗ = x∗∗ ∧ y∗∗ = λ([a]θ) ∧ λ([b]θ). Again,
λ([a]θ∨. [b]θ) = λ([a ∨ b]θ) = (a ∨ b)∗∗ = (a∗ ∧ b∗)∗ = a∗∗∨

¯
b∗∗ = λ([a]θ)∨

¯
λ([b]θ).

Therefore λ is an isomorphism. Hence L/θ is a Boolean algebra.

For any ideal I of L, we introduce a ∗−congruence ψ(I) on L corresponding
to I.

Theorem 4.5. Let L be a q-p-ADL and I an ideal of L. Define a binary relation

ψ(I) on L by

(a, b) ∈ ψ(I) if and only if a ∧ i∗ = b ∧ i∗ for some i ∈ I.

Then ψ(I) is a ∗−congruence relation on L.

Proof. Since (i∨ j)∗ = i∗∧ j∗ for any i, j ∈ L and the fact that I is an ideal of L,
clearly ψ(I) is an equivalence relation on L. Let (a, b) ∈ ψ(I) and (c, d) ∈ ψ(I).
Then a ∧ i∗ = b ∧ i∗ for some i ∈ I and c ∧ j∗ = d ∧ j∗ for some j ∈ I. Hence
(a∨c)∧(i∨j)∗ = (a∨c)∧i∗∧j∗ = (a∧i∗∧j∗)∨(b∧i∗∧j∗) = (c∧i∗∧j∗)∨(d∧i∗∧j∗).
Therefore (a ∨ c, b ∨ d) ∈ ψ(I). Now (a ∧ c) ∧ (i ∨ j)∗ = a ∧ c ∧ i∗ ∧ j∗ =
a ∧ i∗ ∧ c ∧ j∗ = b ∧ i∗ ∧ d ∧ j∗. Hence (a ∧ c, b ∧ d) ∈ ψ(I). Thus ψ(I) is a
congruence on L. Suppose (a, 0) ∈ φ(I). Then a ∧ i∗ = 0 for some i ∈ I. Then
0∗ ∧ i∗ = (a ∧ i∗)∗ ∧ i∗ = a∗ ∧ i∗(by Lemma 3.4(9)). Therefore (a∗, 0∗) ∈ ψ(I).
Thus ψ(I) is a ∗−congruence relation on L.

Definition 4.6. An ideal I of an q-p-ADL is called a kernel ideal if there exists
a ∗−congruence µ on L such that I = Kerµ = {a ∈ L : (a, 0) ∈ µ}.

Theorem 4.7. If I is a kernel ideal of L then the following conditions hold.

(i) a, b ∈ I implies (a∗ ∧ b∗)∗ ∈ I.

(ii) a, b ∈ I implies that there exists k ∈ I such that a∗ ∧ b∗ = k∗.

Proof. Let I be kernel ideal of L and a, b ∈ I. Then I = kerθ for some
∗−congruence θ on L. Then (a, 0) ∈ θ and (b, 0) ∈ θ. Hence (a∗, 0∗) ∈ θ
and (b∗, 0∗) ∈ θ. So that (a∗ ∧ b∗, 0∗) ∈ θ and hence ((a∗ ∧ b∗)∗, 0) ∈ θ. Thus
(a∗ ∧ b∗)∗ ∈ kerθ = I. Hence (i) follows. Put k = (a∗ ∧ b∗)∗. Then, by (i), k ∈ I
and k∗ = (a∗ ∧ b∗)∗∗ = a∗ ∧ b∗. Hence (ii) follows.

Now we give necessary and sufficient conditions for an ideal to become a
kernel ideal.
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Theorem 4.8. For any ideal I of L, the following are equivalent.

(i) I is a kernel ideal.

(ii) For a, b ∈ L, a∗ = b∗ and a ∈ I imply b ∈ I.

(iii) a ∈ I if and only if a∗∗ ∈ I.

Proof. (i)⇒(ii): Assume (i). Then there exists a ∗−congruence θ on L such that
kerθ = I. Chose x, y ∈ L such that x∗ = y∗ and x ∈ I. Then (x, 0) ∈ θ and hence
(y∗, 0∗) = (x∗, 0∗) ∈ θ. Therefore (0, y) = (y∗ ∧ y, 0∗ ∧ y) ∈ θ. Thus y ∈ kerθ = I.
Since x∗ = x∗∗∗ for all x ∈ L, (ii)⇒(iii) follows. Now, assume (iii). We know that
ψ(I) is a ∗−congruence relation on L by Theorem 4.5. If x ∈ kerψ(I). Then
(x, 0) ∈ ψ(I) and hence x∧ i∗ = 0 for some i ∈ I. Therefore, by Theorem 3.4(10),
x∗∗ = x∗∗ ∧ i∗∗ ∈ I and hence x ∈ I. Thus I is a kernel ideal.

An element a ∈ L is called a dense element if a∗ = 0. The set D(L) of all
dense elements of L forms a filter of L. The following theorem can be proved
easily.

Theorem 4.9. In L, the following conditions hold.

(i) x ∨ x∗ ∈ D(L) for all x ∈ L.

(ii) D(L) is a filter of L.

(iii) For any ideal I with I ∩ D(L) = ∅, there exists a minimal prime ideal P
such that I ⊆ P andP ∩D(L) = ∅.

(iv) Every proper kernel ideal in contained in a minimal prime ideal.

Theorem 4.10. If (x] = (x∗∗] for all x ∈ L, then (x] is a kernel ideal.

In [11], it is observed that the set PI(L) of all principal ideals of an ADL L
is a distributive lattice with least element (0]. Now, we give sufficient condition
for PI(L) to become Boolean algebra.

Theorem 4.11. If (x] = (y] for all x, y ∈ D(L) then PI(L) is a Boolean algebra.

Proof. Let (x] = (y] for all x, y ∈ D(L). Then {(x] | x ∈ D(L)} = {(d]} for
some x ∈ L. Clearly x ∨ x∗ ∈ D(L). Hence (x ∨ x∗] = (d]. For any (x] ∈ PI(L),
(x] ⊆ (x ∨ x∗] = (d]. Therefore (d] is the greatest element of PI(L). Also
(x]∩(x∗] = (0] and (x]∨(x∗] = (d]. Hence PI(L) is a bounded distributive lattice
in which every element is complemented. Thus PI(L) is a Boolean algebra.

Now, we give equivalent conditions for every ideal of L to become a kernel
ideal.

Theorem 4.12. Let L be a q-p-ADL. Then the following conditions are equiva-

lent.
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(i) Every ideal is a kernel ideal.

(ii) Every prime ideal is a kernel ideal.

(iii) For any a, b ∈ L, a∗ = b∗ implies (a] = (b].

(iv) Every principal ideal is a kernel ideal.

Proof. (i)⇒(ii) is clear. Assume (ii) and a, b ∈ L such that a∗ = b∗. Suppose
(a] 6= (b]. Without loss of generality, assume that (a] * (b]. Take F = {J ∈
I(L) | b ∈ J and a /∈ J}. Then, by Zorn’s lemma, F has a maximal element, say
P . Chose r, s ∈ L such that r /∈ P and s /∈ P . Then P ⊂ P ∨ (r] and P ⊂ P ∨ (s].
By the maximality of P , we can get a ∈ {P ∨ (r]} ∩ {P ∨ (s]} = P ∨ (r ∧ s].
If r ∧ s ∈ P , then a ∈ P which is a contradiction. Hence P is prime which is
kernel ideal. Now a∗ = b∗ and b ∈ P implies that a ∈ P, which is a contradiction.
Therefore (a] = (b]. Hence (iii) follows. Now, assume (iii) and I is a principal
ideal of L. Then I = (a] for some a ∈ L. Let r, s ∈ L such that r∗ = s∗ and
r ∈ (a]. Then (r] = (s] and s ∈ (r] ⊆ (a]. Hence (iv) follows. Finally, assume (iv)
and I is an ideal of L. Let a ∈ I. Then (a] ⊆ I and hence a∗∗ ∈ I since (a] is a
kernel ideal. Conversely assume a∗∗ ∈ I. Then (a∗∗] ⊆ I and hence a ∈ (a∗∗] ⊆ I
since (a∗∗] is a kernel ideal. Hence I is a kernel ideal of L.

Conclusion and future work

In this paper, we have introduced the concept of quasi-pseudo-complementation
on an ADL as a generalization of pseudo-complemenation on an ADL and stud-
ied its properties. We have given necessary and sufficient conditions for a q-p-
ADL to be a p-ADL and a stone ADL. We proved that if ∗ is a quasi pseudo-
complementation on an ADL L then the set S(L) = {a∗ | a ∈ L} becomes a
Boolean algebra. Also, it is observed that, there exists an induced surjective
correspondence between the set of maximal elements and the set of quasi pseudo-
complementations on L, provided there is a quasi pseudo-complementation. Also,
the concept of ∗−congruence, kernel ideals on a q-p-ADL is introduced and given
equivalent conditions for every ideal of L to become a kernel ideal.

In our future work, we will introduce the concepts of demi-pseudo-comple-
mentation on an ADL(for brevity, demi-p-ADL), Weak-Stone ADL and study
their properties.
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