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Abstract

We provide some properties of maximal Bp-subalgebras of B-algebras. In
particular, we show that for each prime p, a finite B-algebra has a maximal
Bp-subalgebra. We also show that for a finite B-algebra of order prm, where
(p,m) = 1, any two maximal Bp-subalgebras are conjugate and the number
of maximal Bp-subalgebras is kp+ 1 for some k ∈ Z

+.
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1. Introduction and preliminaries

In [12], Neggers and Kim introduced and established the notion of B-algebras. A
B-algebra is an algebra (X; ∗, 0) of type (2, 0) satisfying:

(I) x ∗ x = 0,

(II) x ∗ 0 = x,

(III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)), for any x, y, z ∈ X.
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The following are some of the basic properties of B-algebras. We have

(P1) 0 ∗ (0 ∗ x) = x [12],

(P2) x ∗ y = 0 ∗ (y ∗ x) [15],

(P3) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y [12],

(P4) 0 ∗ x = 0 ∗ y implies x = y [12],

(P5) x ∗ y = 0 implies x = y [12],

(P6) (y ∗ x) ∗ (z ∗ x) = y ∗ z [15],

(P7) x ∗ y = x ∗ z implies y = z [4], for any x, y, z ∈ X.

From now on, let X stand for a B-algebra (X; ∗, 0). A subalgebra of X is a
nonempty subset N of X such that x ∗ y ∈ N for any x, y ∈ N . N is normal in
X if x ∗ y, a ∗ b ∈ N implies (x ∗ a) ∗ (y ∗ b) ∈ N .

Theorem 1 [16]. A subalgebra N is normal in X if and only if x ∗ (x ∗ y) ∈ N
for any x ∈ X, y ∈ N .

From [5], the subset HK is defined by HK = {h ∗ (0 ∗ k) : h ∈ H, k ∈ K},
where H and K are subalgebras of X.

Lemma 2 [5]. If K is normal in X, then HK is a subalgebra of X.

In [13], one constructs a quotient B-algebra via normal subalgebra. Let N be
normal in X. Define a relation ∼N on X by x ∼N y if and only if x∗y ∈ N . Then
∼N is an equivalence relation on X. Denote the equivalence class containing x
by xN , that is, xN = {y ∈ X : x ∼N y}. Let X/N = {xN : x ∈ X}. Then
X/N is a B-algebra, where xN ∗ yN = (x ∗ y)N . A map ϕ : X → Y is called a
B-homomorphism if ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y). The subset {x ∈ X : ϕ(x) = 0Y } of
X is called the kernel of the B-homomorphism ϕ, denoted by Ker ϕ.

Lemma 3 [5]. Let ϕ : X → Y be a B-homomorphism from X into Y . Suppose
that H is a subalgebra of X and K is a subalgebra of Y . Then (i) ϕ(H) is a
subalgebra of Y and (ii) ϕ−1(K) is a subalgebra of X containing Ker ϕ.

In [6], the centralizer C(x) of x in X is defined by C(x) = {y ∈ X : y∗(0∗x) =
x ∗ (0 ∗ y)}. Let H be a nonempty subset of X. The centralizer C(H) of H in X
is defined by C(H) = {y ∈ X : y ∗ (0 ∗x) = x ∗ (0 ∗ y) for all x ∈ H}. Then C(H)
is a subalgebra of X. Let K be a nonempty subset of X. We define Hx as the
set Hx = {x ∗ (x ∗ h) : h ∈ H}. The normalizer of H in K, denoted by NK(H),
is defined by NK(H) = {x ∈ K : Hx = H}. If K = X, then NX(H) is called the
normalizer of H, denoted by N(H). If H = {x}, then we write N(x) in place of
N({x}). Then NK(H) is a subalgebra of X.

Theorem 4 [6]. Let H be a subalgebra of X. Then (i) H is normal in X if and
only if N(H) = X and (ii) H is normal in N(H).
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The left and right B-cosets of H in X is given by xH = {x ∗ (0 ∗ h) : h ∈ H}
and Hx = {h ∗ (0 ∗ x) : h ∈ H}, respectively.

Lemma 5 [3]. Let H be a subalgebra of X. Then aH = H if and only if a ∈ H.

Theorem 6 [3]. Let H be a subalgebra of X. Then (i) aH = bH if and only if
(0 ∗ b) ∗ (0 ∗ a) ∈ H and (ii) Ha = Hb if and only if a ∗ b ∈ H.

The index of H in X, denoted by [X : H]B , is the number of distinct left (or
right) B-cosets of H in X.

Theorem 7 [3]. Let H be a subalgebra of a finite B-algebra X. Then |X|B =
[X : H]B |H|B.

Theorem 8 [3]. If H and K are finite subalgebras of X, then |HK|B = |H|B|K|B
|H∩K|B

.

Theorem 9 [9]. Let X be a finite B-algebra with |X|B = n such that n is divisible
by a prime p. Then X contains an element of order p and hence a subalgebra of
order p.

In [7], a B-action of X on a set S is a map ∗′ : X × S → S, written x ∗′ s for
all (x, s) ∈ X × S, satisfying:

(B1) 0 ∗′ s = s

(B2) x1 ∗
′ (x2 ∗

′ s) = (x1 ∗ (0 ∗ x2)) ∗
′ s, for any x1, x2 ∈ X and s ∈ S.

In this case, we say that X acts on S.

Example 10 [7]. Let H and K be subalgebras of X.

1. Define ∗′ : H ×X → X by (h, x) → h ∗ (0 ∗ x) for all (h, x) ∈ H ×X. Then
∗′ is a B-action and is called the left B-translation of H on X.

2. Let L be the set of all left B-cosets of K in X. Define ∗′ : H × L → L by
(h, xK) → (h ∗ (0 ∗ x))K. Then H acts on L by left B-translation.

3. Define ∗′ : H ×X → X by (h, x) → h ∗ (h ∗ x) for all (h, x) ∈ H ×X. Then
∗′ is a B-action and is called the B-conjugation.

Let ∗′ be a B-action of X on S. Define ∼ on S by s ∼ s′ if and only if
x ∗′ s = s′ for some x ∈ X. Then ∼ is an equivalence relation on S and for each
s ∈ S, Xs = {x ∈ X : x ∗′ s = s} is a subalgebra of X. The equivalence classes
are called the B-orbits of X on S and the B-orbit of s ∈ S is denoted by [s]B .
The subalgebra Xs is called the B-stabilizer of s.

Theorem 11 [7]. Let ∗′ be a B-action of X on S. Then |[s]B |B = [X : Xs]B for
any s ∈ S.

Let S0 = {s ∈ S : x ∗′ s = s for all x ∈ X}.
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Theorem 12 [7]. Let ∗′ be a B-action of X on a finite set S. If |X|B = pn for
some prime p, then |S| ≡ |S0| mod p.

Theorem 13 [7]. Let H be a subalgebra of a finite B-algebra X, where |H|B = pk

for some prime p and k ∈ Z
+. Then [X : H]B ≡ [N(H) : H]B mod p. Moreover,

if p divides [X : H]B, then N(H) 6= H.

2. Maximal Bp-subalgebras

Let p be a prime number. A B-algebra X is called a Bp-algebra [9] if the order of
each element of X is a power of p. A subalgebra H of X is called Bp-subalgebra
if H is a Bp-algebra.

Theorem 14 [9]. Let X be a nontrivial B-algebra. Then X is a finite Bp-algebra
if and only if |X|B = pk for some k ∈ Z

+.

Theorem 15. Let f be a B-homomorphism of X onto Y. Then f induces a one-
to-one preserving correspondence between the subalgebras of X containing Ker f
and the subalgebras of Y. Moreover, if H and K are corresponding subalgebras of
X and Y, respectively, then H is normal in X if and only if K is normal in Y.

Proof. Let H = {H: H is a subalgebra of X such that Ker f ⊆ H} and
K = {K : KisasubalgebraofY }. Define f∗ : H → K by f∗(H) = {f(h) : h ∈ H}
for all H ∈ H. By Lemma 3(i), f∗(H) ∈ K. Moreover, f∗ is well-defined
since f is well-defined. Let K ∈ K. Denote f−1(K) = H. By Lemma 3(ii),
H ∈ H and f∗(H) = K. Thus, f∗ maps H onto K. Let H1,H2 ∈ H. Suppose
that f∗(H1) = f∗(H2). Let h1 ∈ H1. Then there exists h2 ∈ H2 such that
f(h1) = f(h2). By (I), f(h1∗h2) = f(h1)∗f(h2) = 0 and so h1∗h2 ∈ Kerf ⊆ H2.
Thus, by (P6) and (II), h1 = (h1 ∗ h2) ∗ (0 ∗ h2) ∈ H2. Therefore, H1 ⊆ H2.
Similarly, H2 ⊆ H1. Thus, H1 = H2 and so f∗ is one-to-one. Now, H1 ⊆ H2 if
and only if f∗(H1) ⊆ f∗(H2). Moreover, since f∗ is one-to-one, H1 ⊂ H2 if and
only if f∗(H1) ⊂ f∗(H2). Suppose that H is normal in X such that Kerf ⊆ H.
Let K = f∗(H). Let f(a) ∈ Y and f(h) ∈ K, where a ∈ X,h ∈ H. By Theorem
1, a ∗ (a ∗ h) ∈ H. Thus, f(a) ∗ (f(a) ∗ f(h)) = f(a ∗ (a ∗ h)) ∈ K. Hence, K
is normal in Y . Let J be normal in Y and L ∈ H be such that f∗(L) = J . Let
a ∈ X and h ∈ L. Then by Theorem 1, f(a ∗ (a ∗ h)) = f(a) ∗ (f(a) ∗ f(h)) ∈ J
and so a ∗ (a ∗ h) ∈ L. Therefore, L is normal in X.

Corollary 16. Let N be normal in X. Then every subalgebra of X/N is of the
form K/N, where K is a subalgebra of X that contains N. Moreover, K/N is
normal in X/N if and only if K is normal in X.

Theorem 17. Let X be a finite B-algebra of order prm, where p is a prime and
(p,m) = 1. Then X has a subalgebra of order pk for all k, where 0 ≤ k ≤ r.
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Proof. If r = 0, then {0} is the required subalgebra of order pr. Suppose that
r ≥ 1. Since p||X|B , X has a subalgebra of order p by Theorem 9. We show that
if X has a subalgebra of order pi, then X has a subalgebra of order pi+1, where
1 ≤ i < r. Suppose that X has a subalgebra H of order pi, 1 ≤ i < r. Then H
is a proper subalgebra of X. By Theorem 13, [X : H]B ≡ [N(H) : H]B mod p.
Since p|[X : H]B , N(H) 6= H and so p||N(H)/H|B . By Theorem 9 and Corollary
16, N(H)/H has a subalgebra K/H of order p. Now, |K|B = |K/H|B |H|B =
ppi = pi+1. Therefore, K is a subalgebra of X of order pi+1. The result follows
by induction.

The following theorem shows the existence of maximal Bp-subalgebras in a
finite B-algebra.

Theorem 18. For each prime p, a finite B-algebra X has a maximal Bp-subalgebra.

Proof. If |X|B = 1 or p does not divide |X|B , then {0} is the required maximal
Bp-subalgebra of X. If p||X|B , then there exists at least one subalgebra H of
X of order p by Theorem 9. Since X is finite, there are a finite number of
subalgebras of X which contain H. Hence, one of these subalgebras is a maximal
Bp-subalgebra of X.

The following example shows that maximal Bp-subalgebra need not be unique.

Example 19. Let X = {0, 1, 2, 3, 4, 5} be a set with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

Then (X; ∗, 0) is a B-algebra [12]. Let H1 = {0, 3}, H2 = {0, 4}, and H3 = {0, 5}.
Then H1, H2, and H3 are maximal B2-subalgebras of X.

Lemma 20. Let X be a finite B-algebra of order prm, where p is a prime and
(p,m) = 1.

(i) Let H be a subalgebra of X of order pi, 1 ≤ i < r. Then there exists a
subalgebra K of X such that |K|B = pi+1 and H is normal in K.

(ii) Let H be a subalgebra of X. Then H is a maximal Bp-subalgebra of X if
and only if |H|B = pr.



30 J. Bantug and J. Endam

Proof. (i) By Theorem 13, [X : H]B ≡ [N(H) : H]B mod p. Since p|[X : H]B ,
p||N(H)/H|B . Thus, N(H)/H has a subalgebra K/H of order p by Theorem
9. Now, |K|B = |H|B |K/H|B = pi+1. By Theorem 4(ii), H is normal in N(H).
Since K ⊆ N(H), H is normal in K. Thus, K is the desired subalgebra of X.

(ii) Suppose that H is a maximal Bp-subalgebra of X. Then H is a Bp-
subalgebra of X. By Theorem 14, |H|B = pk for some positive integer k. Suppose
that k 6= r. By (i), there exists a subalgebra K of X such that H ⊂ K and
|K|B = pk+1. Thus, H is not a maximal Bp-subalgebra of X, a contradiction.
Hence, k = r. Conversely, suppose that |H|B = pr. Since |X|B = prm and
(p,m) = 1, it follows that H is a maximal Bp-subalgebra of X. Hence, H is a
maximal Bp-subalgebra of X.

Proposition 21. Let H be a maximal Bp-subalgebra of a finite B-algebra X. If
K is a subalgebra of X such that H ⊆ K, then H is a maximal Bp-subalgebra
of K.

Proof. By Lemma 20(ii), |H|B = pr, where pr is the highest power dividing
|X|B . Thus, |X|B = prm, where (p,m) = 1 for some positive integer m. By
Theorem 7, |K|B = prt for some t ≤ m and (p, t) = 1. Therefore, by Lemma
20(ii), H is a maximal Bp-subalgebra of K.

3. Conjugate of maximal Bp-subalgebras

For every x ∈ X, we recall that Hx = {x ∗ (x ∗ h) : h ∈ H}.

Lemma 22. Let H and K be subalgebras of X.

(i) If H ⊆ K, then Hx ⊆ Kx for all x ∈ X.

(ii) For all x ∈ X, (H ∩K)x = Hx ∩Kx.

(iii) For all x, y ∈ X, (Hx)y = Hy∗(0∗x).

Example 23. Let X be the B-algebra in Example 19 and H = {0, 3}. We have
H0 = H3 = H, H1 = H4 = {0, 5}, H2 = H5 = {0, 4}. This means that H need
not be equal to Hx for all x ∈ X.

Theorem 24. Let H be a subalgebra of a B-algebra X and x ∈ X. Then Hx is
a subalgebra of X. Moreover, H ∼= Hx.

Proof. By (I) and (II), 0 = x∗ (x∗0) ∈ Hx and so Hx 6= ∅. Let a, b ∈ Hx. Then
a = x∗ (x∗h1) and b = x∗ (x∗h2) for some h1, h2 ∈ H. Thus, by (III), (P2), and
(P6), a∗b = x∗(x∗(h1∗h2)). SinceH is a subalgebra, h1∗h2 ∈ H. Thus, a∗b ∈ Hx

and soHx is a subalgebra of X. Define f : H → Hx by f(h) = x∗(x∗h) for all h ∈
H. Let h1, h2 ∈ H. If h1 = h2, then f(h1) = x∗(x∗h1) = x∗(x∗h2) = f(h2) and
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so f is well-defined. Suppose that f(h1) = f(h2). Then x ∗ (x ∗h1) = x ∗ (x ∗h2).
By (P7), h1 = h2. Thus, f is one-to-one. Let a ∈ Hx. Then a = x ∗ (x ∗ h) for
some h ∈ H. Hence, f is onto. By (P6), (P2), and (III), f is a B-homomorphism.
Therefore, H ∼= Hx.

The subalgebra Hx of X in Theorem 24 is called a conjugate of H.

Example 25. Let X = {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 2 1 3
1 1 0 3 2
2 2 3 0 1
3 3 1 2 0

Then (X; ∗, 0) is a B-algebra [13]. Let H = {0, 3}. Then Hx = H for all x ∈ X.

Corollary 26. If H is normal in X, then Hx = H.

Corollary 27. Let H and K be subalgebras of X such that K is normal in X.
Then (HK)x = HxKx.

Proof. By Lemma 22(i), Hx ⊆ (HK)x and Kx ⊆ (HK)x. By Lemma 2, HK
is a subalgebra of X. By Theorem 24, (HK)x is a subalgebra of X. Thus,
HxKx ⊆ (HK)x. Let y ∈ (HK)x. Then y = x ∗ (x ∗ i) for some i ∈ HK. Thus,
y = x ∗ (x ∗ (h ∗ (0 ∗ k))) for some h ∈ H, k ∈ K. By (III), (P6), and (P2),
y = (x ∗ (x ∗ h)) ∗ [0 ∗ (x ∗ (x ∗ k))] ∈ HxKx. Hence, (HK)x ⊆ HxKx. Therefore,
(HK)x = HxKx.

The following lemma shows that any conjugate of a Bp-subalgebra is also a
Bp-subalgebra. Moreover, any conjugate of a maximal Bp-subalgebra is also a
maximal Bp-subalgebra.

Lemma 28. Let X be a finite B-algebra of order prm, where p is a prime and
(p,m) = 1. Suppose that H is a subalgebra of X.

(i) If H is a Bp-subalgebra of X, then Hx is a Bp-subalgebra of X.

(ii) If H is a maximal Bp-subalgebra of X, then Hx is a maximal Bp-subalgebra
of X for all x ∈ X.

(iii) If H is the only maximal Bp-subalgebra of X, then H is normal in X.

Proof. (i) By Theorem 24, |H|B = |Hx| and Hx is a subalgebra of X. Therefore,
by Theorem 14, Hx is a Bp-subalgebra.
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(ii) By Lemma 20(ii), |H|B = pr. Hence, |Hx|B = pr. Thus, by Lemma
20(ii), Hx is a maximal Bp-subalgebra.

(iii) By (ii), Hx = H. By Theorem 1, H is normal in X.

Let H be normal in X. For any positive integer k, (xH)k = xkH.

Lemma 29. Let H be normal in X. If H and X/H are both Bp-algebras, then
X is a Bp-algebra.

Proof. Let x ∈ X. Then xH ∈ X/H. Since X/H is a Bp-algebra, xH has order

some power of p, say pk. Thus, (xH)p
k

= xp
k

H = H. By Lemma 5, xp
k

∈ H.

SinceH is a Bp-algebra, x
pk has order pm. Hence, (xp

k

)p
m

= 0, that is, xp
k+m

= 0.
This means that x has order some power of p. Since x is arbitrary in X, X is a
Bp-algebra.

Lemma 30. Let H be a maximal Bp-subalgebra of a finite B-algebra X. Suppose
that x ∈ X such that the order of x is a power of p. If Hx = H, then x ∈ H.

Proof. If Hx = H, then x ∈ N(H). Note that H ⊆ N(H). We show that
no element of N(H) r H has order a power of p. Suppose that there exists
y ∈ N(H) r H such that the order of y is a power of p. By Theorem 4(ii), H
is normal in N(H). Thus, yH ∈ N(H)/H. The order of yH as an element of
N(H)/H divides the order of y. Hence, yH has order a power of p in N(H)/H.
Thus, the cyclic subalgebra 〈yH〉B of N(H)/H has order a power of p and so
〈yH〉B is a Bp-algebra. By Corollary 16, there is a subalgebra K of N(H) such
that H ⊆ K and K/H = 〈yH〉B. Since y /∈ H, H ⊂ K. By Lemma 29, K is a
Bp-algebra. This contradicts that H is a maximal Bp-subalgebra of X. Therefore,
no element of N(H)rH has order a power of p. Consequently, x ∈ H.

Theorem 31. Let X be of order prm, where p is a prime and (p,m) = 1. Then
any two maximal Bp-subalgebras of X are conjugate.

Proof. Let H and K be maximal Bp-subalgebras of X and S be the set of all
left B-cosets of H in X. Then |S|B = [X : H]B . Let K act on S by left B-
translation, that is, k ∗′ xH = (k ∗ (0 ∗ x))H for all k ∈ K, xH ∈ S. Let S0 =
{xH ∈ S : k ∗′ xH = xH for all k ∈ K}. By Theorem 12, |S|B ≡ |S0|B mod p.
Since H is a maximal Bp-subalgebra of X, |S|B = [X : H]B is not divisible by
p. Thus, |S0|B 6= 0. Let xH ∈ S0. Then k ∗′ xH = xH for all k ∈ K. Thus,
(k ∗ (0 ∗ x))H = xH. By Theorem 6(i), (0 ∗ x) ∗ [0 ∗ (k ∗ (0 ∗ x))] ∈ H for all
k ∈ K. By (P2), (0 ∗x) ∗ ((0 ∗x) ∗ k) ∈ H for all k ∈ K. Hence, K0∗x ⊆ H. Since
|K0∗x|B = |K|B = |H|B , K0∗x = H. Therefore, H and K are conjugate.

Corollary 32. Let H be a maximal Bp-subalgebra of a finite B-algebra X. Then
H is a unique maximal Bp-subalgebra of X if and only if H is normal in X.
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4. Number of maximal Bp-subalgebras

Theorem 33. Let X be of order prm, where p is a prime and (p,m) = 1. Then
the number np of maximal Bp-subalgebras of X is kp+1 for k ∈ Z

+ and np|p
rm.

Proof. Let S be the set of all maximal Bp-subalgebras of X and H ∈ S. Let
H act on S by B-conjugation. Note that Qh ∈ S by Lemma 28(ii). Let S0 =
{Q ∈ S : h ∗′ Q = Q for all h ∈ H}. Then S0 = {Q ∈ S : Qh = Q for all
h ∈ H}. By Theorem 12, |S|B ≡ |S0|B mod p. Since H ∈ S0, S0 6= ∅. Let
Q ∈ S0. Then Qh = Q for all h ∈ H. Hence, H ⊆ N(Q) and so H and Q are
maximal Bp-subalgebras of N(Q). By Theorem 31, Qh = H for some h ∈ N(Q).
But then H = Q. Thus, S0 = {H} and so |S0|B = 1. Hence, |S|B ≡ 1 mod p
and so |S|B = 1 + kp for some integer k. Let X act on S by B-conjugation. By
Theorem 31, any two maximal Bp-subalgebras are conjugate. Thus, there is only
one B-orbit of S under X. Let H ∈ S. Then XH = {x ∈ X : x∗′H = H} = {x ∈
X : Hx = H} = N(H). Thus, by Theorem 11, |S|B = the number of elements
in the B-orbit of H = [X : XH ]B . But [X : XH ]B divides |X|B . Therefore, the
number of maximal Bp-subalgebras of X divides |X|B .

Proposition 34. Let X be of order pmk, where p is prime and (p, k) = 1.
Suppose that H is a subalgebra of X of order pm. Then H is the only maximal
Bp-subalgebra of order pm lying in N(H).

Proof. By Theorem 4(ii) and Lemma 20(ii), H ⊆ N(H) and H is a maximal
Bp-subalgebra of X. Thus, |N(H)|B = pmr for some r ≤ k and (p, r) = 1. Let H ′

be any other maximal Bp-subalgebra of X such that H ′ ⊆ N(H). By Proposition
21, H and H ′ are maximal Bp-subalgebras of N(H). By Theorem 31, there exists
x ∈ N(H) such that H ′ = Hx. By Theorem 4(ii) and Corollary 26, H = Hx.
Therefore, H ′ = H and so H is the only maximal Bp-subalgebra of order pm lying
in N(H).

Proposition 35. Let X be a finite B-algebra and p a prime such that p divides
|X|B .

(i) Let K be normal in X. Then for any maximal Bp-subalgebra H of X, H∩K
is a maximal Bp-subalgebra of K. Conversely, if B is any maximal Bp-
subalgebra of K, then there exists a maximal Bp-subalgebra H of X such
that B = H ∩K.

(ii) Let K be normal in X. If H is a maximal Bp-subalgebra of X, then HK/K
is a maximal Bp-subalgebra of X/K. Conversely, any maximal Bp-subalgebra
of X/K is of the form HK/K, where H is a maximal Bp-subalgebra of X.

(iii) Let H be normal in X. If [X : H]B and p are relatively prime, then H
contains all maximal Bp-subalgebras of X.



34 J. Bantug and J. Endam

Proof. Since a prime p divides |X|B , we may assume that |X|B = pmk, where
(p, k) = 1.

(i) Let H be a maximal Bp-subalgebra of X. Then by Lemma 20(ii), |H|B =
pm. By Theorem 7, |H ∩ K|B divides |H|B . Thus, |H ∩ K|B = pi for some
i ≤ m. Hence, by Theorem 14, H ∩K is a Bp-algebra. Let |K|B = pst, where
(p, t) = 1 and s ≥ i. Suppose that s > i. By Lemma 2, HK is a subalgebra of

X. Thus, by Theorem 8, |HK|B = |H|B|K|B
|H∩K|B

= pmpst

pi
= pm+s−it, where s− i ≥ 1,

a contradiction since |X|b = pmk. Hence, s = i and so |H ∩K|B = ps. Therefore,
by Lemma 20(ii), H ∩K is a maximal Bp-subalgebra of K. Conversely, suppose
that B is a maximal Bp-subalgebra of K. Let |K|B = pst, where (p, t) = 1.
Then by Lemma 20(ii), |B|B = ps. Now, H ∩K is a maximal Bp-subalgebra of
K for any maximal Bp-subalgebra H of X. By Theorem 31, Lemma 22(ii), and
Corollary 26, there exists a ∈ K such that B = (H ∩K)a = Ha ∩Ka = Ha ∩K.
By Lemma 28(ii), Ha is a maximal Bp-subalgebra of X.

(ii) Let H be a maximal Bp-subalgebra of X. By Lemma 2, HK is a sub-
algebra of X. Since K is normal in X, K is normal in HK. Thus, HK/K is
well-defined. By Lemma 20(ii), |H|B = pm. Let |K|B = pst, where (p, t) = 1.
By (i), H ∩K is a maximal Bp-sublagebra of K. Hence, |H ∩K|B = ps. Now,

|HK/K|B = |HK|B
|K|B

= |H|B|K|B
|K|B|H∩K|B

= |H|B
|H∩K|B

= pm

ps
= pm−s. Also, |X/K|B =

|X|B
|K|B

= pmk
pst

= pm−sr. Hence, HK/K is a maximal Bp-subalgebra of X/K by

Lemma 20(ii). Conversely, let B/K be a maximal Bp-subalgebra of X/K. Now,
HK/K is a maximal Bp-subalgebra of X/K for any maximal Bp-subalgebra H
of X. By Theorem 31, there exists aK ∈ X/K such that B/K = (HK/K)aK .
We show that B = HaK. Let c ∈ HK. Then (a ∗ (a ∗ c))K = aK ∗ (aK ∗
cK) ∈ (HK/K)aK = B/K. Thus, a ∗ (a ∗ c) ∈ B, that is, (HK)a ⊆ B. By
Lemma 28(ii), Ha is a maximal Bp-subalgebra of X. By Corollaries 26 and 27,
HaK = HaKa = (HK)a ⊆ B. Let b ∈ B. Then bK ∈ B/K = (HK/K)aK .
Thus, bK = aK ∗ (aK ∗ iK) = a ∗ (a ∗ i)K for some i ∈ HK. Hence, by Theorem
6(i), (0 ∗ b) ∗ (0 ∗ (a ∗ (a ∗ i))) ∈ K ⊆ HaK. By (III), (P6), and (P2), it follows
that a ∗ (a ∗ i) = a ∗ (a ∗ (h ∗ (0 ∗ k))) = (a ∗ (a ∗ h)) ∗ (0 ∗ (a ∗ (a ∗ k))) ∈ HaK
for some h ∈ H, k ∈ K. Since HaK is a subalgebra of X, 0 ∗ b ∈ HaK and so
b ∈ HaK. Thus, B ⊆ HaK. Therefore, B = HaK.

(iii) Let [X : H]B = n. Then n|k. Thus, pm divides |H|B since |X|B = n|H|B.
Hence, |H|B = pmr, where (p, r) = 1. Let K be a maximal Bp-subalgebra of H.
By Lemma 20(ii), |K|B = pm. Hence, K is a maximal Bp-subalgebra of X.
If Q is any other maximal Bp-subalgebra of X, then there exists x ∈ X such
that Q = Kx by Theorem 31. Therefore, by Lemma 22(i) and Corollary 26,
Q = Kx ⊆ Hx = H.

We observe that Proposition 35(iii) need not be true if H is not normal in X.
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Example 36. Consider the B-algebra X in Example 19. Let H = {0, 4}. Then
H is a subalgebra of X, which is not normal in X. Now, [X : H]B = 3, p = 2
divides |X|B = 6. But H does not contain all maximal B2-subalgebras of X. The
maximal B2-subalgebras of X are H1 = {0, 3}, H2 = {0, 4}, and H3 = {0, 5}.

Proposition 37. If H is normal in a finite B-algebra X and K is a maximal
Bp-subalgebra of H, then X = HN(K).

Proof. Clearly, HN(K) ⊆ X. Let x ∈ X. Then by Lemma 22(i) and Corollary
26, Kx ⊆ Hx = H. By Lemma 28(ii), Kx is a maximal Bp-subalgebra of H.
By Theorem 31, there exists h ∈ H such that (Kx)h = K. By Lemma 22(iii),
Kh∗(0∗x) = K. Thus, h∗(0∗x) ∈ N(K), that is, h∗(0∗x) = y for some y ∈ N(K).
Now, by (P1), (I), (P3), and (P2), we have x = (0 ∗ h) ∗ (0 ∗ y) ∈ HN(K).
Therefore, X = HN(K).

Corollary 38. Let K be a maximal Bp-subalgebra of a finite B-algebra X. If H
is a subalgebra of X such that N(K) ⊆ H, then N(H) = H.

Proposition 39. Let K be normal in a finite B-algebra X. If K is a Bp-
subalgebra of X, then K is contained in every maximal Bp-subalgebra of X.

Proof. If K is a Bp-subalgebra of X, then there exists a maximal Bp-subalgebra
H of X such that K ⊆ H. Let Q be a maximal Bp-subalgebra of X. Then
Q = Hx for some x ∈ X. Therefore, by Corollary 26 and Lemma 22(i), K =
Kx ⊆ Hx = Q.
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