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Abstract

Let D be a domain. By [4], D has ”property SP” if every ideal of D is a
product of radical ideals. It is natural to consider property SP after studying
Dedekind domains, which involve factoring ideals into prime ideals. In their
article [4] Vaughan and Yeagy prove that a domain having property SP is
an almost Dedekind domain. We give a very short and easy proof of this
result.
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1. Introduction

Let, throughout this article D an integral domain, R a commutative ring with
identity, ⊆ denotes containment and let ⊂ denote proper containment. To say
that I is a proper ideal of D means (0) ⊂ I ⊂ D.

In a paper of 1978 Vaughan and Yeagy prove that if a domain D has the
property that every proper ideal is a product of radical ideals, then D is an
almost Dedekind domain; that is DM is a Dedekind domain for each maximal
ideal M of D [4, Theorem 2.4]. Following Vaughan and Yeagy, in his article [3]
Olberding gives the following definition.

Definition. A ring R is said to be an SP-ring if every proper ideal is a product
of radical ideals.
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Thus SP-domains are almost Dedekind. In Section 2 we give a very short and
easy proof of this statement. We give some preparation before proving the main
theorem. In Lemma 1 we prove that, if D is an SP-domain then every primary
ideal is a prime power. In Lemma 2 we show that in a domain D if every primary
ideal is a prime power and P ⊂ M is a chain of prime ideals then, P ⊆ ⋂

∞

n=1
Mn.

In Lemma 4 we show that every local SP-domain with principal maximal ideal is
a rank one discrete valuation ring. In Lemma 6 we prove that, if D is SP-domain
and P is a minimal prime ideal over any nonzero principal ideal then DP is rank
one discrete valuation ring. And in our main Theorem 8 of this article we prove
that every SP-domain is an almost Dedekind domain.

A domain D is called Prüfer if the quotient ring DP is a valuation ring for
each proper prime ideal P of D, also D is an almost Dedekind domain provided
each DP is a rank one discrete valuation ring (i.e., a valuation ring which is a
Dedekind domain), see [2]. A domain D is said to have dimension n if there is a
strictly increasing chain on n proper prime ideals in D but no such chain of n+1
proper prime ideals. In this case, we write dim D = n.

2. SP-domain implies almost Dedekind domain

Lemma 1. If D is SP, then every primary ideal is a prime power.

Proof. Let Q = J1 · · · Jn be P -primary with each Ji radical ideal. We may
remove the factors Ji not contained in P (if Q = AB and B 6⊆ P , then Q = A).
We get Q ⊆ Ji ⊆ P , so Ji =

√
Ji = P , hence Q = Pn.

Lemma 2. If every primary ideal of D is a prime power (e.g. if D is SP) and

P ⊂ M are prime ideals, then P ⊆
⋂

n
Mn.

Proof. Shrinking M , we may assume that M is minimal over (P, x) with x ∈
M − P . Then Qi = (P, xi)DM ∩D is M -primary and xi ∈ Qi −Qi+1 for each i.
By hypothesis, Qi = Mki for some ki, so we have ki < ki+1. Thus P ⊆ ⋂

i
Mki =⋂

n
Mn.

Remark 3. The idea above shows the following. Let R be a ring, P a prime
ideal and H a finitely generated ideal in R such that P 6= P + H 6= R. Then
the ideals {P + Hn}n are distinct. Indeed, moding out by P , we may assume
that P = 0 and R is an integral domain. Assume that Hn = Hn+1. Then Hn is
idempotent, so Hn is principal generated by some idempotent, a contradiction.

Lemma 4. If (D,M) is a local SP domain with M = mD principal, then D is

a DVR.
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Proof. It suffices to prove that D is one dimensional for then M is the only
radical ideal, so D is Dedekind. Assume, by way of contradiction, that P ⊂ M
is a nonzero prime. Take x ∈ P − {0} and write xD = J1 · · · Jn with each Ji
radical ideal; note that each Ji is invertible hence principal. Then P contains a
radical principal ideal yD. From P ⊂ M , we get y = ma for some a ∈ M , so
y divides a2, hence y divides a because yD is radical. We get the contradiction
1 = m(a/y).

Remark 5. The idea above shows the following. Let (D,M) be a local domain
with M = mD principal. Then M is the only nonzero proper finitely generated
radical ideal. Indeed, assume that H ⊂ M is a nonzero finitely generated radical
ideal. From H ⊂ M , we get H = mJ for some ideal J ⊆ M . We have J2 ⊆ H,
hence J ⊆ H since H is radical, thus H = MH. Nakayama’s Lemma gives
H = 0, a contradiction.

Lemma 6. If D is an SP domain, x ∈ D−{0} and P a minimal prime ideal of

xD, then DP is a DVR.

Proof. Since SP domain property is preserved after applying localization with
respect to a multiplicatively closed set, see [1, Proposition 2.2] for example. So,
we may assume that D is local SP domain with maximal ideal P . By Lemma 1,
we have xD = Pn for some n because xD is P -primary. Hence P is principal so
Lemma 4 applies.

Proposition 7. If D is an SP domain and P a prime ideal of D, then D/P is
an SP domain.

Proof. Assume that D is an SP domain and P a prime ideal of D. Let I ⊇ P
be an ideal of D. Then I = J1 · · · Jn with each Ji a radical ideal, because D is an
SP domain. We get I/P = (J1/P ) · · · (Jn/P ) with each Ji/P a radical ideal.

Theorem 8. If D is an SP domain, then D is almost Dedekind.

Proof. By Lemma 6, it suffices to show that D is one dimensional. Assume, by
way of contradiction that the dimension of D is at least 2. Now SP domain prop-
erty is preserved under localization as it is also mentioned in the proof of Lemma
6. Furthermore, being almost Dedekind domain is a local property, therefore by
Lemma 6, we may assume that D is local SP domain with maximal ideal M . Let
P ⊂ M be a height one prime ideal of D and let x ∈ M − P . Shrinking M we
may assume that M is minimal over (P, x). By Proposition 7, D/P is SP domain
and hence by Lemma 6, DM/PDM is a DVR, so P =

⋂
n
(Mn+P ) =

⋂
n
Mn due

to Lemma 2. If Q ⊂ M is a prime ideal, then Q ⊆ ⋂
n
Mn = P due to Lemma

2. Hence Spec(D) = {0, P,M}. If x ∈ M − P , then M is minimal over xD, a
contradiction according to Lemma 6.
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