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1. INTRODUCTION

A pseudo-complemented lattice is a lattice L with 0 such that to each a € L,
the largest annihilating element of a exists in L. That is, there exists a* € L
such that, for all x € L,a Ax = 0 if and only if x < a*. Here a* is called
the pseudo-complement of a. For each element a of a pseudo-complemented lat-
tice L, a* is uniquely determined by a, so that x can be regarded as a unary
operation on L. Moreover, each pseudo-complemented lattice contains the unit
element namely 0*. It follows that every pseudo-complemented lattice L can be
regarded as an algebra (L,V,A,x,0,1) of type (2,2,1,0,0). The fact that the
class of pseudo-complemented distributive lattices is equationally definable was
first observed by Ribenboim in 1949. Also, in [5], it was proved that the class of
pseudo-complemented distributive lattices is generated by its finite members and
a complete description of the lattice of equational classes of pseudo-complemented
distributive lattices is given. In [8], Sankappanavar introduced a new class of al-
gebras, called semi-De Morgan algebras, as a common abstraction of De Morgan
algebras and distributive pseudocomplemented lattices and studied its proper-
ties. Also, he studied several important subvarieties of semi-De Morgan algebras,
such as demi-p-lattices, weak Stone algebras and almost p-lattices. In [3], Frink
studied about the pseudo-complemented semilattice L and proved that the set
L* = {a* | a € L}, where % is a pseudo-complementation on L, becomes a Boolean
algebra. In [1], Cornish considered the kernels of *—congruences on distributive
pseudo-complemented lattices and studied its important properties. Later these
concepts were extended to the case of semi lattices by Blyth in [2] and to the case
of ADLs by Rao in [7].

The concept of pseudo-complementation in an ADL and the concept of Stone
ADL was given by Swamy, Rao and Nanaji Rao [9, 10]. They have proved that
there is a one-to-one correspondence between the pseudo-complementations on
an ADL L with 0 and the set of all maximal elements of L. Also, they proved that
if * is a pseudo-complementation on an ADL L, then the set L* = {a* | a € L}
is a Boolean algebra and the pseudo-complementation * on L is equationally

definable. In [6] Rao et al. studied the properties of minimal prime ideals in
an ADL.

In this paper, we introduce the concept of quasi pseudo-complementation on
an ADL as a generalization of pseudo-complementation on an ADL like the con-
cept of almost p-lattice as a generalization of pseudo-complemented distributive
lattice. Here we extend the concept of almost p-lattice to the case of almost
distributive lattices and name it quasi-p-ADL. We give necessary and sufficient
conditions for a quasi-p-ADL to be a p-ADL and we prove that if x is a quasi
pseudo-complementation on an ADL L then the set S(L) = {a* | a € L} be-
comes a Boolean algebra. It is observed that there exists an induced surjective
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correspondence between the set of maximal elements and the set of quasi pseudo-
complementations on L, provided there is a quasi pseudo-complementation on L.
We introduce the concept of x—congruence, kernel ideals on a quasi-p-ADL and
give equivalent conditions under which every ideal of L is a kernel ideal.

2. PRELIMINARIES

In this section, we give the definition and some elementary properties of a pseudo-
complemented ADL and Stone ADL [9, 10]. For the concept of ADL refer to [11]
and for the concept of minimal prime ideals in an ADL refer to [6].

Definition 2.1. Let (L, V,A) be an ADL with 0. Then a unary operation a — a*
on L is called a pseudo-complementation on L if, for any a,b € L it satisfies the
following conditions:

(1) anb=0=a*"ANb=1,
(2) ana* =0,
(3) (aVb)" =a* Ab*.

L is called a Stone ADL if, for any = € L, * V 2™ = 0*.

If (L,V,A) is an ADL with 0 and * is a pseudo-complementation on L, then
we say that (L, V, A, x,0) is a pseudo-complemented ADL (p-ADL, for brevity).

In the following, we give an example of an ADL with a pseudo-complementation
which is not a Lattice.

Example 2.2. Let (X, V,A,0) be a discrete ADL. Fix zg # 0 in X and define

on X as follows
o 0, if a #£0;
xg, ifa=0.

Then % is a pseudo-complementation on X.
Now we give some elementary properties of pseudo-complementation.

Theorem 2.3. Let L be an ADL with 0 and x a pseudo-complementation on L
and a,b € L. Then we have the following:

(1) 0% is mazimal element,
(2) 0 =0,

(3) a™* Na=a,

(
(
(

)
)
) a*** — a*;
)
)

o

)
6

a* ANb* =b* Aa*,
a<b=b"<a*



8 R.K. BANDARU AND G.C. Rao

(7) a* < (aAb)* and b* < (a A b)*,
8) anb=0<a"* ANb=0,
(9) (aAb)™ = a™ Ab™.

Definition 2.4. For any non-empty subset A of an ADL L with 0, define
A*={zeL|xzNa=0, forall a € A}.
This A* is an ideal of L and is called the annihilator ideal of A.

For any a € L, we write [a]* for {a}* and is called annulet of L.
It can be easily observed that, for any subset A of L, AN A* = {0}.

Lemma 2.5. Let L be an ADL with 0 and a € L. Then (a] = L if and only if a
is a mazimal element.

Theorem 2.6. Let L be an ADL with 0. Then for any a € L, the annulet [a]*
s a principal ideal if and only if L has a pseudocomplementation.

Theorem 2.7. Let L be an ADL with 0 and * a pseudo-complementation on L.
For any a*,b* € L*, define a* < b* if and only if a* ANb* = a*. Then (L*,<) is a
Boolean algebra.

Corollary 2.8. Let L be an ADL with 0 and * a pseudo-complementation on L.
Then the map f : L — L* defined by f(a) = a™* is an epimorphism.

Theorem 2.9. Let I be an ideal of L and F a filter of L such that INEF = {).
Then there exists a prime ideal (filter) P of L such that I C P and PNF =)
(FCPand PNI=10).

3. QUASI PSEUDO-COMPLEMENTATION ON AN ADL

In this section, we give the definition of a quasi pseudo-complementation on an
ADL with 0 and study some elementary properties of quasi pseudo-complementation.

Definition 3.1. Let (L, V,A) be an ADL with 0. Then a unary operation a — a*
on L is called a quasi pseudo-complementation on L if, for any a,b € L, the
following are satisfied

) 0* is a maximal element,

(1

(2) (aVb)" =a* Ab*,
(3) (a/\b)** = a™ N D,
(4) a**

(5) a/\a*—O
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If (L,V,A) is an ADL with 0 and % a quasi pseudo-complementation on L
then we say that (L, V, A, x,0) is a quasi pseudo-complemented ADL. For brevity,
we will call quasi pseudo-complemented ADL as q-p-ADL.

Note that every p-ADL is a q-p-ADL but converse need not be true which
we show in the following example.

Example 3.2. (i) Let L = {0, a,b,c}. Define two binary operations V and A on
L as follows:

V|iO|jla|b]|ec AlO|la|b]|c
0|0fla|b|c 0(0]J]0|0]O
alalalala al0lal|b|c
b|bla|b]a b|O0O|b|b]|O0
clclalalc c|0]c|O0]c

and define z* = 0 for all x # 0 and 0* = a. Then (L,V,A,0) is a distributive
lattice and hence an ADL and x is a quasi pseudo-complementation on L but not
a pseudo-complementation on L. We can observe that b A ¢ = 0 but b* A c =
OANc=0#c.

(ii) Let D = {0/,d’,b'} be a discrete ADL and L = {0,a,b,c} a distributive
lattice given in Example 3.2(i). Then

R=DxL= {(O’,O), (0',a),(0/,0),(0,¢),(d,0),(d,a),(d,b),(d,c),¥,0),
(b’,a),(b’,b),(b’,c)}

and hence (R,V,A,0°) is an ADL which is not a lattice, where 0° = (0/,0),
under point-wise operation. Define (z,y)* = (0/,0) for all (z,y) # (0/,0) and
(0/,0)* = (d/,a). Then x is a quasi pseudo-complementation on R. But it is not a
pseudo-complementation on R because (0/,0) A (0',¢) = (0/;bAc) = (0/,0) implies
that (0",0)* A (0/,¢) = (0/,0) A (0',¢) = (0/,0) # (0, ¢).

Example 3.3. Let (L,+,-,0) be a commutative regular ring. To each a € L, let
a° be the unique idempotent element in L such that al. = a°L. Define, for any
a,be L,

(i) a Ab=a®b,

(ii) avb=a+ (1 —a°)b,
(iii) a*=1-a°,
then (L, V,A,0) is an almost distributive lattice with 0 and * is a quasi pseudo-

complementation on L.
Now we give some elementary properties of a quasi pseudo-complementation.

Lemma 3.4. Let L be an ADL with 0 and * a quasi pseudo-complementation on
L. Then, for a,b € L, we have the following:
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(1) a*ANa=0,

(2) 0% =0,

(3) a* Ab* = b* Aa”,
(4) a* Na™* =0,

(5) a<b=10b*<a*,
(6) anb* <aA (aANb)F,
(1) (VB = (bVa),
8) (@nB) = (bAa),
(9)

9) a* A (a* Ab)* =a* Ab",

(10) a AD* =0= a* Ab* =b* and a™ A b*™ = a™.

Proof. (1) a*Na=aNa*Na=0Aa=0.

(2) Since 0* is a maximal element, we have 0* V0 = 0*. So that 0** = (0* V0)* =
0** AO* = 0.

(3) We know that for any a,b € L, aV0 = a and b0 = b. Therefore a* A\0* = a*
and b* A 0* = b*. Then a* < 0* and b* < 0* and hence a* A b* = b* A a™*.

(4) Since aAa* = 0, we have (aAa*)*™ = 0** = 0. Hence, by Definition 3.1(3, 4),
a** Na* =0. Thus a* Na™ =a™ Na* ANa™ = 0.

(5) Suppose a < b. Then a Vb ="b. So that b* = (a vV b)* = a* Ab* = b* Aa* by

(3). Hence b* < a*.

(6) Since a Ab < b, by (4), we get b* < (a Ab)* and hence a A b* < a A (a A b)*
(7) (aVvb)* =a*ANb*=b*ANa*=(bVa)*.

(8) (anb)* =(aAb)*™ = (a™ Ab*™*)* = (b Aa™)* = (bAa)™ = (bAa)*.
(9) a*A(a*Ab)* = [aV (a*Ab)]* = [(aVa*)A(aVD)]™™ = [(aVa*)*™* A(aVD)*™*]*

[0 A (aVb)*™]* = (aVb)"™ =(aVb)*=a"Ab".
(10) Suppose aAb* = 0. Then b* = 0*Ab* = (aAD*)* Ab* = b*A(b*Aa)* = b* Aa*.
So that b* < a* and hence a** < b**. Therefore a** A b** = a**. [ ]

Now we prove that quasi-pseudo-complementation on an ADL is equationally
definable.

Theorem 3.5. Let L be an ADL with 0. Then * is a quasi pseudo-complementation
on L if and only if

(a Ab)* = (a Ab™)*

0* is a mazximal element
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Proof. Suppose * is a quasi pseudo-complementation on L and a,b € L. Then
(2),(3),(4) and (5) follow from Definition 3.1 and Lemma 3.4. Now

(@ADB)* = (aAb)™

Conversely, assume that the conditions hold. Let a,b € L. Then

and
(a Nb)*™ = ((a Ab)*)*
a* Vv b*)*
— g™ A b*E. -

(
(
= (
(a*
(a*

Now we give necessary and sufficient conditions for a g-p-ADL to be a p-ADL.

Theorem 3.6. Let L be an ADL with 0 and * is a quasi pseudo-complementation
on L. Then, for a,b € L, the following are equivalent

(1)

(2) a*Na=a

(3) a* ANb=(aNb)*ND
(4) [a]" € (a"].

Proof. (1)=(2) is clear.
(2)=(1): Assume (2). Let a,b € L and a Ab= 0. Then

b="0b"*Ab (by (2)
= 0" AL AD
= (a* Na™)* NU* \b
= (aVa*)"™* ANbU* ND
=b0*A(aVa*)*Nb
= (bA(aVa*))* Ab
=[(bAa)V (bAa*)]™ Ab
=0V (bAa")]*™ AD

(bAa*)™ Ab

b** /\a*** /\b

= a* AD.

x 18 a pseudo-complementation on L
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Therefore  is a pseudo-complementation on L. Similarly, we can prove (1) < (3)
and (1) & (4). ]

Now, we prove that if * is a quasi pseudo-complementation on an ADL L,
the set S(L) ={a* |a€ L} ={a € L | a =a*} becomes a Boolean algebra.

Theorem 3.7. Let L be an ADL with 0 and % a quasi pseudo-complementation
on L. For any a*,b* € S(L), define a* < b* if and only if a* AN b* = a*. Then
(S(L), <) is a Boolean algebra.

Proof. Clearly < is a partial ordering on S(L). Let a*,b* € S(L). Since (aVb)* =
a* Ab*, we have a* Ab* € S(L) and a* Ab* = b* Aa*. So that a* Ab* is the greatest
lower bound of {a*,b*} in S(L). Now we prove that (a** Ab**)* is the lub of a*, b*
in the poset (S(L), <). We have a*™* Ab** < b** and hence b* = b*** < (a™ Ab™)*.
Similarly, we get that a* < (a** A b**)*. Therefore (a** A b**)* is an upper bound
of {a*,b*} in S(L). Let ¢* € S(L) and a* < ¢*, b* < ¢*. Then ¢** < ¢** and
™ < b**. Hence ¢™* < a* A b**. Therefore (a™* A b*™)* < ¢™** = ¢*. Thus
(@ A b*)* is the least upper bound of {a*,b*} in S(L) and we denote this by
a*V b*. Hence (S(L), <) is a lattice.

It can be easily seen that (S(L), <) is a bounded lattice in which 0* is the
greatest element and 0 is the least element. Let a* € S(L). Then o™ € S(L),
a*Vv a* = (a™ AN a*™)* = 0* and a* A a** = 0. Hence a™* is the complement of
a* in S(L). Finally we prove that S(L) is distributive. Let a*,b* and ¢* € S(L).
Then,

a*Vv (b* Ne¥) =
[@™** A (0™ V ¢*)**]* by definition 3.1
= [a™* A (0™ V )] by definition 3.1
[@™ A (b V ¢™)]* by definition 3.1

= (a*V b*) A (a*V ).

Therefore a*Vv (b* A c¢*) = (a*V b*) A (a*V ¢*). Thus (S(L),<) is a Boolean
algebra. -

Corollary 3.8. Let L be an ADL with 0 and * a quasi pseudo-complementation
on L. Then the map f: L+ S(L) defined by f(a) = a** is an epimorphism.

Definition 3.9. Two quasi pseudo-complementations * and L on an ADL L
are said to be equivalent, denoted by * ~ L, if 0* = 0+. Then clearly ~ is an
equivalence relation on the set QPC(L), of all quasi pseudo-complementations
on L.
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Theorem 3.10. Let (L,V,A,0) be an ADL with a quasi pseudo-complementation
* and M the set of all maximal elements in L. Then, for any m € M, %, :
L x L — L defined by a* = a* Am for all a € L is again a quasi pseudo-
complementation on L and the correspondence m +— %, induces a bijection of M

onto QPC(L)/ =.

Proof. Let a,b € L and m € M. Then we can easily show that *,, is a quasi
pseudo-complementation on L. Let m,n € M such that %, = *,. Then 0*" = 0*»
which implies that 0* A m = 0* An and hence m = n since 0* is maximal in L.
Now, let 1. € QPC(L). Then m = 0+ € M and 0+ = 0* A0+ = 0* Am = 0*™ and
hence #,, = L. Thus m > %, is a bijection of M onto QPC(L)/ = . |

Now we give some equivalent conditions for a g-p-ADL to be a Stone ADL.

Theorem 3.11. Let L be a g-p-ADL. Then the following are equivalent.

(i) L is a Stone ADL.
(ii) a* VvV a** =0" for all a € L.

Proof. (i)=(ii) is clear. Assume (ii). Let a € L. Then a* V ¢ = 0* implies
that (a* VvV a**) Aa = 0" A a which gives a** A a = a. Hence, by Theorem 3.6, L is
pseudo-complemented and hence L is a Stone ADL. [ |

Theorem 3.12. Let L be a g-p-ADL. Then the following are equivalent.
(i) L is a Stone ADL.
(ii) For any a,b € L,(a ANb)* =a* V b*.

Proof. Assume (i). Suppose a,b € L and = = (aAb)*. Then aAbAz = 0 implies
that a* AbAx =bA x which gives a** AbAz = 0. So that b* Aa™ Az =a"™ Az
and hence b* V (a** A x) = b*. Now, a* Vb* =a* V [b* V (a™* ANz)] = a* V (b* V).
Thus (a* Vb*) ANz =[a*V (b*Vz)| Az =2x. Now (a Ab)* = (a* V") A (aAb)* =
[a* A (a AND)*]V [b* A (aAb)*] = a* Vv b*. Conversely, assume (ii). Let a € L. Then
a*Va** = (aAa*)" =0*". Hence, by Theorem 3.11, (i) follows. ]

There are no hidden difficulties to prove the following theorem. Hence we
omit its proof.

Theorem 3.13. Let L be a g-p-ADL. Then the following are equivalent.
(i) L is a Stone ADL,

(ii) S(L) is a sublattice of L,

(iii) (aVb)* =a* V™ for all a,b e L,

(iv) a Ab =0 implies a* V b* = 0* for all a,b € L.
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Definition 3.14. Let L be an ADL with 0. An element b in L is said to be a
semi-complement of the element a in L if a A b = 0. We denote the set of all
semi-complements of a by S(a).

Lemma 3.15. Let L be an ADL with a € L. Then S(a) is an ideal of L.

Lemma 3.16. Let L be a g-p-ADL. Then the following are equivalent.
(i) L is a p-ADL.
(ii) S(a) = (a*] for all a € L.

Definition 3.17. An ideal I of an ADL L is called a direct factor if there exists
an ideal J of L such that INJ ={0} and IV J = L.

Now we prove the following.

Theorem 3.18. Let L be a ¢-p-ADL. Then L is a Stone ADL if and only if, for
any a € L, the ideal S(a) = (a*] is a direct factor of L.

Proof. Suppose L is a Stone ADL and @ € L. Then a*Va** = 0* and S(a) = (a*].
Now a*Aa™ = 0 and ¢*Va*™* = 0* implies that (a*]A(a**] = (0] and (a*]V (a**] =
L. Hence (a*] is a direct factor of L. Conversely, assume that S(a) = (a*] is a
direct factor of L, for all a € L. Then there exists an ideal J in L such that
(a*]NnJ = {0} and (a*] vV J = L. Write 0* = bV (a* A z) for some x € L,b € J.
Also a* Ab € (a*] A J which implies that ™ Ab = b and a** Vb = b. Now,
0% = (a** A0*)VO* = (™ AD*)V ((a* VD) AD*) = (a™ Va* VB)AD* = (a*Va**)AD*.
Hence 0* = (a* A0*) V (a™ A0*) = (aV0)* V (a* V0)* =a* Va**. Thus L is a
Stone ADL. ]

4. KERNEL IDEALS IN Q-P-ADLSs

In this section, we introduce the notions of x—congruences and kernel ideals on
a g-p-ADL L. We give a necessary and sufficient condition for a congruence
on L to be a x—congruence and we characterize kernel ideals. Finally we give
equivalent conditions for every ideal of L to become a kernel ideal. We can recall
that a congruence relation on an ADL (L, V,A,0) is an equivalence relation 0,
compatible with the operations V and A. Throughout this section, L stands for a
q-p-ADL (L, V, A, 0) with quasi pseudo-complementation *, otherwise we specify.

Definition 4.1. A congruence relation 6 on a g-p-ADL L is called a *—congruence
if it satisfies the following condition:

(a,b) € 0 implies that (a*,b") € 6 for all a,b € L.
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The following example shows that every congruence on a g-p-ADL need not
be a x—congruence.

Example 4.2. Let R = Dx L = {(0/,0),(0/,a), (0',b), (0, ¢), (a’,0), (d’,a), (a’,b),
(d',c), (V,0), (', a),(V,b), (', c)} be a g-p-ADL as in Example 3.2(ii). Now con-
sider two congruence relations 61 and 03 on R = D x L whose partitions A; and
Ag are respectively given by

Al = {{(0,7 0)7 (0/7 a)7 (0/7 b)7 (0/7 c)’ (a/7 a’)}’ {(al? 0)7 (a/7 b)’ (a/7 c)}?
{(0/,0), (o), (,0), (¥, )} }

and

A2 = {{(0,7 0)7 (0/7 a)7 (0/7 b)7 (0/7 c)}7 {(a/7 0)7 (al? a)7 (al? b)’ (a/7 c)}?
{(0/,0), (v, 0), (¥/,1), (¥, )} }.

Then clearly 6; is a x—congruence on R = D x L. But 0 is not a x—congruence
on R = D x L, because ((0',b), (0/,0)) € 62 and ((0/,b)*, (0',0)*) = ((0,0), (d’, a))
¢ 05.

Now we give an equivalent condition for a congruence relation on g-p-ADL
L to be x—congruence.

Theorem 4.3. A congruence relation 6 on L is a x—congruence if and only if
(a,0) € 6 implies that (a*,0*) € 6 for any a € L.

Proof. Let 6 be a x—congruence on L and a € L. Then (a,0) € 6 implies
(a*,0%) € 6. Conversely, assume that the condition holds and (a,b) € 6. Then
(b,a) € 0 which implies that (bAa*,0) € 6 and hence ((bAa*)*,0*) € 6. Therefore
(@* AN b*,a*) = (a* A (a® AD)*,a* A0*) € 0. Similarly, we can obtain that (a* A
b*,b*) € 6. Hence (a*,b*) € . Thus 6 is a *—congruence on L. |

We proved that S(L) = {z € L | #** = z} is a Boolean algebra in which for
any a,b € S(L),aVb = (a* Ab*)*. In a pseudo-complemented distributive lattice,
the relation 6 defined by (x,y) € 6 if and only if * = y* is a congruence called
the Glivenko congruence. Now, we prove that the same 6 is a x—congruence
relation on a g-p-ADL L and we show that L/6 is a Boolean algebra under this
x—congruence ¢ on L

Theorem 4.4. Let L be a g-p-ADL. Then L/6 is a Boolean algebra under the
x—congruence relation 6 on L defined by (x,y) € 0 if and only if z* = y*.
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Proof. Clearly 6 is an equivalence relation on L. Suppose (a,b) € 0 and ¢ €
L. Then a* = b* and hence (a V¢)* = a* Ac* =b* Ac* = (bVe)*. Again
(aNc) = (a™ N = (b ANc™)" = (bAe)*. Hence (aVebVe) €6
and (a A ¢,b Ac) € 0. Then 6 is a congruence relation on L. Clearly 0 is a
x—congruence. Now define A : L/ — S(L) by A([a]g) = a** for all [a]y €
L/6. Clearly A is well-defined, one-one and onto. Let [a]g,[blg € L/6. Now
Alalo A [blo) = Ala Ablg) = (z Ay)™ = 2™ Ay™ = A(lalg) A A([blg). Again,
AaloViblo) = Aa v Blo) = (@ V )™ = (a* Ab)* = a™vb™* = A(lalo)VA([blo).
Therefore A is an isomorphism. Hence L/6 is a Boolean algebra. ]

For any ideal I of L, we introduce a x—congruence ¥ (I) on L corresponding
to I.

Theorem 4.5. Let L be a g-p-ADL and I an ideal of L. Define a binary relation
W(I) on L by

(a,b) € Y(I) if and only if a Ni* = bAi* for some i € I.
Then 1(I) is a *—congruence relation on L.

Proof. Since (iV j)* = i* A\ j* for any ¢,5 € L and the fact that I is an ideal of L,
clearly () is an equivalence relation on L. Let (a,b) € ¥(I) and (c,d) € ¥(I).
Then a A i* = b Ad* for some i € I and ¢ A j* = d A 5* for some j € I. Hence
(@VE)A(IVH)* = (aVe) AP AG* = (ani* AJ* )V (DATFAGY) = (cAT* AJ*)V (AAT* AG).
Therefore (a V c,b VvV d) € ¥(I). Now (aAc)AN(iVj) =anNcANi*ANj* =
aNi*NeANj* =bANi* ANdA j*. Hence (a Ae,bANd) € p(I). Thus (I) is a
congruence on L. Suppose (a,0) € ¢(I). Then a A * = 0 for some i € I. Then
0* Ai* = (a Ni*)* ANi* = a* A ¢*(by Lemma 3.4(9)). Therefore (a*,0%) € 9(1).
Thus (I) is a *—congruence relation on L. [ ]

Definition 4.6. An ideal I of an q-p-ADL is called a kernel ideal if there exists
a x—congruence g on L such that I = Keru={a € L : (a,0) € pu}.

Theorem 4.7. If I is a kernel ideal of L then the following conditions hold.

(i) a,b € I implies (a* ANb*)* € 1.

(ii) a,b € I implies that there ezists k € I such that a* N b* = k*.

Proof. Let I be kernel ideal of L and a,b € I. Then I = kerf for some
s«—congruence 0 on L. Then (a,0) € 6 and (b,0) € 6. Hence (a*,0*) € 6
and (b*,0%) € 6. So that (a* A b*,0%) € 6 and hence ((a* A b*)*,0) € §. Thus
(a* ANb*)* € kerf) = I. Hence (i) follows. Put k = (a* A b*)*. Then, by (i), k € I
and k* = (a* A b*)*™ = a* A b*. Hence (ii) follows. ]

Now we give necessary and sufficient conditions for an ideal to become a
kernel ideal.
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Theorem 4.8. For any ideal I of L, the following are equivalent.
(i) I is a kernel ideal.

(ii) For a,b € L,a* =b* and a € I imply b € I.

(i) a € I if and only if a** € I.

Proof. (i)=(ii): Assume (i). Then there exists a x—congruence 6 on L such that
kerf = I. Chose =,y € L such that * = y* and « € I. Then (z,0) € 0 and hence
(y*,0") = (z*,0%) € 0. Therefore (0,y) = (y* ANy,0*A\y) € 0. Thus y € kerf = 1.
Since z* = x*** for all z € L, (ii)=(iii) follows. Now, assume (iii). We know that
(I) is a *—congruence relation on L by Theorem 4.5. If z € kerty(I). Then
(x,0) € ¥(I) and hence x Ai* = 0 for some i € I. Therefore, by Theorem 3.4(10),
™ =™ N¢™ € I and hence € I. Thus I is a kernel ideal. ]

An element a € L is called a dense element if a* = 0. The set D(L) of all
dense elements of L forms a filter of L. The following theorem can be proved
easily.

Theorem 4.9. In L, the following conditions hold.
(i) xva* € D(L) for all x € L.
(ii) D(L) is a filter of L.
(i) For any ideal I with I N D(L) = 0, there exists a minimal prime ideal P
such that I C P andP N D(L) = 0.

(iv) Ewery proper kernel ideal in contained in a minimal prime ideal.
Theorem 4.10. If (z] = («**] for all x € L, then (x] is a kernel ideal.

In [11], it is observed that the set PZ(L) of all principal ideals of an ADL L
is a distributive lattice with least element (0]. Now, we give sufficient condition
for PZ(L) to become Boolean algebra.

Theorem 4.11. If (z] = (y] for all z,y € D(L) then PZ(L) is a Boolean algebra.

Proof. Let (z] = (y] for all 2,y € D(L). Then {(z] | x € D(L)} = {(d]} for
some z € L. Clearly x V z* € D(L). Hence (z V z*] = (d]|. For any (z] € PZ(L),
(] € (x VvV a*] = (d]. Therefore (d] is the greatest element of PZ(L). Also
(z]N(z*] = (0] and (x]V (z*] = (d]. Hence PZ(L) is a bounded distributive lattice
in which every element is complemented. Thus PZ(L) is a Boolean algebra. m

Now, we give equivalent conditions for every ideal of L to become a kernel
ideal.

Theorem 4.12. Let L be a g-p-ADL. Then the following conditions are equiva-
lent.
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(i

) Ewvery ideal is a kernel ideal.

(i1) Ewery prime ideal is a kernel ideal.
)
)

(iii) For any a,b € L, a* = b* implies (a] = (b].

(iv) Ewery principal ideal is a kernel ideal.

Proof. (i)=(ii) is clear. Assume (ii) and a,b € L such that a* = b*. Suppose
(a] # (b]. Without loss of generality, assume that (a] € (b]. Take § = {J €
Z(L) | be Jand a¢ J}. Then, by Zorn’s lemma, § has a maximal element, say
P. Chose r,s € L such that r ¢ P and s ¢ P. Then P C PV (r] and P C PV (s].
By the maximality of P, we can get a € {P V (r]} N{P V (s]} = PV (r A s].
If r ANs € P, then a € P which is a contradiction. Hence P is prime which is
kernel ideal. Now a* = b* and b € P implies that a € P, which is a contradiction.
Therefore (a] = (b]. Hence (iii) follows. Now, assume (iii) and I is a principal
ideal of L. Then I = (a] for some a € L. Let r,s € L such that r* = s* and
r € (a]. Then (r] = (s] and s € (r] C (a]. Hence (iv) follows. Finally, assume (iv)
and I is an ideal of L. Let a € I. Then (a] C I and hence a** € I since (a] is a
kernel ideal. Conversely assume a** € I. Then (a**] C I and hence a € (a**] C I

since (a**] is a kernel ideal. Hence I is a kernel ideal of L. ]

CONCLUSION AND FUTURE WORK

In this paper, we have introduced the concept of quasi-pseudo-complementation
on an ADL as a generalization of pseudo-complemenation on an ADL and stud-
ied its properties. We have given necessary and sufficient conditions for a g-p-
ADL to be a p-ADL and a stone ADL. We proved that if % is a quasi pseudo-
complementation on an ADL L then the set S(L) = {a* | a € L} becomes a
Boolean algebra. Also, it is observed that, there exists an induced surjective
correspondence between the set of maximal elements and the set of quasi pseudo-
complementations on L, provided there is a quasi pseudo-complementation. Also,
the concept of x—congruence, kernel ideals on a g-p-ADL is introduced and given
equivalent conditions for every ideal of L to become a kernel ideal.

In our future work, we will introduce the concepts of demi-pseudo-comple-
mentation on an ADL(for brevity, demi-p-ADL), Weak-Stone ADL and study
their properties.
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