MAXIMAL B_{P}-SUBALGEBRAS OF B-ALGEBRAS

Jenette Bantug
Mathematics Department
Silliman University
Dumaguete City, Philippines
e-mail: jenettesbantug@su.edu.ph
AND
Joemar Endam
Mathematics Department
Negros Oriental State University
Dumaguete City, Philippines
e-mail: joemar.endam@norsu.edu.ph

Abstract

We provide some properties of maximal B_{p}-subalgebras of B -algebras. In particular, we show that for each prime p, a finite B-algebra has a maximal B_{p}-subalgebra. We also show that for a finite B -algebra of order $p^{r} m$, where $(p, m)=1$, any two maximal B_{p}-subalgebras are conjugate and the number of maximal B_{p}-subalgebras is $k p+1$ for some $k \in \mathbb{Z}^{+}$.

Keywords: B -algebras, subalgebras, B_{p}-subalgebras, maximal B_{p}-subalgebras.
2010 Mathematics Subject Classification: 08A05, 06 F35.

1. Introduction and preliminaries

In [12], Neggers and Kim introduced and established the notion of B-algebras. A B-algebra is an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $(x * y) * z=x *(z *(0 * y))$, for any $x, y, z \in X$.

The following are some of the basic properties of B-algebras. We have
(P1) $0 *(0 * x)=x[12]$,
(P2) $x * y=0 *(y * x)[15]$,
(P3) $x *(y * z)=(x *(0 * z)) * y[12]$,
(P4) $0 * x=0 * y$ implies $x=y[12]$,
(P5) $x * y=0$ implies $x=y$ [12],
(P6) $(y * x) *(z * x)=y * z[15]$,
(P7) $x * y=x * z$ implies $y=z[4]$, for any $x, y, z \in X$.
From now on, let X stand for a B-algebra $(X ; *, 0)$. A subalgebra of X is a nonempty subset N of X such that $x * y \in N$ for any $x, y \in N . N$ is normal in X if $x * y, a * b \in N$ implies $(x * a) *(y * b) \in N$.
Theorem 1 [16]. A subalgebra N is normal in X if and only if $x *(x * y) \in N$ for any $x \in X, y \in N$.

From [5], the subset $H K$ is defined by $H K=\{h *(0 * k): h \in H, k \in K\}$, where H and K are subalgebras of X.

Lemma 2 [5]. If K is normal in X, then $H K$ is a subalgebra of X.
In [13], one constructs a quotient B-algebra via normal subalgebra. Let N be normal in X. Define a relation \sim_{N} on X by $x \sim_{N} y$ if and only if $x * y \in N$. Then \sim_{N} is an equivalence relation on X. Denote the equivalence class containing x by $x N$, that is, $x N=\left\{y \in X: x \sim_{N} y\right\}$. Let $X / N=\{x N: x \in X\}$. Then X / N is a B-algebra, where $x N * y N=(x * y) N$. A map $\varphi: X \rightarrow Y$ is called a B-homomorphism if $\varphi(x * y)=\varphi(x) * \varphi(y)$. The subset $\left\{x \in X: \varphi(x)=0_{Y}\right\}$ of X is called the kernel of the B-homomorphism φ, denoted by $\operatorname{Ker} \varphi$.
Lemma 3 [5]. Let $\varphi: X \rightarrow Y$ be a B-homomorphism from X into Y. Suppose that H is a subalgebra of X and K is a subalgebra of Y. Then (i) $\varphi(H)$ is a subalgebra of Y and (ii) $\varphi^{-1}(K)$ is a subalgebra of X containing Ker φ.

In [6], the centralizer $C(x)$ of x in X is defined by $C(x)=\{y \in X: y *(0 * x)=$ $x *(0 * y)\}$. Let H be a nonempty subset of X. The centralizer $C(H)$ of H in X is defined by $C(H)=\{y \in X: y *(0 * x)=x *(0 * y)$ for all $x \in H\}$. Then $C(H)$ is a subalgebra of X. Let K be a nonempty subset of X. We define H_{x} as the set $H_{x}=\{x *(x * h): h \in H\}$. The normalizer of H in K, denoted by $N_{K}(H)$, is defined by $N_{K}(H)=\left\{x \in K: H_{x}=H\right\}$. If $K=X$, then $N_{X}(H)$ is called the normalizer of H, denoted by $N(H)$. If $H=\{x\}$, then we write $N(x)$ in place of $N(\{x\})$. Then $N_{K}(H)$ is a subalgebra of X.
Theorem 4 [6]. Let H be a subalgebra of X. Then (i) H is normal in X if and only if $N(H)=X$ and (ii) H is normal in $N(H)$.

The left and right B-cosets of H in X is given by $x H=\{x *(0 * h): h \in H\}$ and $H x=\{h *(0 * x): h \in H\}$, respectively.

Lemma 5 [3]. Let H be a subalgebra of X. Then $a H=H$ if and only if $a \in H$.
Theorem 6 [3]. Let H be a subalgebra of X. Then (i) $a H=b H$ if and only if $(0 * b) *(0 * a) \in H$ and (ii) $H a=H b$ if and only if $a * b \in H$.

The index of H in X, denoted by $[X: H]_{B}$, is the number of distinct left (or right) B-cosets of H in X.

Theorem 7 [3]. Let H be a subalgebra of a finite B-algebra X. Then $|X|_{B}=$ $[X: H]_{B}|H|_{B}$.
Theorem 8 [3]. If H and K are finite subalgebras of X, then $|H K|_{B}=\frac{|H|_{B}|K|_{B}}{|H \cap K|_{B}}$.
Theorem 9 [9]. Let X be a finite B-algebra with $|X|_{B}=n$ such that n is divisible by a prime p. Then X contains an element of order p and hence a subalgebra of order p.

In [7], a B-action of X on a set S is a map $*^{\prime}: X \times S \rightarrow S$, written $x *^{\prime} s$ for all $(x, s) \in X \times S$, satisfying:
(B1) $0 *^{\prime} s=s$
(B2) $x_{1} *^{\prime}\left(x_{2} *^{\prime} s\right)=\left(x_{1} *\left(0 * x_{2}\right)\right) *^{\prime} s$, for any $x_{1}, x_{2} \in X$ and $s \in S$.
In this case, we say that X acts on S.
Example 10 [7]. Let H and K be subalgebras of X.

1. Define $*^{\prime}: H \times X \rightarrow X$ by $(h, x) \rightarrow h *(0 * x)$ for all $(h, x) \in H \times X$. Then $*^{\prime}$ is a B -action and is called the left B-translation of H on X.
2. Let \mathcal{L} be the set of all left B-cosets of K in X. Define $*^{\prime}: H \times \mathcal{L} \rightarrow \mathcal{L}$ by $(h, x K) \rightarrow(h *(0 * x)) K$. Then H acts on \mathcal{L} by left B-translation.
3. Define $*^{\prime}: H \times X \rightarrow X$ by $(h, x) \rightarrow h *(h * x)$ for all $(h, x) \in H \times X$. Then $*^{\prime}$ is a B -action and is called the B-conjugation.

Let $*^{\prime}$ be a B-action of X on S. Define \sim on S by $s \sim s^{\prime}$ if and only if $x *^{\prime} s=s^{\prime}$ for some $x \in X$. Then \sim is an equivalence relation on S and for each $s \in S, X_{s}=\left\{x \in X: x *^{\prime} s=s\right\}$ is a subalgebra of X. The equivalence classes are called the B-orbits of X on S and the B-orbit of $s \in S$ is denoted by $[s]_{B}$. The subalgebra X_{s} is called the B-stabilizer of s.

Theorem 11 [7]. Let $*^{\prime}$ be a B-action of X on S. Then $\left|[s]_{B}\right|_{B}=\left[X: X_{s}\right]_{B}$ for any $s \in S$.

Let $S_{0}=\left\{s \in S: x *^{\prime} s=s\right.$ for all $\left.x \in X\right\}$.

Theorem 12 [7]. Let $*^{\prime}$ be a B-action of X on a finite set S. If $|X|_{B}=p^{n}$ for some prime p, then $|S| \equiv\left|S_{0}\right| \bmod p$.
Theorem 13 [7]. Let H be a subalgebra of a finite B-algebra X, where $|H|_{B}=p^{k}$ for some prime p and $k \in \mathbb{Z}^{+}$. Then $[X: H]_{B} \equiv[N(H): H]_{B} \bmod p$. Moreover, if p divides $[X: H]_{B}$, then $N(H) \neq H$.

2. Maximal B_{p}-SUBALGEBRAS

Let p be a prime number. A B-algebra X is called a B_{p}-algebra [9] if the order of each element of X is a power of p. A subalgebra H of X is called B_{p}-subalgebra if H is a B_{p}-algebra.

Theorem 14 [9]. Let X be a nontrivial B-algebra. Then X is a finite B_{p}-algebra if and only if $|X|_{B}=p^{k}$ for some $k \in \mathbb{Z}^{+}$.

Theorem 15. Let f be a B-homomorphism of X onto Y. Then f induces a one-to-one preserving correspondence between the subalgebras of X containing Ker f and the subalgebras of Y. Moreover, if H and K are corresponding subalgebras of X and Y, respectively, then H is normal in X if and only if K is normal in Y.

Proof. Let $\mathcal{H}=\{H: H$ is a subalgebra of X such that $\operatorname{Ker} f \subseteq H\}$ and $\mathcal{K}=\{K:$ KisasubalgebraofY $\}$. Define $f^{*}: \mathcal{H} \rightarrow \mathcal{K}$ by $f^{*}(H)=\{f(h): h \in H\}$ for all $H \in \mathcal{H}$. By Lemma $3(i), f^{*}(H) \in \mathcal{K}$. Moreover, f^{*} is well-defined since f is well-defined. Let $K \in \mathcal{K}$. Denote $f^{-1}(K)=H$. By Lemma $3(i i)$, $H \in \mathcal{H}$ and $f^{*}(H)=K$. Thus, f^{*} maps \mathcal{H} onto \mathcal{K}. Let $H_{1}, H_{2} \in \mathcal{H}$. Suppose that $f^{*}\left(H_{1}\right)=f^{*}\left(H_{2}\right)$. Let $h_{1} \in H_{1}$. Then there exists $h_{2} \in H_{2}$ such that $f\left(h_{1}\right)=f\left(h_{2}\right)$. By (I), $f\left(h_{1} * h_{2}\right)=f\left(h_{1}\right) * f\left(h_{2}\right)=0$ and so $h_{1} * h_{2} \in \operatorname{Kerf} \subseteq H_{2}$. Thus, by (P6) and (II), $h_{1}=\left(h_{1} * h_{2}\right) *\left(0 * h_{2}\right) \in H_{2}$. Therefore, $H_{1} \subseteq H_{2}$. Similarly, $H_{2} \subseteq H_{1}$. Thus, $H_{1}=H_{2}$ and so f^{*} is one-to-one. Now, $H_{1} \subseteq H_{2}$ if and only if $f^{*}\left(H_{1}\right) \subseteq f^{*}\left(H_{2}\right)$. Moreover, since f^{*} is one-to-one, $H_{1} \subset H_{2}$ if and only if $f^{*}\left(H_{1}\right) \subset f^{*}\left(H_{2}\right)$. Suppose that H is normal in X such that $\operatorname{Kerf} \subseteq H$. Let $K=f^{*}(H)$. Let $f(a) \in Y$ and $f(h) \in K$, where $a \in X, h \in H$. By Theorem $1, a *(a * h) \in H$. Thus, $f(a) *(f(a) * f(h))=f(a *(a * h)) \in K$. Hence, K is normal in Y. Let J be normal in Y and $L \in \mathcal{H}$ be such that $f^{*}(L)=J$. Let $a \in X$ and $h \in L$. Then by Theorem 1, $f(a *(a * h))=f(a) *(f(a) * f(h)) \in J$ and so $a *(a * h) \in L$. Therefore, L is normal in X.

Corollary 16. Let N be normal in X. Then every subalgebra of X / N is of the form K / N, where K is a subalgebra of X that contains N. Moreover, K / N is normal in X / N if and only if K is normal in X.
Theorem 17. Let X be a finite B-algebra of order $p^{r} m$, where p is a prime and $(p, m)=1$. Then X has a subalgebra of order p^{k} for all k, where $0 \leq k \leq r$.

Proof. If $r=0$, then $\{0\}$ is the required subalgebra of order p^{r}. Suppose that $r \geq 1$. Since $p \|\left. X\right|_{B}, X$ has a subalgebra of order p by Theorem 9 . We show that if X has a subalgebra of order p^{i}, then X has a subalgebra of order p^{i+1}, where $1 \leq i<r$. Suppose that X has a subalgebra H of order $p^{i}, 1 \leq i<r$. Then H is a proper subalgebra of X. By Theorem $13,[X: H]_{B} \equiv[N(H): H]_{B} \bmod p$. Since $p \mid[X: H]_{B}, N(H) \neq H$ and so $p \| N(H) /\left.H\right|_{B}$. By Theorem 9 and Corollary 16, $N(H) / H$ has a subalgebra K / H of order p. Now, $|K|_{B}=|K / H|_{B}|H|_{B}=$ $p p^{i}=p^{i+1}$. Therefore, K is a subalgebra of X of order p^{i+1}. The result follows by induction.

The following theorem shows the existence of maximal B_{p}-subalgebras in a finite B-algebra.

Theorem 18. For each prime p, a finite B-algebra X has a maximal B_{p}-subalgebra.
Proof. If $|X|_{B}=1$ or p does not divide $|X|_{B}$, then $\{0\}$ is the required maximal B_{p}-subalgebra of X. If $p \|\left. X\right|_{B}$, then there exists at least one subalgebra H of X of order p by Theorem 9 . Since X is finite, there are a finite number of subalgebras of X which contain H. Hence, one of these subalgebras is a maximal B_{p}-subalgebra of X.

The following example shows that maximal B_{p}-subalgebra need not be unique.
Example 19. Let $X=\{0,1,2,3,4,5\}$ be a set with the following table:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then $(X ; *, 0)$ is a B-algebra [12]. Let $H_{1}=\{0,3\}, H_{2}=\{0,4\}$, and $H_{3}=\{0,5\}$. Then H_{1}, H_{2}, and H_{3} are maximal B_{2}-subalgebras of X.

Lemma 20. Let X be a finite B-algebra of order $p^{r} m$, where p is a prime and $(p, m)=1$.
(i) Let H be a subalgebra of X of order $p^{i}, 1 \leq i<r$. Then there exists a subalgebra K of X such that $|K|_{B}=p^{i+1}$ and H is normal in K.
(ii) Let H be a subalgebra of X. Then H is a maximal B_{p}-subalgebra of X if and only if $|H|_{B}=p^{r}$.

Proof. (i) By Theorem 13, $[X: H]_{B} \equiv[N(H): H]_{B}$ mod p. Since $p \mid[X: H]_{B}$, $p \| N(H) /\left.H\right|_{B}$. Thus, $N(H) / H$ has a subalgebra K / H of order p by Theorem 9. Now, $|K|_{B}=|H|_{B}|K / H|_{B}=p^{i+1}$. By Theorem 4(ii), H is normal in $N(H)$. Since $K \subseteq N(H), H$ is normal in K. Thus, K is the desired subalgebra of X.
(ii) Suppose that H is a maximal $\mathrm{B}_{p^{-}}$-subalgebra of X. Then H is a $\mathrm{B}_{p^{-}}$ subalgebra of X. By Theorem 14, $|H|_{B}=p^{k}$ for some positive integer k. Suppose that $k \neq r$. By (i), there exists a subalgebra K of X such that $H \subset K$ and $|K|_{B}=p^{k+1}$. Thus, H is not a maximal B_{p}-subalgebra of X, a contradiction. Hence, $k=r$. Conversely, suppose that $|H|_{B}=p^{r}$. Since $|X|_{B}=p^{r} m$ and $(p, m)=1$, it follows that H is a maximal B_{p}-subalgebra of X. Hence, H is a maximal B_{p}-subalgebra of X.

Proposition 21. Let H be a maximal B_{p}-subalgebra of a finite B-algebra X. If K is a subalgebra of X such that $H \subseteq K$, then H is a maximal B_{p}-subalgebra of K.

Proof. By Lemma 20(ii), $|H|_{B}=p^{r}$, where p^{r} is the highest power dividing $|X|_{B}$. Thus, $|X|_{B}=p^{r} m$, where $(p, m)=1$ for some positive integer m. By Theorem 7, $|K|_{B}=p^{r} t$ for some $t \leq m$ and $(p, t)=1$. Therefore, by Lemma 20(ii), H is a maximal B_{p}-subalgebra of K.

3. Conjugate of maximal B_{p}-Subalgebras

For every $x \in X$, we recall that $H_{x}=\{x *(x * h): h \in H\}$.
Lemma 22. Let H and K be subalgebras of X.
(i) If $H \subseteq K$, then $H_{x} \subseteq K_{x}$ for all $x \in X$.
(ii) For all $x \in X,(H \cap K)_{x}=H_{x} \cap K_{x}$.
(iii) For all $x, y \in X,\left(H_{x}\right)_{y}=H_{y *(0 * x)}$.

Example 23. Let X be the B-algebra in Example 19 and $H=\{0,3\}$. We have $H_{0}=H_{3}=H, H_{1}=H_{4}=\{0,5\}, H_{2}=H_{5}=\{0,4\}$. This means that H need not be equal to H_{x} for all $x \in X$.

Theorem 24. Let H be a subalgebra of a B-algebra X and $x \in X$. Then H_{x} is a subalgebra of X. Moreover, $H \cong H_{x}$.

Proof. By (I) and (II), $0=x *(x * 0) \in H_{x}$ and so $H_{x} \neq \varnothing$. Let $a, b \in H_{x}$. Then $a=x *\left(x * h_{1}\right)$ and $b=x *\left(x * h_{2}\right)$ for some $h_{1}, h_{2} \in H$. Thus, by (III), (P2), and (P6), $a * b=x *\left(x *\left(h_{1} * h_{2}\right)\right)$. Since H is a subalgebra, $h_{1} * h_{2} \in H$. Thus, $a * b \in H_{x}$ and so H_{x} is a subalgebra of X. Define $f: H \rightarrow H_{x}$ by $f(h)=x *(x * h)$ for all $h \in$ H. Let $h_{1}, h_{2} \in H$. If $h_{1}=h_{2}$, then $f\left(h_{1}\right)=x *\left(x * h_{1}\right)=x *\left(x * h_{2}\right)=f\left(h_{2}\right)$ and
so f is well-defined. Suppose that $f\left(h_{1}\right)=f\left(h_{2}\right)$. Then $x *\left(x * h_{1}\right)=x *\left(x * h_{2}\right)$. By (P7), $h_{1}=h_{2}$. Thus, f is one-to-one. Let $a \in H_{x}$. Then $a=x *(x * h)$ for some $h \in H$. Hence, f is onto. By (P6), (P2), and (III), f is a B-homomorphism. Therefore, $H \cong H_{x}$.

The subalgebra H_{x} of X in Theorem 24 is called a conjugate of H.
Example 25. Let $X=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Then $(X ; *, 0)$ is a B-algebra [13]. Let $H=\{0,3\}$. Then $H_{x}=H$ for all $x \in X$.
Corollary 26. If H is normal in X, then $H_{x}=H$.
Corollary 27. Let H and K be subalgebras of X such that K is normal in X. Then $(H K)_{x}=H_{x} K_{x}$.

Proof. By Lemma $22(i), H_{x} \subseteq(H K)_{x}$ and $K_{x} \subseteq(H K)_{x}$. By Lemma 2, $H K$ is a subalgebra of X. By Theorem 24, $(H K)_{x}$ is a subalgebra of X. Thus, $H_{x} K_{x} \subseteq(H K)_{x}$. Let $y \in(H K)_{x}$. Then $y=x *(x * i)$ for some $i \in H K$. Thus, $y=x *(x *(h *(0 * k)))$ for some $h \in H, k \in K$. By (III), (P6), and (P2), $y=(x *(x * h)) *[0 *(x *(x * k))] \in H_{x} K_{x}$. Hence, $(H K)_{x} \subseteq H_{x} K_{x}$. Therefore, $(H K)_{x}=H_{x} K_{x}$.

The following lemma shows that any conjugate of a B_{p}-subalgebra is also a B_{p}-subalgebra. Moreover, any conjugate of a maximal B_{p}-subalgebra is also a maximal B_{p}-subalgebra.

Lemma 28. Let X be a finite B-algebra of order $p^{r} m$, where p is a prime and $(p, m)=1$. Suppose that H is a subalgebra of X.
(i) If H is a B_{p}-subalgebra of X, then H_{x} is a B_{p}-subalgebra of X.
(ii) If H is a maximal B_{p}-subalgebra of X, then H_{x} is a maximal B_{p}-subalgebra of X for all $x \in X$.
(iii) If H is the only maximal B_{p}-subalgebra of X, then H is normal in X.

Proof. (i) By Theorem 24, $|H|_{B}=\left|H_{x}\right|$ and H_{x} is a subalgebra of X. Therefore, by Theorem $14, H_{x}$ is a B_{p}-subalgebra.
(ii) By Lemma 20(ii), $|H|_{B}=p^{r}$. Hence, $\left|H_{x}\right|_{B}=p^{r}$. Thus, by Lemma 20(ii), H_{x} is a maximal B_{p}-subalgebra.
(iii) By (ii), $H_{x}=H$. By Theorem $1, H$ is normal in X.

Let H be normal in X. For any positive integer $k,(x H)^{k}=x^{k} H$.
Lemma 29. Let H be normal in X. If H and X / H are both B_{p}-algebras, then X is a B_{p}-algebra.

Proof. Let $x \in X$. Then $x H \in X / H$. Since X / H is a B_{p}-algebra, $x H$ has order some power of p, say p^{k}. Thus, $(x H)^{p^{k}}=x^{p^{k}} H=H$. By Lemma $5, x^{p^{k}} \in H$. Since H is a $\mathrm{B}_{p^{-}}$-algebra, $x^{p^{k}}$ has order p^{m}. Hence, $\left(x^{p^{k}}\right)^{p^{m}}=0$, that is, $x^{p^{k+m}}=0$. This means that x has order some power of p. Since x is arbitrary in X, X is a B_{p}-algebra.

Lemma 30. Let H be a maximal B_{p}-subalgebra of a finite B-algebra X. Suppose that $x \in X$ such that the order of x is a power of p. If $H_{x}=H$, then $x \in H$.

Proof. If $H_{x}=H$, then $x \in N(H)$. Note that $H \subseteq N(H)$. We show that no element of $N(H) \backslash H$ has order a power of p. Suppose that there exists $y \in N(H) \backslash H$ such that the order of y is a power of p. By Theorem 4(ii), H is normal in $N(H)$. Thus, $y H \in N(H) / H$. The order of $y H$ as an element of $N(H) / H$ divides the order of y. Hence, $y H$ has order a power of p in $N(H) / H$. Thus, the cyclic subalgebra $\langle y H\rangle_{B}$ of $N(H) / H$ has order a power of p and so $\langle y H\rangle_{B}$ is a B_{p}-algebra. By Corollary 16 , there is a subalgebra K of $N(H)$ such that $H \subseteq K$ and $K / H=\langle y H\rangle_{B}$. Since $y \notin H, H \subset K$. By Lemma $29, K$ is a B_{p}-algebra. This contradicts that H is a maximal B_{p}-subalgebra of X. Therefore, no element of $N(H) \backslash H$ has order a power of p. Consequently, $x \in H$.

Theorem 31. Let X be of order $p^{r} m$, where p is a prime and $(p, m)=1$. Then any two maximal B_{p}-subalgebras of X are conjugate.

Proof. Let H and K be maximal B_{p}-subalgebras of X and \mathcal{S} be the set of all left B-cosets of H in X. Then $|\mathcal{S}|_{B}=[X: H]_{B}$. Let K act on \mathcal{S} by left Btranslation, that is, $k *^{\prime} x H=(k *(0 * x)) H$ for all $k \in K, x H \in \mathcal{S}$. Let $S_{0}=$ $\left\{x H \in \mathcal{S}: k *^{\prime} x H=x H\right.$ for all $\left.k \in K\right\}$. By Theorem $12,|\mathcal{S}|_{B} \equiv\left|S_{0}\right|_{B} \bmod p$. Since H is a maximal B_{p}-subalgebra of $X,|\mathcal{S}|_{B}=[X: H]_{B}$ is not divisible by p. Thus, $\left|S_{0}\right|_{B} \neq 0$. Let $x H \in S_{0}$. Then $k *^{\prime} x H=x H$ for all $k \in K$. Thus, $(k *(0 * x)) H=x H$. By Theorem 6(i), $(0 * x) *[0 *(k *(0 * x))] \in H$ for all $k \in K$. By (P2), $(0 * x) *((0 * x) * k) \in H$ for all $k \in K$. Hence, $K_{0 * x} \subseteq H$. Since $\left|K_{0 * x}\right|_{B}=|K|_{B}=|H|_{B}, K_{0 * x}=H$. Therefore, H and K are conjugate.

Corollary 32. Let H be a maximal B_{p}-subalgebra of a finite B-algebra X. Then H is a unique maximal B_{p}-subalgebra of X if and only if H is normal in X.

4. Number of maximal B_{p}-Subalgebras

Theorem 33. Let X be of order $p^{r} m$, where p is a prime and $(p, m)=1$. Then the number n_{p} of maximal B_{p}-subalgebras of X is $k p+1$ for $k \in \mathbb{Z}^{+}$and $n_{p} \mid p^{r} m$.

Proof. Let S be the set of all maximal B_{p}-subalgebras of X and $H \in S$. Let H act on S by B-conjugation. Note that $Q_{h} \in S$ by Lemma 28(ii). Let $S_{0}=$ $\left\{Q \in S: h *^{\prime} Q=Q\right.$ for all $\left.h \in H\right\}$. Then $S_{0}=\left\{Q \in S: Q_{h}=Q\right.$ for all $h \in H\}$. By Theorem $12,|S|_{B} \equiv\left|S_{0}\right|_{B} \bmod p$. Since $H \in S_{0}, S_{0} \neq \varnothing$. Let $Q \in S_{0}$. Then $Q_{h}=Q$ for all $h \in H$. Hence, $H \subseteq N(Q)$ and so H and Q are maximal B_{p}-subalgebras of $N(Q)$. By Theorem 31, $Q_{h}=H$ for some $h \in N(Q)$. But then $H=Q$. Thus, $S_{0}=\{H\}$ and so $\left|S_{0}\right|_{B}=1$. Hence, $|S|_{B} \equiv 1 \bmod p$ and so $|S|_{B}=1+k p$ for some integer k. Let X act on S by B-conjugation. By Theorem 31, any two maximal B_{p}-subalgebras are conjugate. Thus, there is only one B-orbit of S under X. Let $H \in S$. Then $X_{H}=\left\{x \in X: x *^{\prime} H=H\right\}=\{x \in$ $\left.X: H_{x}=H\right\}=N(H)$. Thus, by Theorem 11, $|S|_{B}=$ the number of elements in the B-orbit of $H=\left[X: X_{H}\right]_{B}$. But $\left[X: X_{H}\right]_{B}$ divides $|X|_{B}$. Therefore, the number of maximal B_{p}-subalgebras of X divides $|X|_{B}$.

Proposition 34. Let X be of order $p^{m} k$, where p is prime and $(p, k)=1$. Suppose that H is a subalgebra of X of order p^{m}. Then H is the only maximal B_{p}-subalgebra of order p^{m} lying in $N(H)$.

Proof. By Theorem 4(ii) and Lemma 20(ii), $H \subseteq N(H)$ and H is a maximal B_{p}-subalgebra of X. Thus, $|N(H)|_{B}=p^{m} r$ for some $r \leq k$ and $(p, r)=1$. Let H^{\prime} be any other maximal B_{p}-subalgebra of X such that $H^{\prime} \subseteq N(H)$. By Proposition 21, H and H^{\prime} are maximal B_{p}-subalgebras of $N(H)$. By Theorem 31, there exists $x \in N(H)$ such that $H^{\prime}=H_{x}$. By Theorem 4(ii) and Corollary 26, $H=H_{x}$. Therefore, $H^{\prime}=H$ and so H is the only maximal B_{p}-subalgebra of order p^{m} lying in $N(H)$.

Proposition 35. Let X be a finite B-algebra and p a prime such that p divides $|X|_{B}$.
(i) Let K be normal in X. Then for any maximal B_{p}-subalgebra H of $X, H \cap K$ is a maximal B_{p}-subalgebra of K. Conversely, if B is any maximal $B_{p^{-}}$ subalgebra of K, then there exists a maximal B_{p}-subalgebra H of X such that $B=H \cap K$.
(ii) Let K be normal in X. If H is a maximal B_{p}-subalgebra of X, then $H K / K$ is a maximal B_{p}-subalgebra of X / K. Conversely, any maximal B_{p}-subalgebra of X / K is of the form $H K / K$, where H is a maximal B_{p}-subalgebra of X.
(iii) Let H be normal in X. If $[X: H]_{B}$ and p are relatively prime, then H contains all maximal B_{p}-subalgebras of X.

Proof. Since a prime p divides $|X|_{B}$, we may assume that $|X|_{B}=p^{m} k$, where $(p, k)=1$.
(i) Let H be a maximal B_{p}-subalgebra of X. Then by Lemma $20(\mathrm{ii}),|H|_{B}=$ p^{m}. By Theorem 7, $|H \cap K|_{B}$ divides $|H|_{B}$. Thus, $|H \cap K|_{B}=p^{i}$ for some $i \leq m$. Hence, by Theorem $14, H \cap K$ is a B_{p}-algebra. Let $|K|_{B}=p^{s} t$, where $(p, t)=1$ and $s \geq i$. Suppose that $s>i$. By Lemma 2, $H K$ is a subalgebra of X. Thus, by Theorem $8,|H K|_{B}=\frac{|H|_{B}|K|_{B}}{|H \cap K|_{B}}=\frac{p^{m} p^{s} t}{p^{2}}=p^{m+s-i} t$, where $s-i \geq 1$, a contradiction since $|X|_{b}=p^{m} k$. Hence, $s=i$ and so $|H \cap K|_{B}=p^{s}$. Therefore, by Lemma $20(\mathrm{ii}), H \cap K$ is a maximal B_{p}-subalgebra of K. Conversely, suppose that B is a maximal B_{p}-subalgebra of K. Let $|K|_{B}=p^{s} t$, where $(p, t)=1$. Then by Lemma $20($ ii $),|B|_{B}=p^{s}$. Now, $H \cap K$ is a maximal B_{p}-subalgebra of K for any maximal B_{p}-subalgebra H of X. By Theorem 31, Lemma 22(ii), and Corollary 26, there exists $a \in K$ such that $B=(H \cap K)_{a}=H_{a} \cap K_{a}=H_{a} \cap K$. By Lemma 28(ii), H_{a} is a maximal B_{p}-subalgebra of X.
(ii) Let H be a maximal B_{p}-subalgebra of X. By Lemma $2, H K$ is a subalgebra of X. Since K is normal in X, K is normal in $H K$. Thus, $H K / K$ is well-defined. By Lemma 20(ii), $|H|_{B}=p^{m}$. Let $|K|_{B}=p^{s} t$, where $(p, t)=1$. By (i), $H \cap K$ is a maximal B_{p}-sublagebra of K. Hence, $|H \cap K|_{B}=p^{s}$. Now, $|H K / K|_{B}=\frac{|H K|_{B}}{|K|_{B}}=\frac{|H|_{B}|K|_{B}}{|K|_{B}|H \cap K|_{B}}=\frac{|H|_{B}}{|H \cap K|_{B}}=\frac{p^{m}}{p^{s}}=p^{m-s}$. Also, $|X / K|_{B}=$ $\frac{|X|_{B}}{|K|_{B}}=\frac{p^{m} k}{p^{s} t}=p^{m-s} r$. Hence, $H K / K$ is a maximal $\mathrm{B}_{p^{\prime}}$-subalgebra of X / K by Lemma 20(ii). Conversely, let B / K be a maximal B_{p}-subalgebra of X / K. Now, $H K / K$ is a maximal B_{p}-subalgebra of X / K for any maximal B_{p}-subalgebra H of X. By Theorem 31, there exists $a K \in X / K$ such that $B / K=(H K / K)_{a K}$. We show that $B=H_{a} K$. Let $c \in H K$. Then $(a *(a * c)) K=a K *(a K *$ $c K) \in(H K / K)_{a K}=B / K$. Thus, $a *(a * c) \in B$, that is, $(H K)_{a} \subseteq B$. By Lemma 28(ii), H_{a} is a maximal B_{p}-subalgebra of X. By Corollaries 26 and 27, $H_{a} K=H_{a} K_{a}=(H K)_{a} \subseteq B$. Let $b \in B$. Then $b K \in B / K=(H K / K)_{a K}$. Thus, $b K=a K *(a K * i K)=a *(a * i) K$ for some $i \in H K$. Hence, by Theorem $6(\mathrm{i}),(0 * b) *(0 *(a *(a * i))) \in K \subseteq H_{a} K$. By (III), (P6), and (P2), it follows that $a *(a * i)=a *(a *(h *(0 * k)))=(a *(a * h)) *(0 *(a *(a * k))) \in H_{a} K$ for some $h \in H, k \in K$. Since $H_{a} K$ is a subalgebra of $X, 0 * b \in H_{a} K$ and so $b \in H_{a} K$. Thus, $B \subseteq H_{a} K$. Therefore, $B=H_{a} K$.
(iii) Let $[X: H]_{B}=n$. Then $n \mid k$. Thus, p^{m} divides $|H|_{B}$ since $|X|_{B}=n|H|_{B}$. Hence, $|H|_{B}=p^{m} r$, where $(p, r)=1$. Let K be a maximal B_{p}-subalgebra of H. By Lemma 20(ii), $|K|_{B}=p^{m}$. Hence, K is a maximal B_{p}-subalgebra of X. If Q is any other maximal B_{p}-subalgebra of X, then there exists $x \in X$ such that $Q=K_{x}$ by Theorem 31. Therefore, by Lemma 22(i) and Corollary 26, $Q=K_{x} \subseteq H_{x}=H$.

We observe that Proposition 35(iii) need not be true if H is not normal in X.

Example 36. Consider the B-algebra X in Example 19. Let $H=\{0,4\}$. Then H is a subalgebra of X, which is not normal in X. Now, $[X: H]_{B}=3, p=2$ divides $|X|_{B}=6$. But H does not contain all maximal B_{2}-subalgebras of X. The maximal B_{2}-subalgebras of X are $H_{1}=\{0,3\}, H_{2}=\{0,4\}$, and $H_{3}=\{0,5\}$.

Proposition 37. If H is normal in a finite B-algebra X and K is a maximal B_{p}-subalgebra of H, then $X=H N(K)$.

Proof. Clearly, $H N(K) \subseteq X$. Let $x \in X$. Then by Lemma 22(i) and Corollary 26, $K_{x} \subseteq H_{x}=H$. By Lemma 28(ii), K_{x} is a maximal B_{p}-subalgebra of H. By Theorem 31, there exists $h \in H$ such that $\left(K_{x}\right)_{h}=K$. By Lemma 22(iii), $K_{h *(0 * x)}=K$. Thus, $h *(0 * x) \in N(K)$, that is, $h *(0 * x)=y$ for some $y \in N(K)$. Now, by (P1), (I), (P3), and (P2), we have $x=(0 * h) *(0 * y) \in H N(K)$. Therefore, $X=H N(K)$.

Corollary 38. Let K be a maximal B_{p}-subalgebra of a finite B-algebra X. If H is a subalgebra of X such that $N(K) \subseteq H$, then $N(H)=H$.

Proposition 39. Let K be normal in a finite B-algebra X. If K is a $B_{p^{-}}$ subalgebra of X, then K is contained in every maximal B_{p}-subalgebra of X.

Proof. If K is a B_{p}-subalgebra of X, then there exists a maximal B_{p}-subalgebra H of X such that $K \subseteq H$. Let Q be a maximal B_{p}-subalgebra of X. Then $Q=H_{x}$ for some $x \in X$. Therefore, by Corollary 26 and Lemma 22(i), $K=$ $K_{x} \subseteq H_{x}=Q$.

Acknowledgement

The authors would like to thank the referee for the remarks, comments, and suggestions which were incorporated into this revised version.

References

[1] P.J. Allen, J. Neggers and H.S. Kim, B-algebras and groups, Sci. Math. Jpn. 9 (2003) 159-165.
[2] R. Ameri, A. Borumand Saied, S.A. Nematolah Zadeh, A. Radfar and R.A. Borzooei, On finite B-algebra, Afr. Mat. 26 (2015) 825-847. doi:10.1007/s13370-014-0249-8
[3] J.S. Bantug and J.C. Endam, Lagrange's Theorem for B-algebras, Int. J. Algebra 11 (2017) 15-23. doi:10.12988/ija.2017.616
[4] J.R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001) 1-6.
[5] J.C. Endam and J.P. Vilela, The Second Isomorphism Theorem for B-algebras, Appl. Math. Sci. 8 (2014) 1865-1872. doi:10.12988/ams.2014.4291
[6] J.C. Endam, Centralizer and Normalizer of B-algebras, Sci. Math. Jpn. 81 (2018) 17-23.
[7] J.C. Endam and E.C. Banagua, B-algebras Acting on Sets, Sci. Math. Jpn. 2 (Online-2018) 2018.
[8] J.C. Endam and R.C. Teves, Some Properties of Cyclic B-algebras, Int. Math. Forum. 11 (2016) 387-394. doi:10.12988/imf.2016.6111
[9] J.C. Endam and J.S. Bantug, Cauchy's Theorem for B-algebras, Sci. Math. Jpn. 21 (Online-2017) 2017.
[10] N.C. Gonzaga and J.P. Vilela, On Cyclic B-algebras, Appl. Math. Sci. 9 (2015) 5507-5522. doi:10.12988/ams.2015.54299
[11] H.S. Kim and H.G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. (2005) 31-36.
[12] J. Neggers and H.S. Kim, On B-algebras, Mat. Vesnik 54 (2002) 21-29.
[13] J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for Balgebras, Int. Math. J. 2 (2002) 207-214.
[14] R. Soleimani, A note on automorphisms of finite B-algebras, Afr. Mat. 29 (2018) 263-275. doi:10.1007/s13370-017-0540-6
[15] A. Walendziak, Some Axiomatizations of B-algebras, Math. Slovaca 56 (2006) 301-306.
[16] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Jpn. (2005) 49-53.

Received 15 July 2019
Revised 5 September 2019 Accepted 22 January 2020

