Discussiones Mathematicae General Algebra and Applications 40 (2020) 5–19 doi:10.7151/dmgaa.1324

ON QUASI-P-ALMOST DISTRIBUTIVE LATTICES

RAVI KUMAR BANDARU¹

Department of Mathematics GITAM (Deemed to be University) Hyderabad Campus, Telangana, India-502 329

e-mail: ravimaths83@gmail.com

AND

G.C. RAO

Department of Mathematics Andhra University Andhra Pradesh, India-530 003

e-mail: gcraomaths@yahoo.co.in

Abstract

In this paper, the concept of quasi pseudo-complementation on an Almost Distributive Lattice (ADL) as a generalization of pseudo-complementation on an ADL is introduced and its properties are studied. Necessary and sufficient conditions for a quasi pseudo-complemented ADL(q-p-ADL) to be a pseudo-complemented ADL(p-ADL) and Stone ADL are derived and the set $S(L) = \{a^* \mid a \in L\}$ is proved to be a Boolean algebra. Also, the notions of *-congruence and kernel ideals are introduced in a quasi-p-ADL and characterized kernel ideals. Finally, some equivalent conditions are given for every ideal of a quasi-p-ADL to be a kernel ideal.

Keywords: pseudo-complementation, quasi pseudo-complementation, Almost Distributive Lattice (ADL), p-ADL, quasi-p-ADL.

2010 Mathematics Subject Classification: 06D99, 06D15.

¹Corresponding author.

1. INTRODUCTION

A pseudo-complemented lattice is a lattice L with 0 such that to each $a \in L$. the largest annihilating element of a exists in L. That is, there exists $a^* \in L$ such that, for all $x \in L, a \wedge x = 0$ if and only if $x \leq a^*$. Here a^* is called the pseudo-complement of a. For each element a of a pseudo-complemented lattice L, a^* is uniquely determined by a, so that * can be regarded as a unary operation on L. Moreover, each pseudo-complemented lattice contains the unit element namely 0^* . It follows that every pseudo-complemented lattice L can be regarded as an algebra $(L, \vee, \wedge, *, 0, 1)$ of type (2, 2, 1, 0, 0). The fact that the class of pseudo-complemented distributive lattices is equationally definable was first observed by Ribenboim in 1949. Also, in [5], it was proved that the class of pseudo-complemented distributive lattices is generated by its finite members and a complete description of the lattice of equational classes of pseudo-complemented distributive lattices is given. In [8], Sankappanavar introduced a new class of algebras, called semi-De Morgan algebras, as a common abstraction of De Morgan algebras and distributive pseudocomplemented lattices and studied its properties. Also, he studied several important subvarieties of semi-De Morgan algebras, such as demi-p-lattices, weak Stone algebras and almost p-lattices. In [3], Frink studied about the pseudo-complemented semilattice L and proved that the set $L^* = \{a^* \mid a \in L\}$, where * is a pseudo-complementation on L, becomes a Boolean algebra. In [1], Cornish considered the kernels of *-congruences on distributive pseudo-complemented lattices and studied its important properties. Later these concepts were extended to the case of semi lattices by Blyth in [2] and to the case of ADLs by Rao in [7].

The concept of pseudo-complementation in an ADL and the concept of Stone ADL was given by Swamy, Rao and Nanaji Rao [9, 10]. They have proved that there is a one-to-one correspondence between the pseudo-complementations on an ADL L with 0 and the set of all maximal elements of L. Also, they proved that if * is a pseudo-complementation on an ADL L, then the set $L^* = \{a^* \mid a \in L\}$ is a Boolean algebra and the pseudo-complementation * on L is equationally definable. In [6] Rao *et al.* studied the properties of minimal prime ideals in an ADL.

In this paper, we introduce the concept of quasi pseudo-complementation on an ADL as a generalization of pseudo-complementation on an ADL like the concept of almost p-lattice as a generalization of pseudo-complemented distributive lattice. Here we extend the concept of almost p-lattice to the case of almost distributive lattices and name it quasi-p-ADL. We give necessary and sufficient conditions for a quasi-p-ADL to be a p-ADL and we prove that if * is a quasi pseudo-complementation on an ADL L then the set $S(L) = \{a^* \mid a \in L\}$ becomes a Boolean algebra. It is observed that there exists an induced surjective correspondence between the set of maximal elements and the set of quasi pseudocomplementations on L, provided there is a quasi pseudo-complementation on L. We introduce the concept of *-congruence, kernel ideals on a quasi-p-ADL and give equivalent conditions under which every ideal of L is a kernel ideal.

2. Preliminaries

In this section, we give the definition and some elementary properties of a pseudocomplemented ADL and Stone ADL [9, 10]. For the concept of ADL refer to [11] and for the concept of minimal prime ideals in an ADL refer to [6].

Definition 2.1. Let (L, \lor, \land) be an ADL with 0. Then a unary operation $a \mapsto a^*$ on L is called a pseudo-complementation on L if, for any $a, b \in L$ it satisfies the following conditions:

- (1) $a \wedge b = 0 \Rightarrow a^* \wedge b = b$,
- (2) $a \wedge a^* = 0$,
- (3) $(a \lor b)^* = a^* \land b^*$.

L is called a Stone ADL if, for any $x \in L$, $x^* \vee x^{**} = 0^*$.

If (L, \lor, \land) is an ADL with 0 and \ast is a pseudo-complementation on L, then we say that $(L, \lor, \land, \ast, 0)$ is a pseudo-complemented ADL (p-ADL, for brevity).

In the following, we give an example of an ADL with a pseudo-complementation which is not a Lattice.

Example 2.2. Let $(X, \lor, \land, 0)$ be a discrete ADL. Fix $x_0 \neq 0$ in X and define * on X as follows

$$a^* = \begin{cases} 0, & \text{if } a \neq 0; \\ x_0, & \text{if } a = 0. \end{cases}$$

Then * is a pseudo-complementation on X.

Now we give some elementary properties of pseudo-complementation.

Theorem 2.3. Let L be an ADL with 0 and * a pseudo-complementation on L and $a, b \in L$. Then we have the following:

(1) 0^* is maximal element,

(2)
$$0^{**} = 0$$
,

(3) $a^{**} \wedge a = a$,

- (4) $a^{***} = a^*$,
- (5) $a^* \wedge b^* = b^* \wedge a^*$,
- (6) $a \le b \Rightarrow b^* \le a^*$,

(7) a* ≤ (a ∧ b)* and b* ≤ (a ∧ b)*,
(8) a ∧ b = 0 ⇔ a** ∧ b = 0,

(9) $(a \wedge b)^{**} = a^{**} \wedge b^{**}.$

Definition 2.4. For any non-empty subset A of an ADL L with 0, define

 $A^* = \{ x \in L \mid x \land a = 0, \text{ for all } a \in A \}.$

This A^* is an ideal of L and is called the annihilator ideal of A.

For any $a \in L$, we write $[a]^*$ for $\{a\}^*$ and is called annulet of L. It can be easily observed that, for any subset A of L, $A \cap A^* = \{0\}$.

Lemma 2.5. Let L be an ADL with 0 and $a \in L$. Then (a] = L if and only if a is a maximal element.

Theorem 2.6. Let L be an ADL with 0. Then for any $a \in L$, the annulet $[a]^*$ is a principal ideal if and only if L has a pseudocomplementation.

Theorem 2.7. Let L be an ADL with 0 and * a pseudo-complementation on L. For any $a^*, b^* \in L^*$, define $a^* \leq b^*$ if and only if $a^* \wedge b^* = a^*$. Then (L^*, \leq) is a Boolean algebra.

Corollary 2.8. Let L be an ADL with 0 and * a pseudo-complementation on L. Then the map $f: L \mapsto L^*$ defined by $f(a) = a^{**}$ is an epimorphism.

Theorem 2.9. Let I be an ideal of L and F a filter of L such that $I \cap F = \emptyset$. Then there exists a prime ideal (filter) P of L such that $I \subseteq P$ and $P \cap F = \emptyset$ $(F \subseteq P \text{ and } P \cap I = \emptyset).$

3. Quasi pseudo-complementation on an ADL

In this section, we give the definition of a quasi pseudo-complementation on an ADL with 0 and study some elementary properties of quasi pseudo-complementation.

Definition 3.1. Let (L, \vee, \wedge) be an ADL with 0. Then a unary operation $a \mapsto a^*$ on L is called a quasi pseudo-complementation on L if, for any $a, b \in L$, the following are satisfied

- (1) 0^* is a maximal element,
- (2) $(a \lor b)^* = a^* \land b^*,$
- (3) $(a \wedge b)^{**} = a^{**} \wedge b^{**},$
- (4) $a^{***} = a^*$,
- (5) $a \wedge a^* = 0.$

If (L, \lor, \land) is an ADL with 0 and * a quasi pseudo-complementation on L then we say that $(L, \lor, \land, *, 0)$ is a quasi pseudo-complemented ADL. For brevity, we will call quasi pseudo-complemented ADL as q-p-ADL.

Note that every p-ADL is a q-p-ADL but converse need not be true which we show in the following example.

Example 3.2. (i) Let $L = \{0, a, b, c\}$. Define two binary operations \lor and \land on L as follows:

V	0	a	b	с	\wedge	0	a	b	
0	0	a	b	с	0	0	0	0	
a	a	a	a	a	a	0	a	b	-
b	b	a	b	a	b	0	b	b	(
с	с	a	a	с	с	0	с	0	•

and define $x^* = 0$ for all $x \neq 0$ and $0^* = a$. Then $(L, \lor, \land, 0)$ is a distributive lattice and hence an ADL and * is a quasi pseudo-complementation on L but not a pseudo-complementation on L. We can observe that $b \land c = 0$ but $b^* \land c =$ $0 \land c = 0 \neq c$.

(ii) Let $D = \{0', a', b'\}$ be a discrete ADL and $L = \{0, a, b, c\}$ a distributive lattice given in Example 3.2(i). Then

$$R = D \times L = \left\{ (0', 0), (0', a), (0', b), (0', c), (a', 0), (a', a), (a', b), (a', c), (b', 0), (b', a), (b', b), (b', c) \right\}$$

and hence $(R, \lor, \land, 0^{\diamond})$ is an ADL which is not a lattice, where $0^{\diamond} = (0', 0)$, under point-wise operation. Define $(x, y)^* = (0', 0)$ for all $(x, y) \neq (0', 0)$ and $(0', 0)^* = (a', a)$. Then * is a quasi pseudo-complementation on R. But it is not a pseudo-complementation on R because $(0', b) \land (0', c) = (0', b \land c) = (0', 0)$ implies that $(0', b)^* \land (0', c) = (0', 0) \land (0', c) = (0', 0) \neq (0', c)$.

Example 3.3. Let $(L, +, \cdot, 0)$ be a commutative regular ring. To each $a \in L$, let a° be the unique idempotent element in L such that $aL = a^{\circ}L$. Define, for any $a, b \in L$,

(i)
$$a \wedge b = a^{\circ}b$$
,

- (ii) $a \lor b = a + (1 a^{\circ})b$,
- (iii) $a^* = 1 a^\circ$,

then $(L, \lor, \land, 0)$ is an almost distributive lattice with 0 and * is a quasi pseudocomplementation on L.

Now we give some elementary properties of a quasi pseudo-complementation.

Lemma 3.4. Let L be an ADL with 0 and * a quasi pseudo-complementation on L. Then, for $a, b \in L$, we have the following:

- (1) $a^* \wedge a = 0$,
- (2) $0^{**} = 0$,
- (3) $a^* \wedge b^* = b^* \wedge a^*$,
- (4) $a^* \wedge a^{**} = 0$,
- (5) $a \le b \Rightarrow b^* \le a^*$,
- $(6) \ a \wedge b^* \leq a \wedge (a \wedge b)^*,$
- (7) $(a \lor b)^* = (b \lor a)^*,$
- $(8) (a \wedge b)^* = (b \wedge a)^*,$
- (9) $a^* \wedge (a^* \wedge b)^* = a^* \wedge b^*$,
- $(10) \ a \wedge b^* = 0 \Rightarrow a^* \wedge b^* = b^* \ and \ a^{**} \wedge b^{**} = a^{**}.$

Proof. (1) $a^* \wedge a = a \wedge a^* \wedge a = 0 \wedge a = 0.$

- (2) Since 0^* is a maximal element, we have $0^* \vee 0 = 0^*$. So that $0^{**} = (0^* \vee 0)^* = 0^{**} \wedge 0^* = 0$.
- (3) We know that for any $a, b \in L$, $a \lor 0 = a$ and $b \lor 0 = b$. Therefore $a^* \land 0^* = a^*$ and $b^* \land 0^* = b^*$. Then $a^* \le 0^*$ and $b^* \le 0^*$ and hence $a^* \land b^* = b^* \land a^*$.
- (4) Since $a \wedge a^* = 0$, we have $(a \wedge a^*)^{**} = 0^{**} = 0$. Hence, by Definition 3.1(3, 4), $a^{**} \wedge a^* = 0$. Thus $a^* \wedge a^{**} = a^{**} \wedge a^* \wedge a^{**} = 0$.
- (5) Suppose $a \leq b$. Then $a \vee b = b$. So that $b^* = (a \vee b)^* = a^* \wedge b^* = b^* \wedge a^*$ by (3). Hence $b^* \leq a^*$.
- (6) Since $a \wedge b \leq b$, by (4), we get $b^* \leq (a \wedge b)^*$ and hence $a \wedge b^* \leq a \wedge (a \wedge b)^*$
- (7) $(a \lor b)^* = a^* \land b^* = b^* \land a^* = (b \lor a)^*.$
- (8) $(a \wedge b)^* = (a \wedge b)^{***} = (a^{**} \wedge b^{**})^* = (b^{**} \wedge a^{**})^* = (b \wedge a)^{***} = (b \wedge a)^*.$
- (9) $a^* \wedge (a^* \wedge b)^* = [a \vee (a^* \wedge b)]^* = [(a \vee a^*) \wedge (a \vee b)]^{***} = [(a \vee a^*)^{**} \wedge (a \vee b)^{**}]^* = [0^* \wedge (a \vee b)^{**}]^* = (a \vee b)^{***} = (a \vee b)^* = a^* \wedge b^*.$
- (10) Suppose $a \wedge b^* = 0$. Then $b^* = 0^* \wedge b^* = (a \wedge b^*)^* \wedge b^* = b^* \wedge (b^* \wedge a)^* = b^* \wedge a^*$. So that $b^* \leq a^*$ and hence $a^{**} \leq b^{**}$. Therefore $a^{**} \wedge b^{**} = a^{**}$.

Now we prove that quasi-pseudo-complementation on an ADL is equationally definable.

Theorem 3.5. Let L be an ADL with 0. Then * is a quasi pseudo-complementation on L if and only if

(1)
$$(a \wedge b)^* = (a \wedge b^{**})^*$$

- (2) 0^* is a maximal element
- (3) $(a \lor b)^* = a^* \land b^*$
- (4) $(a \wedge b)^* = (b \wedge a)^*$
- (5) $a \wedge a^* = 0.$

Proof. Suppose * is a quasi pseudo-complementation on L and $a, b \in L$. Then (2), (3), (4) and (5) follow from Definition 3.1 and Lemma 3.4. Now

$$(a \wedge b)^* = (a \wedge b)^{***} = (a^{**} \wedge b^{**})^* = (a^{**} \wedge b^{****})^* = (a \wedge b^{**})^{***} = (a \wedge b^{**})^*.$$

Conversely, assume that the conditions hold. Let $a, b \in L$. Then

$$a^* = (0^* \wedge a)^* = (0^* \wedge a^{**})^* = a^{***}$$

and

$$(a \wedge b)^{**} = ((a \wedge b)^*)^*$$

= $((a \wedge b^{**})^*)^*$
= $((a^{**} \wedge b^{**})^*)^*$
= $(a^* \vee b^*)^{***}$
= $(a^* \vee b^*)^*$
= $a^{**} \wedge b^{**}$.

Now we give necessary and sufficient conditions for a q-p-ADL to be a p-ADL.

Theorem 3.6. Let L be an ADL with 0 and * is a quasi pseudo-complementation on L. Then, for $a, b \in L$, the following are equivalent

(1) * is a pseudo-complementation on L

- (2) $a^{**} \wedge a = a$
- (3) $a^* \wedge b = (a \wedge b)^* \wedge b$
- (4) $[a]^* \subseteq (a^*].$
- **Proof.** $(1) \Rightarrow (2)$ is clear.

(2) \Rightarrow (1): Assume (2). Let $a, b \in L$ and $a \wedge b = 0$. Then

$$b = b^{**} \wedge b \text{ (by (2))} = 0^* \wedge b^{**} \wedge b = (a^* \wedge a^{**})^* \wedge b^{**} \wedge b = (a \vee a^*)^{**} \wedge b^{**} \wedge b = b^{**} \wedge (a \vee a^*)^{**} \wedge b = (b \wedge (a \vee a^*))^{**} \wedge b = [(b \wedge a) \vee (b \wedge a^*)]^{**} \wedge b = [0 \vee (b \wedge a^*)]^{**} \wedge b = (b \wedge a^*)^{**} \wedge b = b^{**} \wedge a^{***} \wedge b = a^{***} \wedge b^{**} \wedge b = a^* \wedge b.$$

Therefore * is a pseudo-complementation on *L*. Similarly, we can prove (1) \Leftrightarrow (3) and (1) \Leftrightarrow (4).

Now, we prove that if * is a quasi pseudo-complementation on an ADL L, the set $S(L) = \{a^* \mid a \in L\} = \{a \in L \mid a = a^{**}\}$ becomes a Boolean algebra.

Theorem 3.7. Let L be an ADL with 0 and * a quasi pseudo-complementation on L. For any $a^*, b^* \in S(L)$, define $a^* \leq b^*$ if and only if $a^* \wedge b^* = a^*$. Then $(S(L), \leq)$ is a Boolean algebra.

Proof. Clearly \leq is a partial ordering on S(L). Let $a^*, b^* \in S(L)$. Since $(a \lor b)^* = a^* \land b^*$, we have $a^* \land b^* \in S(L)$ and $a^* \land b^* = b^* \land a^*$. So that $a^* \land b^*$ is the greatest lower bound of $\{a^*, b^*\}$ in S(L). Now we prove that $(a^{**} \land b^{**})^*$ is the lub of a^*, b^* in the poset $(S(L), \leq)$. We have $a^{**} \land b^{**} \leq b^{**}$ and hence $b^* = b^{***} \leq (a^{**} \land b^{**})^*$. Similarly, we get that $a^* \leq (a^{**} \land b^{**})^*$. Therefore $(a^{**} \land b^{**})^*$ is an upper bound of $\{a^*, b^*\}$ in S(L). Let $c^* \in S(L)$ and $a^* \leq c^*$, $b^* \leq c^*$. Then $c^{**} \leq a^{**}$ and $c^{**} \leq b^{**}$. Hence $c^{**} \leq a^{**} \land b^{**}$. Therefore $(a^{**} \land b^{**})^* \leq c^{***} = c^*$. Thus $(a^{**} \land b^{**})^*$ is the least upper bound of $\{a^*, b^*\}$ in S(L) and we denote this by $a^* \lor b^*$. Hence $(S(L), \leq)$ is a lattice.

It can be easily seen that $(S(L), \leq)$ is a bounded lattice in which 0^* is the greatest element and 0 is the least element. Let $a^* \in S(L)$. Then $a^{**} \in S(L)$, $a^* \leq a^{**} = (a^{**} \wedge a^{***})^* = 0^*$ and $a^* \wedge a^{**} = 0$. Hence a^{**} is the complement of a^* in S(L). Finally we prove that S(L) is distributive. Let a^*, b^* and $c^* \in S(L)$. Then,

$$\begin{aligned} a^* \underline{\vee} & (b^* \wedge c^*) = [a^{**} \wedge (b^* \wedge c^*)^*]^* \\ &= [a^{****} \wedge (b^{**} \vee c^{**})^{**}]^* \text{ by definition 3.1} \\ &= [a^{**} \wedge (b^{**} \vee c^{**})]^{***} \text{ by definition 3.1} \\ &= [a^{**} \wedge (b^{**} \vee c^{**})]^* \text{ by definition 3.1} \\ &= [(a^{**} \wedge b^{**}) \vee (a^{**} \wedge c^{**})]^* \\ &= (a^{**} \wedge b^{**})^* \wedge (a^{**} \wedge c^{**})^* \\ &= (a^* \underline{\vee} b^*) \wedge (a^* \underline{\vee} c^*). \end{aligned}$$

Therefore $a^* \vee (b^* \wedge c^*) = (a^* \vee b^*) \wedge (a^* \vee c^*)$. Thus $(S(L), \leq)$ is a Boolean algebra.

Corollary 3.8. Let L be an ADL with 0 and *a quasi pseudo-complementation on L. Then the map $f: L \mapsto S(L)$ defined by $f(a) = a^{**}$ is an epimorphism.

Definition 3.9. Two quasi pseudo-complementations * and \perp on an ADL L are said to be equivalent, denoted by $* \approx \perp$, if $0^* = 0^{\perp}$. Then clearly \approx is an equivalence relation on the set QPC(L), of all quasi pseudo-complementations on L.

Theorem 3.10. Let $(L, \lor, \land, 0)$ be an ADL with a quasi pseudo-complementation * and M the set of all maximal elements in L. Then, for any $m \in M, *_m : L \times L \to L$ defined by $a^{*m} = a^* \land m$ for all $a \in L$ is again a quasi pseudocomplementation on L and the correspondence $m \mapsto *_m$ induces a bijection of M onto $\mathcal{QPC}(L)/\approx$.

Proof. Let $a, b \in L$ and $m \in M$. Then we can easily show that $*_m$ is a quasi pseudo-complementation on L. Let $m, n \in M$ such that $*_m \approx *_n$. Then $0^{*_m} = 0^{*_n}$ which implies that $0^* \wedge m = 0^* \wedge n$ and hence m = n since 0^* is maximal in L. Now, let $\perp \in \mathcal{QPC}(L)$. Then $m = 0^{\perp} \in M$ and $0^{\perp} = 0^* \wedge 0^{\perp} = 0^* \wedge m = 0^{*_m}$ and hence $*_m \approx \bot$. Thus $m \mapsto *_m$ is a bijection of M onto $\mathcal{QPC}(L)/\approx$.

Now we give some equivalent conditions for a q-p-ADL to be a Stone ADL.

Theorem 3.11. Let L be a q-p-ADL. Then the following are equivalent.

- (i) L is a Stone ADL.
- (ii) $a^* \vee a^{**} = 0^*$ for all $a \in L$.

Proof. (i) \Rightarrow (ii) is clear. Assume (ii). Let $a \in L$. Then $a^* \vee a^{**} = 0^*$ implies that $(a^* \vee a^{**}) \wedge a = 0^* \wedge a$ which gives $a^{**} \wedge a = a$. Hence, by Theorem 3.6, L is pseudo-complemented and hence L is a Stone ADL.

Theorem 3.12. Let L be a q-p-ADL. Then the following are equivalent.

- (i) L is a Stone ADL.
- (ii) For any $a, b \in L, (a \wedge b)^* = a^* \vee b^*$.

Proof. Assume (i). Suppose $a, b \in L$ and $x = (a \land b)^*$. Then $a \land b \land x = 0$ implies that $a^* \land b \land x = b \land x$ which gives $a^{**} \land b \land x = 0$. So that $b^* \land a^{**} \land x = a^{**} \land x$ and hence $b^* \lor (a^{**} \land x) = b^*$. Now, $a^* \lor b^* = a^* \lor [b^* \lor (a^{**} \land x)] = a^* \lor (b^* \lor x)$. Thus $(a^* \lor b^*) \land x = [a^* \lor (b^* \lor x)] \land x = x$. Now $(a \land b)^* = (a^* \lor b^*) \land (a \land b)^* = [a^* \land (a \land b)^*] \lor [b^* \land (a \land b)^*] = a^* \lor b^*$. Conversely, assume (ii). Let $a \in L$. Then $a^* \lor a^{**} = (a \land a^*)^* = 0^*$. Hence, by Theorem 3.11, (i) follows.

There are no hidden difficulties to prove the following theorem. Hence we omit its proof.

Theorem 3.13. Let L be a q-p-ADL. Then the following are equivalent.

- (i) L is a Stone ADL,
- (ii) S(L) is a sublattice of L,
- (iii) $(a \lor b)^{**} = a^{**} \lor b^{**}$ for all $a, b \in L$,
- (iv) $a \wedge b = 0$ implies $a^* \vee b^* = 0^*$ for all $a, b \in L$.

Definition 3.14. Let *L* be an ADL with 0. An element *b* in L is said to be a semi-complement of the element *a* in *L* if $a \wedge b = 0$. We denote the set of all semi-complements of *a* by S(a).

Lemma 3.15. Let L be an ADL with $a \in L$. Then S(a) is an ideal of L.

Lemma 3.16. Let L be a q-p-ADL. Then the following are equivalent.

- (i) L is a p-ADL.
- (ii) $S(a) = (a^*]$ for all $a \in L$.

Definition 3.17. An ideal I of an ADL L is called a direct factor if there exists an ideal J of L such that $I \cap J = \{0\}$ and $I \lor J = L$.

Now we prove the following.

Theorem 3.18. Let L be a q-p-ADL. Then L is a Stone ADL if and only if, for any $a \in L$, the ideal $S(a) = (a^*]$ is a direct factor of L.

Proof. Suppose L is a Stone ADL and $a \in L$. Then $a^* \lor a^{**} = 0^*$ and $S(a) = (a^*]$. Now $a^* \land a^{**} = 0$ and $a^* \lor a^{**} = 0^*$ implies that $(a^*] \land (a^{**}] = (0]$ and $(a^*] \lor (a^{**}] = L$. Hence $(a^*]$ is a direct factor of L. Conversely, assume that $S(a) = (a^*]$ is a direct factor of L, for all $a \in L$. Then there exists an ideal J in L such that $(a^*] \cap J = \{0\}$ and $(a^*] \lor J = L$. Write $0^* = b \lor (a^* \land x)$ for some $x \in L, b \in J$. Also $a^* \land b \in (a^*] \land J$ which implies that $a^{**} \land b = b$ and $a^{**} \lor b = b$. Now, $0^* = (a^{**} \land 0^*) \lor (a^* \land 0^*) \lor ((a^* \lor b) \land 0^*) = (a^{**} \lor a^* \lor b) \land 0^* = (a^* \lor a^{**}) \land 0^*$. Hence $0^* = (a^* \land 0^*) \lor (a^{**} \land 0^*) = (a \lor 0)^* \lor (a^* \lor 0)^* = a^* \lor a^{**}$. Thus L is a Stone ADL.

4. Kernel ideals in Q-p-ADLs

In this section, we introduce the notions of *-congruences and kernel ideals on a q-p-ADL L. We give a necessary and sufficient condition for a congruence on L to be a *-congruence and we characterize kernel ideals. Finally we give equivalent conditions for every ideal of L to become a kernel ideal. We can recall that a congruence relation on an ADL $(L, \lor, \land, 0)$ is an equivalence relation θ , compatible with the operations \lor and \land . Throughout this section, L stands for a q-p-ADL $(L, \lor, \land, 0)$ with quasi pseudo-complementation *, otherwise we specify.

Definition 4.1. A congruence relation θ on a q-p-ADL *L* is called a *-congruence if it satisfies the following condition:

$$(a,b) \in \theta$$
 implies that $(a^*,b^*) \in \theta$ for all $a,b \in L$.

The following example shows that every congruence on a q-p-ADL need not be a *-congruence.

Example 4.2. Let $R = D \times L = \{(0', 0), (0', a), (0', b), (0', c), (a', 0), (a', a), (a', b), (a', c), (b', 0), (b', a), (b', b), (b', c)\}$ be a q-p-ADL as in Example 3.2(ii). Now consider two congruence relations θ_1 and θ_2 on $R = D \times L$ whose partitions A_1 and A_2 are respectively given by

$$A_{1} = \left\{ \{ (0',0), (0',a), (0',b), (0',c), (a',a) \}, \{ (a',0), (a',b), (a',c) \}, \\ \{ (b',0), (b',a), (b',b), (b',c) \} \right\}$$

and

$$A_{2} = \left\{ \{ (0',0), (0',a), (0',b), (0',c) \}, \{ (a',0), (a',a), (a',b), (a',c) \}, \\ \{ (b',0), (b',a), (b',b), (b',c) \} \right\}.$$

Then clearly θ_1 is a *-congruence on $R = D \times L$. But θ_2 is not a *-congruence on $R = D \times L$, because $((0', b), (0', 0)) \in \theta_2$ and $((0', b)^*, (0', 0)^*) = ((0', 0), (a', a)) \notin \theta_2$.

Now we give an equivalent condition for a congruence relation on q-p-ADL L to be *-congruence.

Theorem 4.3. A congruence relation θ on L is a *-congruence if and only if $(a, 0) \in \theta$ implies that $(a^*, 0^*) \in \theta$ for any $a \in L$.

Proof. Let θ be a *-congruence on L and $a \in L$. Then $(a,0) \in \theta$ implies $(a^*,0^*) \in \theta$. Conversely, assume that the condition holds and $(a,b) \in \theta$. Then $(b,a) \in \theta$ which implies that $(b \wedge a^*, 0) \in \theta$ and hence $((b \wedge a^*)^*, 0^*) \in \theta$. Therefore $(a^* \wedge b^*, a^*) = (a^* \wedge (a^* \wedge b)^*, a^* \wedge 0^*) \in \theta$. Similarly, we can obtain that $(a^* \wedge b^*, b^*) \in \theta$. Hence $(a^*, b^*) \in \theta$. Thus θ is a *-congruence on L.

We proved that $S(L) = \{x \in L \mid x^{**} = x\}$ is a Boolean algebra in which for any $a, b \in S(L), a \forall b = (a^* \land b^*)^*$. In a pseudo-complemented distributive lattice, the relation θ defined by $(x, y) \in \theta$ if and only if $x^* = y^*$ is a congruence called the Glivenko congruence. Now, we prove that the same θ is a *-congruence relation on a q-p-ADL L and we show that L/θ is a Boolean algebra under this *-congruence θ on L

Theorem 4.4. Let L be a q-p-ADL. Then L/θ is a Boolean algebra under the *-congruence relation θ on L defined by $(x, y) \in \theta$ if and only if $x^* = y^*$.

Proof. Clearly θ is an equivalence relation on L. Suppose $(a, b) \in \theta$ and $c \in L$. Then $a^* = b^*$ and hence $(a \lor c)^* = a^* \land c^* = b^* \land c^* = (b \lor c)^*$. Again $(a \land c)^* = (a^{**} \land c^{**})^* = (b^{**} \land c^{**})^* = (b \land c)^*$. Hence $(a \lor c, b \lor c) \in \theta$ and $(a \land c, b \land c) \in \theta$. Then θ is a congruence relation on L. Clearly θ is a *-congruence. Now define $\lambda : L/\theta \to S(L)$ by $\lambda([a]_{\theta}) = a^{**}$ for all $[a]_{\theta} \in L/\theta$. Clearly λ is well-defined, one-one and onto. Let $[a]_{\theta}, [b]_{\theta} \in L/\theta$. Now $\lambda([a]_{\theta} \land [b]_{\theta}) = \lambda([a \land b]_{\theta}) = (x \land y)^{**} = x^{**} \land y^{**} = \lambda([a]_{\theta}) \land \lambda([b]_{\theta})$. Again, $\lambda([a]_{\theta} \lor [b]_{\theta}) = \lambda([a \lor b]_{\theta}) = (a \lor b)^{**} = (a^* \land b^*)^* = a^{**} \lor b^{**} = \lambda([a]_{\theta}) \lor \lambda([b]_{\theta})$. Therefore λ is an isomorphism. Hence L/θ is a Boolean algebra.

For any ideal I of L, we introduce a *-congruence $\psi(I)$ on L corresponding to I.

Theorem 4.5. Let L be a q-p-ADL and I an ideal of L. Define a binary relation $\psi(I)$ on L by

 $(a,b) \in \psi(I)$ if and only if $a \wedge i^* = b \wedge i^*$ for some $i \in I$.

Then $\psi(I)$ is a *-congruence relation on L.

Proof. Since $(i \lor j)^* = i^* \land j^*$ for any $i, j \in L$ and the fact that I is an ideal of L, clearly $\psi(I)$ is an equivalence relation on L. Let $(a, b) \in \psi(I)$ and $(c, d) \in \psi(I)$. Then $a \land i^* = b \land i^*$ for some $i \in I$ and $c \land j^* = d \land j^*$ for some $j \in I$. Hence $(a \lor c) \land (i \lor j)^* = (a \lor c) \land i^* \land j^* = (a \land i^* \land j^*) \lor (b \land i^* \land j^*) = (c \land i^* \land j^*) \lor (d \land i^* \land j^*)$. Therefore $(a \lor c, b \lor d) \in \psi(I)$. Now $(a \land c) \land (i \lor j)^* = a \land c \land i^* \land j^* = a \land i^* \land c \land j^* = b \land i^* \land d \land j^*$. Hence $(a \land c, b \land d) \in \psi(I)$. Thus $\psi(I)$ is a congruence on L. Suppose $(a, 0) \in \phi(I)$. Then $a \land i^* = 0$ for some $i \in I$. Then $0^* \land i^* = (a \land i^*)^* \land i^* = a^* \land i^*$ (by Lemma 3.4(9)). Therefore $(a^*, 0^*) \in \psi(I)$. Thus $\psi(I)$ is a *-congruence relation on L.

Definition 4.6. An ideal I of an q-p-ADL is called a kernel ideal if there exists a *-congruence μ on L such that $I = Ker\mu = \{a \in L : (a, 0) \in \mu\}$.

Theorem 4.7. If I is a kernel ideal of L then the following conditions hold.

- (i) $a, b \in I$ implies $(a^* \wedge b^*)^* \in I$.
- (ii) $a, b \in I$ implies that there exists $k \in I$ such that $a^* \wedge b^* = k^*$.

Proof. Let I be kernel ideal of L and $a, b \in I$. Then $I = ker\theta$ for some *-congruence θ on L. Then $(a, 0) \in \theta$ and $(b, 0) \in \theta$. Hence $(a^*, 0^*) \in \theta$ and $(b^*, 0^*) \in \theta$. So that $(a^* \wedge b^*, 0^*) \in \theta$ and hence $((a^* \wedge b^*)^*, 0) \in \theta$. Thus $(a^* \wedge b^*)^* \in ker\theta = I$. Hence (i) follows. Put $k = (a^* \wedge b^*)^*$. Then, by (i), $k \in I$ and $k^* = (a^* \wedge b^*)^{**} = a^* \wedge b^*$. Hence (ii) follows.

Now we give necessary and sufficient conditions for an ideal to become a kernel ideal.

Theorem 4.8. For any ideal I of L, the following are equivalent.

- (i) I is a kernel ideal.
- (ii) For $a, b \in L, a^* = b^*$ and $a \in I$ imply $b \in I$.
- (iii) $a \in I$ if and only if $a^{**} \in I$.

Proof. (i) \Rightarrow (ii): Assume (i). Then there exists a *-congruence θ on L such that $ker\theta = I$. Chose $x, y \in L$ such that $x^* = y^*$ and $x \in I$. Then $(x, 0) \in \theta$ and hence $(y^*, 0^*) = (x^*, 0^*) \in \theta$. Therefore $(0, y) = (y^* \land y, 0^* \land y) \in \theta$. Thus $y \in ker\theta = I$. Since $x^* = x^{***}$ for all $x \in L$, (ii) \Rightarrow (iii) follows. Now, assume (iii). We know that $\psi(I)$ is a *-congruence relation on L by Theorem 4.5. If $x \in ker\psi(I)$. Then $(x, 0) \in \psi(I)$ and hence $x \land i^* = 0$ for some $i \in I$. Therefore, by Theorem 3.4(10), $x^{**} = x^{**} \land i^{**} \in I$ and hence $x \in I$. Thus I is a kernel ideal.

An element $a \in L$ is called a dense element if $a^* = 0$. The set D(L) of all dense elements of L forms a filter of L. The following theorem can be proved easily.

Theorem 4.9. In L, the following conditions hold.

- (i) $x \vee x^* \in D(L)$ for all $x \in L$.
- (ii) D(L) is a filter of L.
- (iii) For any ideal I with I ∩ D(L) = Ø, there exists a minimal prime ideal P such that I ⊆ P andP ∩ D(L) = Ø.
- (iv) Every proper kernel ideal in contained in a minimal prime ideal.

Theorem 4.10. If $(x] = (x^{**}]$ for all $x \in L$, then (x] is a kernel ideal.

In [11], it is observed that the set $\mathcal{PI}(L)$ of all principal ideals of an ADL L is a distributive lattice with least element (0]. Now, we give sufficient condition for $\mathcal{PI}(L)$ to become Boolean algebra.

Theorem 4.11. If (x] = (y] for all $x, y \in D(L)$ then $\mathcal{PI}(L)$ is a Boolean algebra.

Proof. Let (x] = (y] for all $x, y \in D(L)$. Then $\{(x] \mid x \in D(L)\} = \{(d]\}$ for some $x \in L$. Clearly $x \lor x^* \in D(L)$. Hence $(x \lor x^*] = (d]$. For any $(x] \in \mathcal{PI}(L)$, $(x] \subseteq (x \lor x^*] = (d]$. Therefore (d] is the greatest element of $\mathcal{PI}(L)$. Also $(x] \cap (x^*] = (0]$ and $(x] \lor (x^*] = (d]$. Hence $\mathcal{PI}(L)$ is a bounded distributive lattice in which every element is complemented. Thus $\mathcal{PI}(L)$ is a Boolean algebra.

Now, we give equivalent conditions for every ideal of L to become a kernel ideal.

Theorem 4.12. Let L be a q-p-ADL. Then the following conditions are equivalent.

- (i) Every ideal is a kernel ideal.
- (ii) Every prime ideal is a kernel ideal.
- (iii) For any $a, b \in L$, $a^* = b^*$ implies (a] = (b].
- (iv) Every principal ideal is a kernel ideal.

Proof. (i) \Rightarrow (ii) is clear. Assume (ii) and $a, b \in L$ such that $a^* = b^*$. Suppose $(a] \neq (b]$. Without loss of generality, assume that $(a] \not\subseteq (b]$. Take $\mathfrak{F} = \{J \in \mathcal{I}(L) \mid b \in J \text{ and } a \notin J\}$. Then, by Zorn's lemma, \mathfrak{F} has a maximal element, say P. Chose $r, s \in L$ such that $r \notin P$ and $s \notin P$. Then $P \subset P \lor (r]$ and $P \subset P \lor (s]$. By the maximality of P, we can get $a \in \{P \lor (r]\} \cap \{P \lor (s]\} = P \lor (r \land s]$. If $r \land s \in P$, then $a \in P$ which is a contradiction. Hence P is prime which is kernel ideal. Now $a^* = b^*$ and $b \in P$ implies that $a \in P$, which is a contradiction. Therefore (a] = (b]. Hence (iii) follows. Now, assume (iii) and I is a principal ideal of L. Then I = (a] for some $a \in L$. Let $r, s \in L$ such that $r^* = s^*$ and $r \in (a]$. Then (r] = (s] and $s \in (r] \subseteq (a]$. Hence (iv) follows. Finally, assume (iv) and I is an ideal of L. Let $a \in I$. Then $(a^{**}] \subseteq I$ and hence $a \in (a^{**}] \subseteq I$ since $(a^{**}]$ is a kernel ideal. Hence I is a kernel ideal of L.

CONCLUSION AND FUTURE WORK

In this paper, we have introduced the concept of quasi-pseudo-complementation on an ADL as a generalization of pseudo-complementation on an ADL and studied its properties. We have given necessary and sufficient conditions for a q-p-ADL to be a p-ADL and a stone ADL. We proved that if * is a quasi pseudocomplementation on an ADL L then the set $S(L) = \{a^* \mid a \in L\}$ becomes a Boolean algebra. Also, it is observed that, there exists an induced surjective correspondence between the set of maximal elements and the set of quasi pseudocomplementations on L, provided there is a quasi pseudo-complementation. Also, the concept of *-congruence, kernel ideals on a q-p-ADL is introduced and given equivalent conditions for every ideal of L to become a kernel ideal.

In our future work, we will introduce the concepts of demi-pseudo-complementation on an ADL(for brevity, demi-p-ADL), Weak-Stone ADL and study their properties.

References

 W.H. Cornish, Congruences on distributive pseudo-complemented lattices, Bull. Aust. Math. Soc. 8 (1973) 161–179. doi:10.1017/S0004972700042404

- T.S. Blyth, Ideals and filters of Pseudo-complemented semilattices, Proc. Edinburgh Math. Soc. 23 (1980) 301–316. doi:10.1017/S0013091500003850
- [3] O. Frink, Pseudo-complements in semilattices, Duke Math. J. 29 (1962) 505-514. doi:10.1215/S0012-7094-62-02951-4
- [4] G. Gratzer, General Lattice Theory (Academic Press, New York, 1978).
- K.B. Lee, Equational class of distributive pseudo-complemented lattices, Canad. J. Math. 22 (1970) 881–891. doi:10.4153/CJM-1970-101-4
- G.C. Rao and S. Ravikumar, Minimal prime ideals in almost distributive lattices, Int. J. Contemp. Math. Sci. 4 (10) (2009) 475–484. http://m-hikari.com/ijcms-password2009/9-12-2009/raoIJCMS9-12-2009-3.pdf
- [7] M.S. Rao, Kernel ideals in Almost Distributive Lattices, Asian-European J. Math. 5 (2) (2012), 1250024(11 pages). doi:10.1142/S1793557112500246
- [8] H.P. Sankappanavar, Semi-de Morgan algebras, J. Symbolic Logic 52 (3) (1987) 712-724. doi:10.2307/2274359
- U.M. Swamy, G.C. Rao and G. Nanaji Rao, Pseudo-complementation on Almost Distributive Lattices, South. Asian Bull. Math. 24 (2000) 95–104. doi:10.1007/s10012-000-0095-5
- [10] U.M. Swamy, G.C. Rao and G. Nanaji Rao, Stone Almost Distributive Lattices, South. Asian Bull. Math. 27 (3) (2003) 115–119. http://www.seams-bull-math.ynu.edu.cn/archive.jsp
- [11] U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Australian. Math. Soc. Ser. A **31** (1981) 77–91. doi:10.1017/S1446788700018498

Received 10 September 2018 Revised 3 September 2019 Accepted 12 January 2020