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Abstract

Let (P,≤) be a poset with the least element 0. The intersection graph
of ideals of P , denoted by G(P ), is a graph whose vertices are all non-
trivial ideals of P and two distinct vertices I and J are adjacent if and only
if I ∩ J 6= {0}. In this paper, we study the planarity and outerplanarity
of the intersection graph G(P ). Also, we determine all posets with split
intersection graphs.
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1. Introduction

There are many papers which interlink graph theory and poset theory. Several
classes of graphs associated with algebraic structures have been actively investi-
gated (see for example, [2–5,11]). The intersection graph is an undirected graph
formed from a family of sets, by creating one vertex for each set and connecting
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two vertices by an edge whenever the corresponding two sets have a non-empty
intersection. Any undirected graph G may be represented as an intersection
graph: for each vertex vi of G, form a set Si consisting of the edges incident to vi;
then two such sets have a non-empty intersection if and only if the corresponding
vertices share an edge. There has been a couple of papers devoted to study of the
intersection graph of algebraic structures (see [7, 9, 14,15] and [16]). Also, in [8],
the intersection graph of ideals of a ring is studied.

Let (P,≤) be a poset with the least element 0. The intersection graph of P ,
denoted by G(P ), is introduced in [1]. The intersection graph of ideals of P is
a graph whose vertices are all non-trivial ideals of P , and two distinct vertices I
and J are adjacent if and only if I ∩ J 6= {0}. In [1], the authors studied some
basic properties of G(P ).

In Section 2 of this paper, we study all posets P with complete bipartite and
split intersection graphs. In Sections 3 and 4, we investigate the planarity and
outerplanarity of the intersection graph G(P ).

Now, we recall some definitions and notations on graphs and partially ordered
sets. We use the standard terminology of graphs in [6] and partially ordered sets
in [10]. In a graph G with vertex-set V (G), the distance between two distinct
vertices a and b, denoted by d(a, b), is the length of the shortest path connecting
a and b, if such a path exists; otherwise, we set d(a, b) = ∞. The diameter of a
graph G is diam(G) = sup{d(a, b) : a and b are distinct vertices of G}. The girth
of G, denoted by g(G), is the length of the shortest cycle in G, if G contains a
cycle; otherwise, we set g(G) = ∞. Also, for two distinct vertices a and b in G, the
notation a−b means that a and b are adjacent. A graph G is said to be connected
if there exists a path between any two distinct vertices, and it is complete if it is
connected with diameter one. We use Kn to denote the complete graph with n
vertices. Also, we say that G is totally disconnected if no two vertices of G are
adjacent.

For a positive integer r, an r-partite graph is one whose vertex-set can be
partitioned into r subsets so that no edge has both ends in any one subset. A
complete r-partite graph is one in which each vertex is joined to every vertex that
is not in the same subset. The complete bipartite graph (2-partite graph) with
part sizes m and n is denoted by Km,n.

Also a graph on n vertices such that n − 1 of the vertices have degree one,
all of which are adjacent only to the remaining vertex a, is called a star graph
with center a. Let x be an arbitrary vertex of a graph G. The neighborhood

(respectively, degree) of x, denoted by N(x) (respectively, deg(x)), is the set of
vertices which are adjacent to x (respectively, the cardinality of N(x)).

In a partially ordered set (P,≤) (poset, briefly) with a least element 0, an
element a in P with a 6= 0 is called an atom if, for an element x in P , the relation
0 ≤ x ≤ a implies that either x = 0 or x = a. We denote the set of all atoms
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of P by A(P ). Assume that S is a subset of P . Let S ⊆ P . An element x in
P is a lower bound of S if x ≤ s for all s ∈ S. An upper bound is defined in a
dual manner. The set of all lower bounds of S is denoted by Sℓ and the set of all
upper bounds of S by Su, i.e.,

Sℓ := {x ∈ P | x ≤ s, for all s ∈ S}

and

Su := {x ∈ P | s ≤ x, for all s ∈ S}.

If S = {a}, for some a ∈ P , then we denote Sℓ and Su by [a]ℓ and [a]u, respec-
tively. Suppose that I is a non-empty subset of P . We say that I is an ideal of
P if, for arbitrary elements x and y in P , the relations x ∈ I and y ≤ x imply
that y ∈ I. Also, we say that a covers b or b is covered by a, in notation b ≺ a,
if and only if b < a and there is no element x in P such that b < x < a.

2. Basic properties of G(P )

In this paper, we assume that P is a finite poset and A(P ) = {a1, a2, . . . , an} is
the set of all atoms of P .

We begin this section with the following lemma.

Lemma 2.1. If G(P ) is a complete bipartite graph, then |A(P )| ≤ 2.

Proof. Assume that X and Y are two parts of G(P ). Suppose on the contrary
that |A(P )| ≥ 3 and a1, a2, a3 ∈ A(P ). Then {0, a1}, {0, a2} and {0, a3} are in
the same part, say part X. Now, if {0, a1, a2} is in part X, then it is adjacent to
{0, a1} and {0, a2}, which is impossible. So we have that the vertex {0, a1, a2} is in
part Y . But then {0, a3} is not adjacent to {0, a1, a2} which is a contradiction.

Clearly, if |A(P )| = 1, then G(P ) is a complete graph. Thus we have the
following corollary.

Corollary 2.2. Supppose that |A(P )| = 1. Then the following conditions are

equivalent.

(i) G(P ) is a complete bipartite graph.

(ii) P is a chain with |P | ≤ 4.

(iii) G(P ) is a star graph.

Proposition 2.3. The graph G(P ) is a complete bipartite graph if and only if P
is a chain with |P | ≤ 4, or P is one of the posets in Figure 1.
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Figure 1

Proof. First suppose that G(P ) is a complete bipartite graph and P is non of
the posets in Figure 1. By Lemma 2.1, we have |A(P )| ≤ 2. If |A(P )| = 1, then,
by Corollary 2.2, the result holds. Now, assume that |A(P )| = 2. Suppose that
X and Y are two parts of G(P ). We have the following two cases:

Case 1. There exists an element x ∈ {ai}
u \ {aj}

u, where 1 ≤ i 6= j ≤ 2.
Without loss of generality, we may assume that x ∈ {a1}

u\{a2}
u. Clearly {0, a1}

and {0, a2} belong to a same part, say X. Then {0, a1, x} and {0, a1, a2} belong
to Y . But this is impossible, since {0, a1, x} is adjacent to {0, a1, a2}.

Case 2. Suppose that, for all x ∈ P\{0, a1, a2}, we have x ∈ {a1, a2}
u. In

this situation the vertices {0, a1} and {0, a2} belong to a same part, say X. Also
{0, a1, a2, x} and {0, a1, a2} belong to Y , which is again impossible.

Therefore, if G(P ) is a complete bipartite graph, then P is a chain with
|P | ≤ 4, or P is one of the posets in Figure 1.

The converse statement is clear.

A graph G is said to be a split graph if the vertex-set of G is a disjoint
union of two sets K and S, where K is a complete induce subgraph and S is an
independent set.

Lemma 2.4. Suppose that G(P ) is split. Then |A(P )| ≤ 3.

Proof. Let K and S be two parts of G(P ) such that K is complete and S is
independent. Assume on the contrary that |A(P )| ≥ 4. If {0, a1} ∈ K, then
{0, a2} belongs to S, because {0, a1} is not adjacent to {0, a2}. Now, we have the
following two cases:

Case 1. {0, a3} ∈ K. Then K is not complete, since {0, a1} is not adjacent
to {0, a3}.

Case 2. {0, a3} /∈ K. Then {0, a3} is in S, and so {0, a2, a3} must be in K,
which is a contradiction, because {0, a2, a3} is not adjacent to {0, a1}.

If {0, ai} ∈ S, for all ai ∈ A(P ), then {0, a1, a2} belongs to K. Because
{0, a1} is adjacent to {0, a1, a2}. Now, we have the following two situations:

(i) If {0, a3, a4} is in S, then S is not an independent set, because {0, a3} is
adjacent to {0, a3, a4}, which is a contradiction.
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(ii) If {0, a3, a4} is in K, then it is not adjacent to {0, a1, a2}, which is a
contradiction.

So if G(P ) is split, then |A(P )| ≤ 3.

Proposition 2.5. The graph G(P ) is split if and only if one of the following

conditions holds.

(i) |A(P )| = 1.

(ii) |A(P )| = 2 and we have either |P | ≤ 4 or |{ai}
u\{aj}

u| = 1, for some

1 ≤ i 6= j ≤ 2.

(iii) |A(P )| = 3 and {ai}
u\{aj}

u = ∅, for all 1 ≤ i 6= j ≤ 3.

Proof. First suppose that G(P ) is split and |A(P )| 6= 1. Then, by Lemma 2.4,
we have |A(P )| ≤ 3. For |A(P )| = 2, suppose on the contrary that |P | ≥ 5 and
|{ai}

u\{aj}
u| ≥ 2, for all 1 ≤ i 6= j ≤ 2. Hence there exist distinct elements

x1, x2 ∈ P\{0, a1, a2} such that x1 ∈ {ai}
u\{aj}

u and x2 ∈ {aj}
u\{ai}

u for
1 ≤ i 6= j ≤ 2. So we have

{{0, a1}, {0, a1, x1}, {0, a1, a2}} ⊆ K and {{0, a2}} ⊆ S.

Now consider the vertex {0, a2, x2}. If {0, a2, x2} ∈ K, then it is not adjacent to
{0, a1}, and so it is in S, which is impossible, because {0, a2, x2} is adjacent to
{0, a2}. So G(P ) is not split.

For |A(P )| = 3, suppose on the contrary that |{ai}
u\{aj}

u| ≥ 1, for some
1 ≤ i 6= j ≤ 3. Hence there exists an element x ∈ P\{0, a1, a2, a3} such that
x ∈ {ai}

u\{aj}
u for 1 ≤ i 6= j ≤ 3. So we have

{{0, a1}, {0, a1, x}, {0, a1, a2}, {0, a1, a3}} ⊆ K and {{0, a2}, {0, a3}} ⊆ S.

Now consider the vertex {0, a2, a3}. If {0, a2, a3} ∈ K, then it is not adjacent
to {0, a1}. So it is in S. But it is impossible, because {0, a2, a3} is adjacent to
{0, a2}, and so G(P ) is not split. Therefore |A(P )| = 1, or |A(P )| = 2 and either
we have |P | ≤ 4 or |{ai}

u\{aj}
u| = 1, for some 1 ≤ i 6= j ≤ 2, or |A(P )| = 3 and

{ai}
u\{aj}

u = ∅, for all 1 ≤ i 6= j ≤ 3.
Conversely, if |A(P )| = 1, then it is easy to see that G(P ) is split. If |A(P )| =

2 and, |P | ≤ 4 or |{ai}
u\{aj}

u| = 1, for some 1 ≤ i 6= j ≤ 2, then we have the
following two cases:

Case 1. There exists an element x ∈ {ai}
u\{aj}

u, for some 1 ≤ i 6= j ≤ 2.
Then

K = {{0, a1}, {0, a1, a2}, {0, a1, x}} and S = {{0, a2}},

and so G(P ) is split.

Case 2. {ai}
u\{aj}

u = ∅, for all 1 ≤ i 6= j ≤ 2. Then
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K = V (G(P )) \ {0, a2} and S = {{0, a2}},

If |A(P )| = 3 and {ai}
u\{aj}

u = ∅, for all 1 ≤ i 6= j ≤ 3, then we have

K = V (G(P )) \ {0, ai} and S = {{0, ai}},

which means that G(P ) is split.

In a graph G, a vertex v is called simplicial if the subgraph of G induced by
the vertex-set {v} ∪N(v) is a complete graph.

Proposition 2.6. If P is a chain, then each vertex in G(P ) is a simplicial vertex.

Proof. Suppose that P is a chain. Then the graph G(P ) is a complete graph,
and so all vertices are simplicial.

Proposition 2.7. A vertex I is simplicial if and only if I contains only one

atom.

Proof. Let I be a simplicial vertex. Suppose on the contrary that I has at least
two atoms. Let a1, a2 ∈ I. In this case, I is adjacent to {0, a1} and {0, a2}, but
{0, a1} is not adjacent to {0, a2}, a contradiction. So I contains only one atom.

Conversely, it is easy to see that if I contains only one atom, then the sub-
graph of G(P ) induced by the vertex-set {I} ∪N(I) is a complete graph.

3. Planarity of G(P )

In this section, we completely characterize all posets P such that G(P ) is planar.

Recall that a graph G is said to be planar if it can be drawn in the plane, so
that its edges intersect only at their ends. A subdivision of a graph is any graph
that can be obtained from the original graph by replacing some edges by paths.
A remarkable characterization of the planar graphs was given by Kuratowski in
1930. Kuratowski’s Theorem says that a graph is planar if and only if it contains
no subdivision of K5 or K3,3.

The following lemma is needed in the rest of this section.

Lemma 3.1. If G(P ) is planar, then |A(P )| ≤ 3.

Proof. Suppose on the contrary that |A(P )| ≥ 4 and a1, a2, a3, a4 ∈ A(P ). Then
we can find a subdivition of K5 in the graph G(P ), which is pictured in Figure
2. Therefore, by Kuratowski’s Theorem, G(P ) is not planar. Hence we have
|A(P )| ≤ 3.

By Lemma 3.1, we need to study the cases that |A(P )| is equal to 1, 2 or 3.
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{0,a1,a4}{0,a2,a3}
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Figure 2

Figure 3

Theorem 3.2. Suppose that |A(P )| = 1. Then G(P ) is planar if and only if P
is a chain with |P | ≤ 6, or |P | ≤ 4, or P is one of the posets in Figure 3.

Proof. Suppose that G(P ) is planar. Since |A(P )| = 1, we have G(P ) is a
complete graph, and clearly if |P | ≤ 4, then G(P ) is planar. Now, assume that
|P | = 5. If P is a chain or it is one of the posets in Figure 3, then G(P ) is planar.
If P is one of the posets in Figure 4, then one can easily see that G(P ) contains
a copy of K5, and so it is not planar.

Figure 4

If |P | = 6, then one can see that G(P ) is planar if and only if P is a chain.
Also, if |P | ≥ 7, then clearly G(P ) is not planar.

The converse statement is clear.
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In the following theorem, we investigate the planarity of G(P ), when |A(P )|
= 2.

Theorem 3.3. Suppose that |A(P )| = 2. Then G(P ) is planar if and only if

|P | ≤ 4, or P is one of the posets in Figure 5.

5.1 5.2 5.3 5.4

Figure 5

Proof. Let A(P ) = {a1, a2}. First suppose that |P | ≥ 6. Clearly if P is the
poset which is shown in Figure 5.1, then G(P ) is planar. Otherwise, we have the
following situations:

(i) For each element x ∈ P \ {0, a1, a2}, we have a1, a2 ∈ {x}ℓ. Then it is
easy to see that the set of all non-trivial ideals of P except the ideals {0, a1} and
{0, a2} forms a complete subgraph of G(P ). Hence one can find a copy of K5 in
G(P ), and so it is not planar.

(ii) There exists an element z in P such that a2 /∈ {z}l and a1 ≺ z. Since
|P | ≥ 6, we can find an element y ∈ P such that {y}ℓ 6= P . Then the vertices of
the set {{0, a1}, {0, a2}, {0, a1, z}} ∪ {{0, a1, a2}, {0, a1, a2, z}, {0, a1, a2} ∪ {y}ℓ}}
form the graph K3,3, and so G(P ) is not planar.

If |P | = 5 and P is one of the posets of Figures 5.2, 5.3 or 5.4, then one can
easily check that G(P ) is planar. Otherwise, P is one of the posets of Figure 6.

0

a1 a2

x1

x2

0

a1 a2

x1 x2

6.1 6.2

Figure 6

If P is the poset of Figure 6.1, then the vertices of the set

{{0, a1}, {0, a2}, {0, a1, x1}} ∪ {{0, a1, a2}, {0, a1, a2, x1}, {0, a1, a2, x2}}
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form the graph K3,3, and so G(P ) is not planar.

Also, if P is the poset of Figure 6.2, then G(P ) contains a copy of K5 with
vertex-set

{{0, a1}, {0, a1, x1}, {0, a1, a2}, {0, a1, a2, x1}, {0, a1, a2, x2}}.

Hence it is not planar. Clearly if |P | ≤ 4, then G(P ) is planar. Now, by the
above discussion the result holds.

Finally, in order to complete the study of the planarity of G(P ), we assume
that |A(P )| = 3.

Theorem 3.4. Suppose that |A(P )| = 3. Then G(P ) is planar if and only if

|P | = 4, or P is the poset in Figure 7.

Figure 7

Proof. First suppose that |P | ≥ 6. Then there exists an element x ∈ P\{0, a1,
a2, a3} such that {x}ℓ 6= P . Therefore, G(P ) contains a copy of K5 with vertex-
set

{{0, a1}, {0, a1, a2}, {0, a1, a3}, {0, a1, a2, a3}, {x}
ℓ},

which implies that G(P ) is not planar.

If |P | = 5 and P is the poset of Figure 7, then one can easily check that G(P )
is planar. Otherwise, there exists an element z in P such that ai /∈ {z}ℓ, for some
i = 1, 2, 3. Then the vertices of the set {{0, a1}, {0, a1, a2}, {0, a1, a3}, {0, a1, a2,
a3}, {z}

ℓ} form the graph K5, and so G(P ) is not planar. Also if |P | = 4, then
G(P ) is planar.

By the above discussion the result holds.

4. Outerplanarity of G(P )

A graph G is outerplanar if it can be drawn in the plane without crossing in such
a way that all of the vertices belong to the unbounded face of the drawing. There
is a characterization for outerplanar graphs that says a graph is outerplanar if
and only if it does not contain a subdivision of K4 or K2,3.
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In the rest of the paper, we characterize all posets P such that G(P ) is
outerplanar.

Lemma 4.1. If G(P ) is outerplanar, then |A(P )| ≤ 2.

Proof. Assume to the contrary that |A(P )| ≥ 3. Then one can find a copy of
K4 in G(P ), and so G(P ) is not outerplanar. Hence we have |A(P )| ≤ 2.

By Lemma 4.1, we study the cases that |A(P )| is equal to 1 or 2. In the fol-
lowing proposition, we investigate the outerplanarity of G(P ), when |A(P )| = 1.

Theorem 4.2. Suppose that |A(P )| = 1. Then G(P ) is outerplanar if and only

if P is a chain with |P | ≤ 5, or |P | ≤ 4.

Proof. Suppose that |A(P )| = 1. Then G(P ) is a complete graph, and clearly if
|P | ≤ 4, then G(P ) is outerplanar.

If |P | = 5, then it is easy to check that G(P ) is outerplanar if and only if P
is a chain. If |P | ≥ 6, then clearly G(P ) is not outerplanar.

The converse statement is clear.

Proposition 4.3. Assume that |A(P )| = 2. Then G(P ) is outerplanar if and

only if |P | ≤ 4, or P is the poset in Figure 8.

Figure 8

Proof. Let A(P ) = {a1, a2}. First suppose that |P | ≥ 5. Clearly if P is the
poset in Figure 8, then G(P ) is outerplanar. Otherwise, we have the following
situations:

(i) If for each element x ∈ P \ {0, a1, a2}, we have a1, a2 ∈ {x}ℓ, then it is
easy to see that the set of all non-trivial ideals of P except the ideals {0, a1} and
{0, a2} forms a complete subgraph of G(P ). Hence one can find a copy of K4 in
G(P ), and so it is not outerplanar.

(ii) Now suppose that there exists an element z in P such that a2 /∈ {z}l and
a1 ≺ z. Then the vertices of the set {{0, a1, a2}, {0, a1, a2, z}} ∪ {{0, a1}, {0, a2},
{0, a1, z}} form the graph K2,3, and so Γ(P ) is not outerplanar.

Clearly if |P | ≤ 4, then G(P ) is outerplanar.
The converse statement is clear.
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Let G be a graph with n vertices and q edges. We recall that a chord is any
edge of G joining two nonadjacent vertices in a cycle of G. Let C be a cycle
of G. We say that C is a primitive cycle if it has no chords. Also, a graph G
has the primitive cycle property (PCP ) if any two primitive cycles intersect in
at most one edge. The number frank(G) is called the free rank of G and it is
the number of primitive cycles of G. Also, the number rank(G)=q − n + r is
called the cycle rank of G, where r is the number of connected components of
G. The cycle rank of G can be expressed as the dimension of the cycle space of
G. By [12, Proposition 2.2], we have rank(G) ≤ frank (G). A graph G is called
a ring graph if it satisfies in one of the following equivalent conditions (see [12]).

(i) rank(G)= frank(G),

(ii) G satisfies the PCP and G does not contain a subdivision of K4 as a sub-
graph.

Clearly, every outerplanar graph is a ring graph and every ring graph is a
planar graph.

Now, in view of the proofs of Proposition 4.3 and Theorem 4.2, we have the
following result.

Theorem 4.4. The intersection graph G(P ) is a ring graph if and only if it is

an outerplanar graph.

Let G and H be graphs. A homomorphism f from G to H is a map from
V (G) to V (H) such that, for any a, b ∈ V (G), a is adjacent to b implies that f(a)
is adjacent to f(b). Moreover, if f is bijective and its inverse mapping is also a
homomorphism, then we call f an isomorphism from G to H, and in this case we
say G is isomorphic to H, denoted by G ∼= H. A homomorphism (respectively,
an isomorphism) from G to itself is called an endomorphism (respectively, auto-
morphism) of G. An endomorphism f is said to be half-strong if f(a) is adjacent
to f(b) implies that there exist c ∈ f−1(f(a)) and d ∈ f−1(f(b)) such that c is
adjacent to d. By End(G), we denote the set of all the endomorphisms of G.
It is well-known that End(G) is a monoid with respect to the composition of
mappings. Let S be a semigroup. An element a in S is called regular if a = aba
for some b ∈ S and S is called regular if every element in S is regular. Also, a
graph G is called end-regular if End(G) is regular.

Now, we recall the following Lemma from [13].

Lemma 4.5 [13, Lemma 2.1]. Let G be a graph. If there are pairwise distinct
vertices a, b, c in G satisfying N(c) ⊆ N(a) ⊆ N(b), then G is not end-regular.

Theorem 4.6. Suppose that |A(P )| ≥ 3. Then G(P ) is not end-regular.

Proof. Suppose that a1, a2, a3 are distinct atoms in A(P ). Then



116 M. Afkhami, K. Khashyarmanesh and F. Shahsavar

{0, a2} ∈ N({0, a1, a2}) \ N({0, a1}).

Also, we have N({0, a1, a2}) ⊆ N({0, a1, a2, a3}). So, by Lemma 4.5, G(P ) is not
end-regular.
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