Discussiones Mathematicae General Algebra and Applications 40 (2020) 21–24 doi:10.7151/dmgaa.1320

SP-DOMAINS ARE ALMOST DEDEKIND — A STREAMLINED PROOF

Malik Tusif Ahmed

Abdus Salam School of Mathematical Sciences GC University, 68-B New Muslim Town Lahore, Pakistan

e-mail: tusif.ahmad92@gmail.com tusif.ahmed@sms.edu.pk

Abstract

Let D be a domain. By [4], D has "property SP" if every ideal of D is a product of radical ideals. It is natural to consider property SP after studying Dedekind domains, which involve factoring ideals into prime ideals. In their article [4] Vaughan and Yeagy prove that a domain having property SP is an almost Dedekind domain. We give a very short and easy proof of this result.

Keywords: SP-domain, almost Dedekind domain, discrete valuation domain.

2010 Mathematics Subject Classification: Primary 13A15, Secondary 13F15.

1. INTRODUCTION

Let, throughout this article D an integral domain, R a commutative ring with identity, \subseteq denotes containment and let \subset denote proper containment. To say that I is a proper ideal of D means $(0) \subset I \subset D$.

In a paper of 1978 Vaughan and Yeagy prove that if a domain D has the property that every proper ideal is a product of radical ideals, then D is an almost Dedekind domain; that is D_M is a Dedekind domain for each maximal ideal M of D [4, Theorem 2.4]. Following Vaughan and Yeagy, in his article [3] Olberding gives the following definition.

Definition. A ring R is said to be an SP-ring if every proper ideal is a product of radical ideals.

Thus SP-domains are almost Dedekind. In Section 2 we give a very short and easy proof of this statement. We give some preparation before proving the main theorem. In Lemma 1 we prove that, if D is an SP-domain then every primary ideal is a prime power. In Lemma 2 we show that in a domain D if every primary ideal is a prime power and $P \subset M$ is a chain of prime ideals then, $P \subseteq \bigcap_{n=1}^{\infty} M^n$. In Lemma 4 we show that every local SP-domain with principal maximal ideal is a rank one discrete valuation ring. In Lemma 6 we prove that, if D is SP-domain and P is a minimal prime ideal over any nonzero principal ideal then D_P is rank one discrete valuation ring. And in our main Theorem 8 of this article we prove that every SP-domain is an almost Dedekind domain.

A domain D is called Prüfer if the quotient ring D_P is a valuation ring for each proper prime ideal P of D, also D is an almost Dedekind domain provided each D_P is a rank one discrete valuation ring (i.e., a valuation ring which is a Dedekind domain), see [2]. A domain D is said to have dimension n if there is a strictly increasing chain on n proper prime ideals in D but no such chain of n+1proper prime ideals. In this case, we write dim D = n.

2. SP-domain implies almost Dedekind domain

Lemma 1. If D is SP, then every primary ideal is a prime power.

Proof. Let $Q = J_1 \cdots J_n$ be *P*-primary with each J_i radical ideal. We may remove the factors J_i not contained in *P* (if Q = AB and $B \not\subseteq P$, then Q = A). We get $Q \subseteq J_i \subseteq P$, so $J_i = \sqrt{J_i} = P$, hence $Q = P^n$.

Lemma 2. If every primary ideal of D is a prime power (e.g. if D is SP) and $P \subset M$ are prime ideals, then $P \subseteq \bigcap_n M^n$.

Proof. Shrinking M, we may assume that M is minimal over (P, x) with $x \in M - P$. Then $Q_i = (P, x^i)D_M \cap D$ is M-primary and $x^i \in Q_i - Q_{i+1}$ for each i. By hypothesis, $Q_i = M^{k_i}$ for some k_i , so we have $k_i < k_{i+1}$. Thus $P \subseteq \bigcap_i M^{k_i} = \bigcap_n M^n$.

Remark 3. The idea above shows the following. Let R be a ring, P a prime ideal and H a finitely generated ideal in R such that $P \neq P + H \neq R$. Then the ideals $\{P + H^n\}_n$ are distinct. Indeed, moding out by P, we may assume that P = 0 and R is an integral domain. Assume that $H^n = H^{n+1}$. Then H^n is idempotent, so H^n is principal generated by some idempotent, a contradiction.

Lemma 4. If (D, M) is a local SP domain with M = mD principal, then D is a DVR.

Proof. It suffices to prove that D is one dimensional for then M is the only radical ideal, so D is Dedekind. Assume, by way of contradiction, that $P \subset M$ is a nonzero prime. Take $x \in P - \{0\}$ and write $xD = J_1 \cdots J_n$ with each J_i radical ideal; note that each J_i is invertible hence principal. Then P contains a radical principal ideal yD. From $P \subset M$, we get y = ma for some $a \in M$, so y divides a^2 , hence y divides a because yD is radical. We get the contradiction 1 = m(a/y).

Remark 5. The idea above shows the following. Let (D, M) be a local domain with M = mD principal. Then M is the only nonzero proper finitely generated radical ideal. Indeed, assume that $H \subset M$ is a nonzero finitely generated radical ideal. From $H \subset M$, we get H = mJ for some ideal $J \subseteq M$. We have $J^2 \subseteq H$, hence $J \subseteq H$ since H is radical, thus H = MH. Nakayama's Lemma gives H = 0, a contradiction.

Lemma 6. If D is an SP domain, $x \in D - \{0\}$ and P a minimal prime ideal of xD, then D_P is a DVR.

Proof. Since SP domain property is preserved after applying localization with respect to a multiplicatively closed set, see [1, Proposition 2.2] for example. So, we may assume that D is local SP domain with maximal ideal P. By Lemma 1, we have $xD = P^n$ for some n because xD is P-primary. Hence P is principal so Lemma 4 applies.

Proposition 7. If D is an SP domain and P a prime ideal of D, then D/P is an SP domain.

Proof. Assume that D is an SP domain and P a prime ideal of D. Let $I \supseteq P$ be an ideal of D. Then $I = J_1 \cdots J_n$ with each J_i a radical ideal, because D is an SP domain. We get $I/P = (J_1/P) \cdots (J_n/P)$ with each J_i/P a radical ideal.

Theorem 8. If D is an SP domain, then D is almost Dedekind.

Proof. By Lemma 6, it suffices to show that D is one dimensional. Assume, by way of contradiction that the dimension of D is at least 2. Now SP domain property is preserved under localization as it is also mentioned in the proof of Lemma 6. Furthermore, being almost Dedekind domain is a local property, therefore by Lemma 6, we may assume that D is local SP domain with maximal ideal M. Let $P \subset M$ be a height one prime ideal of D and let $x \in M - P$. Shrinking M we may assume that M is minimal over (P, x). By Proposition 7, D/P is SP domain and hence by Lemma 6, D_M/PD_M is a DVR, so $P = \bigcap_n (M^n + P) = \bigcap_n M^n$ due to Lemma 2. If $Q \subset M$ is a prime ideal, then $Q \subseteq \bigcap_n M^n = P$ due to Lemma 2. Hence $Spec(D) = \{0, P, M\}$. If $x \in M - P$, then M is minimal over xD, a contradiction according to Lemma 6.

Acknowledgments

The author is grateful to the referee for useful comments and suggestions. The author is supported by Abdus Salam School of Mathematical Sciences GC University Lahore under a postdoctoral fellowship.

References

- M.T. Ahmed and T. Dumitrescu, SP-rings with zero-divisors, Comm. Algebra 45 (3) (2017) 4435–4443. doi:10.1080/00927872.2016.1267184
- [2] R. Gilmer, Multiplicative Ideal Theory, Queen's papers Pure Appl. Math. 90 (Queen's University, Kingston, Ontario, 1992).
- B. Olberding, Factorization into radical ideals, Arithmetical properties of commutative rings and monoids (S. Chapman, Ed.), Lecture Notes in Pure Appl. Math. 241 (Chapman & Hall, 2005) 363–377. doi:10.1201/9781420028249
- [4] N.H. Vaughan, R.W. Yeagy, *Factoring ideals into semiprime ideals*, Canad. J. Math. XXX (6) (1978) 1313–1318. doi:10.4153/CJM-1978-108-5

Received 29 August 2019 Revised 1 October 2019 Accepted 13 January 2020