Discussiones Mathematicae General Algebra and Applications 39 (2019) 277–288 doi:10.7151/dmgaa.1319

THE CLONE OF $K^*(n,r)$ -FULL TERMS

Khwancheewa Wattanatripop

Department of Mathematics, Faculty of Science Khon Kaen University, Khon Kaen 40002, Thailand

e-mail: khwancheewa12@gmail.com

AND

THAWHAT CHANGPHAS

Department of Mathematics, Faculty of Science Khon Kaen University, Khon Kaen 40002, Thailand Centre of Excellence in Mathematics, CHE, Si Ayuttaya Rd. Bangkok 10400, Thailand

e-mail: thacha@kku.ac.th

Dedicated to Professor Klaus Denecke on the occasion of 75th birthday

Abstract

Let τ_n be a type of algebras in which all operation symbols have arity n, for a fixed $n \geq 1$. For $0 < r \leq n$, this paper introduces a special kind of n-ary terms of type τ_n called $K^*(n,r)$ -full terms. The set of all $K^*(n,r)$ -full terms of type τ_n is closed under the superposition operation S^n ; hence forms a clone denoted by $clone_{K^*(n,r)}(\tau_n)$. We prove that $clone_{K^*(n,r)}(\tau_n)$ is a Menger algebra of rank n. We study $K^*(n,r)$ -full hypersubstitutions and the related $K^*(n,r)$ -full closed identities and $K^*(n,r)$ -full closed varieties. A connection between identities in $clone_{K^*(n,r)}(\tau_n)$ and $K^*(n,r)$ -full closed identities is established. The results obtained generalize the results of Denecke and Jampachon [K. Denecke and P. Jampachon, Clones of full terms, Algebra and Discrete Math. 4 (2004) 1–11].

Keywords: restricted range transformation, full term, clone, Menger algebra, hypersubstitution, hyperidentity, solid variety.

2010 Mathematics Subject Classification: 08B15, 08A62, 08B05.

1. The clone of $K^*(n,r)$ -full terms

Let $n \ge 1$ be a fixed. Let $\tau_n := (n_i)_{i \in I}$ be an n-ary type of algebras with operation symbols f_i indexed by some set I, each f_i has arity $n_i = n$.

Let $X_n := \{x_1, \ldots, x_n\}$ be an *n*-elements alphabet of variables, disjoint from the set of operation symbols of type τ_n . The set of all *n*-ary terms of type τ_n is denoted by $W_{\tau_n}(X_n)$. For each f_i , define $\bar{f}_i : (W_{\tau_n}(X_n))^n \to W_{\tau_n}(X_n)$ by

$$\bar{f}_i(t_1,\ldots,t_n) := f_i(t_1,\ldots,t_n) \text{ for all } t_1,\ldots,t_n \in W_{\tau_n}(X_n).$$

This forms the absolutely free algebra:

$$\mathcal{F}_{\tau_n}(X_n) := (W_{\tau_n}(X_n), (\bar{f}_i)_{i \in I}).$$

Otherwise, an operation $S^n: (W_{\tau_n}(X_n))^{n+1} \to W_{\tau_n}(X_n)$ is inductively defined by:

- (i) $S^n(x_i, t_1, ..., t_n) = t_i$ if $x_i \in X_n$; and
- (ii) $S^n(f_i(s_1,\ldots,s_n),t_1,\ldots,t_n) = f_i(S^n(s_1,t_1,\ldots,t_n),\ldots,S^n(s_n,t_1,\ldots,t_n)).$

Thus

$$(W_{\tau_n}(X_n), S^n)$$

is an algebra with (n+1)-ary operation S^n .

The full transformation semigroup T_n consists of the set of all maps α : $\{1,\ldots,n\} \to \{1,\ldots,n\}$ and the usual composition of mappings. Indeed, T_n is a monoid, an identity map 1_n acts as its identity. For a fixed $0 < r \le n$, it is well-known that the set

$$K(n,r) := \{ \alpha \in T_n : |ran(\alpha)| \le r \}$$

of all restricted range transformations is a subsemigroup of T_n . Hence,

$$K^*(n,r) := K(n,r) \cup \{1_n\}$$

is a submonoid of T_n . It is observed that $K^*(n,r) = K(n,r) = T_n$ if r = n. We inductively define n-ary $K^*(n,r)$ -full terms of type τ_n as follows:

- (i) $f_i(x_{\alpha(1)},\ldots,x_{\alpha(n)})$ is an *n*-ary $K^*(n,r)$ -full term of type τ_n if f_i is an *n*-ary operation symbol and $\alpha \in K^*(n,r)$.
- (ii) $f_i(t_1, ..., t_n)$ is an n-ary $K^*(n, r)$ -full term of type τ_n if f_i is an n-ary operation symbol, and $t_1, ..., t_n$ are n-ary $K^*(n, r)$ -full terms of type τ_n .

The set of all n-ary $K^*(n,r)$ -full terms of type τ_n , closed under finite applications of (ii), is denoted by $W_{\tau_n}^{K^*(n,r)}(X_n)$.

Example 1. Let us consider a type τ_3 with I is a singleton set. Then

But, x_1 , x_2 , x_3 , $f(x_3, x_1, x_2)$ and $f(f(x_2, x_2, x_2), f(x_2, x_3, x_1), f(x_2, x_2, x_2))$ do not belong to $W_{\tau_3}^{K^*(3,2)}(X_3)$.

It is observed that $W_{\tau_n}^{K^*(n,r)}(X_n)$ contains no variables x_1,\ldots,x_n . In [2], Denecke and Jampachon inductively defined *n*-ary full terms of type τ_n by:

- (i) $f_i(x_{\alpha(1)}, \dots, x_{\alpha(n)})$ is an *n*-ary full term of type τ_n if f_i is an *n*-ary operation symbol and $\alpha \in T_n$; and
- (ii) $f_i(t_1, ..., t_n)$ is an *n*-ary full term of type τ_n if $t_1, ..., t_n$ are *n*-ary full terms of type τ_n and f_i is an *n*-ary operation symbol.

The set of all n-ary full terms of type τ_n , closed under finite application of (ii), is denoted by $W_{\tau_n}^F(X_n)$. If T_n is replaced by a submonoid $\{1_n\}$ then $W_{\tau_n}^F(X_n)$ is denoted by $W_{\tau_n}^{FF}(X_n)$, called the set of all n-ary strongly full terms of type τ_n [3]. It is observed that if r < n then

$$W_{\tau_n}^{K^*(n,r)}(X_n) \subset W_{\tau_n}^F(X_n).$$

And, if r = n then

$$W_{\tau_n}^{SF}(X_n) \subset W_{\tau_n}^{K^*(n,r)}(X_n) = W_{\tau_n}^F(X_n).$$

Generalizations of full terms and strongly full terms of type τ_n have been introduced and studied [7, 8]. By the definition of $K^*(n,r)$ -full terms of type τ_n we have that $(W_{\tau_n}^{K^*(n,r)}(X_n),(\bar{f}_i)_{i\in I})$ is a subalgebra of $(W_{\tau_n}(X_n),(\bar{f}_i)_{i\in I})$.

We inductively define

$$S^n: \left(W_{\tau_n}^{K^*(n,r)}(X_n)\right)^{n+1} \to W_{\tau_n}^{K^*(n,r)}(X_n)$$

by:

(i)
$$S^n(f_i(x_{\alpha(1)},\ldots,x_{\alpha(n)}),t_1,\ldots,t_n) := f_i(t_{\alpha(1)},\ldots,t_{\alpha(n)});$$
 and

(ii)
$$S^n(f_i(s_1,\ldots,s_n),t_1,\ldots,t_n) := f_i(S^n(s_1,t_1,\ldots,t_n),\ldots,S^n(s_n,t_1,\ldots,t_n)).$$

Then we have an algebra

$$clone_{K^*(n,r)}(\tau_n) := \left(W_{\tau_n}^{K^*(n,r)}(X_n), S^n\right).$$

The following theorem follows from the fact that the algebra $(W_{\tau_n}(X_n), S^n)$ satisfies the super associative law (SASS):

$$\widetilde{S}^{n}(\widetilde{S}^{n}(X_{0}, Y_{1}, \dots, Y_{n}), X_{1}, \dots, X_{n})$$

$$\approx \widetilde{S}^{n}(X_{0}, \widetilde{S}^{n}(Y_{1}, X_{1}, \dots, X_{n}), \dots, \widetilde{S}^{n}(Y_{n}, X_{1}, \dots, X_{n})).$$

(Here, \widetilde{S}^n is an (n+1)-ary operation symbol and X_i, Y_j are variables). However, we will prove the result directly.

Theorem 2. The algebra $clone_{K^*(n,r)}(\tau_n)$ satisfies the previous super associative law (SASS).

Proof. We will proceed by induction on the complexity of the $K^*(n,r)$ -full term which is substituted for X_0 . Firstly, we have

$$S^{n} \left(S^{n} \left(f_{i}(x_{\alpha(1)}, \dots, x_{\alpha(n)}), s_{1}, \dots, s_{n} \right), t_{1}, \dots, t_{n} \right)$$

$$= S^{n} \left(f_{i} \left(s_{\alpha(1)}, \dots, s_{\alpha(n)} \right), t_{1}, \dots, t_{n} \right)$$

$$= f_{i} \left(S^{n} \left(s_{\alpha(1)}, t_{1}, \dots, t_{n} \right), \dots, S^{n} \left(s_{\alpha(n)}, t_{1}, \dots, t_{n} \right) \right)$$

$$= S^{n} \left(f_{i} \left(x_{\alpha(1)}, \dots, x_{\alpha(n)} \right), S^{n} \left(s_{1}, t_{1}, \dots, t_{n} \right), \dots, S^{n} \left(s_{n}, t_{1}, \dots, t_{n} \right) \right).$$

Consider $f_i(r_1, \ldots, r_n) \in W_{\tau_n}^{K^*(n,r)}(X_n)$ such that r_1, \ldots, r_n satisfy (SASS). Then

$$S^{n}(S^{n}(f_{i}(r_{1},...,r_{n}),s_{1},...,s_{n}),t_{1},...,t_{n})$$

$$=S^{n}(f_{i}(S^{n}(r_{1},s_{1},...,s_{n}),...,S^{n}(r_{n},s_{1},...,s_{n})),t_{1},...,t_{n})$$

$$=f_{i}(S^{n}(S^{n}(r_{1},s_{1},...,s_{n}),t_{1},...,t_{n}),...,S^{n}(S^{n}(r_{n},s_{1},...,s_{n})),t_{1},...,t_{n}))$$

$$=f_{i}(S^{n}(r_{1},S^{n}(s_{1},t_{1},...,t_{n}),...,S^{n}(s_{n},t_{1},...,t_{n})),...,$$

$$S^{n}(r_{n},S^{n}(s_{1},t_{1},...,t_{n}),...,S^{n}(s_{n},t_{1},...,t_{n})))$$

$$=S^{n}(f_{i}(r_{1},...,r_{n}),S^{n}(s_{1},t_{1},...,t_{n}),...,S^{n}(s_{n},t_{1},...,t_{n})).$$

Hence the proof is completed.

An algebra $\mathcal{M} := (M, S^n)$ of type $\tau = (n+1)$ is called a *Menger algebra* of rank n if \mathcal{M} satisfies the condition (SASS) [4]. Then, by Theorem 2, $clone_{K^*(n,r)}(\tau_n)$ is an example of a Menger algebra of rank n. It is observed that $clone_{K^*(n,r)}(\tau_n)$ is generated by

$$F_{W_{\tau_n}^{K^*(n,r)}(X_n)} := \left\{ f_i(x_{\alpha(1)}, \dots, x_{\alpha(n)}) \mid i \in I, \ \alpha \in K^*(n,r) \right\}.$$

Let V_{Menger} be the variety of all Menger algebras of type (n+1), and let $\mathcal{F}_{V_{Menger}}(Y)$ be the free algebra with respect to V_{Menger} , freely generated by $Y := \{y_j \mid j \in J\}$ where Y is an alphabet of variables indexed by the set $J := \{(i,\alpha) \mid i \in I, \alpha \in K^*(n,r)\}$. The operation of $\mathcal{F}_{V_{Menger}}(Y)$ will be denoted by \widetilde{S}^n . We can state and prove the following theorem.

Theorem 3. The algebra clone $K^*(n,r)(\tau_n)$ is a free algebra of the variety V_{Menger} of Menger algebras of rank n, freely generated by the set $Y = \{y_{(i,\alpha)} \mid i \in I, \alpha \in K^*(n,r)\}$.

Proof. We claim that $clone_{K^*(n,r)}(\tau_n)$ is isomorphic to $\mathcal{F}_{V_{Menger}}(Y)$. Define

$$\varphi: W_{\tau_n}^{K^*(n,r)}(X_n) \to F_{V_{Menger}}(Y)$$

by:

(i)
$$\varphi(f_i(x_{\alpha(1)}, \dots, x_{\alpha(n)})) := y_{(i,\alpha)}.$$

(ii)
$$\varphi(S^n(f_i(x_{\alpha(1)},\ldots,x_{\alpha(n)}),t_1,\ldots,t_n)) := \widetilde{S}^n(y_{(i,\alpha)},\varphi(t_1),\ldots,\varphi(t_n)).$$

We show that φ is a homomorphism:

$$\varphi(S^n(t,t_1,\ldots,t_n)) = \widetilde{S}^n(\varphi(t),\varphi(t_1),\ldots,\varphi(t_n))$$

for all $t, t_1, \ldots, t_n \in W_{\tau_n}^{K^*(n,r)}(X_n)$. Indeed: if $t = f_i(x_{\alpha(1)}, \ldots, x_{\alpha(n)})$, then

$$\varphi(S^{n}(t,t_{1},\ldots,t_{n})) = \varphi(S^{n}(f_{i}(x_{\alpha(1)},\ldots,x_{\alpha(n)}),t_{1},\ldots,t_{n}))$$

$$= \varphi(f_{i}(t_{\alpha(1)},\ldots,t_{\alpha(n)}))$$

$$= \widetilde{S}^{n}(y_{(i,\alpha)},\varphi(t_{1}),\ldots,\varphi(t_{n}))$$

$$= \widetilde{S}^{n}(\varphi(f_{i}(x_{\alpha(1)},\ldots,x_{\alpha(n)})),\varphi(t_{1}),\ldots,\varphi(t_{n}))$$

$$= \widetilde{S}^{n}(\varphi(t),\varphi(t_{1}),\ldots,\varphi(t_{n})).$$

Consider $t = f_i(r_1, \ldots, r_n)$ and assume that, for $1 \le k \le n$,

$$\varphi(S^n(r_k, t_1, \dots, t_n)) = \widetilde{S}^n(\varphi(r_k), \varphi(t_1), \dots, \varphi(t_n)).$$

Using the fact that

$$\varphi(f_i(t'_1,\ldots,t'_n)) = \widetilde{S}^n(y_{(i,1_n)},\varphi(t'_1),\ldots,\varphi(t'_n))$$

for all $t'_1, \ldots, t'_n \in W^{K^*(n,r)}_{\tau_n}(X_n)$, we then have

$$\varphi(S^{n}(t,t_{1},\ldots,t_{n}))
= \varphi(S^{n}(f_{i}(r_{1},\ldots,r_{n}),t_{1},\ldots,t_{n}))
= \varphi(f_{i}(S^{n}(r_{1},t_{1},\ldots,t_{n}),\ldots,S^{n}(r_{n},t_{1},\ldots,t_{n}))
= \widetilde{S}^{n}(y_{(i,1_{n})},\varphi(S^{n}(r_{1},t_{1},\ldots,t_{n})),\ldots,\varphi(S^{n}(r_{n},t_{1},\ldots,t_{n})))
= \widetilde{S}^{n}(y_{(i,1_{n})},\widetilde{S}^{n}(\varphi(r_{1}),\varphi(t_{1}),\ldots,\varphi(t_{n})),\ldots,\widetilde{S}^{n}(\varphi(r_{n}),\varphi(t_{1}),\ldots,\varphi(t_{n})))
= \widetilde{S}^{n}(\widetilde{S}^{n}(y_{(i,1_{n})},\varphi(r_{1}),\ldots,\varphi(r_{n})),\varphi(t_{1}),\ldots,\varphi(t_{n}))
= \widetilde{S}^{n}(\varphi(t),\varphi(t_{1}),\ldots,\varphi(t_{n})).$$

Indeed, φ is a bijection. To see this:

$$y_{(i,\alpha)} = y_{(j,\beta)} \Rightarrow (i,\alpha) = (j,\beta) \Rightarrow f_i\left(x_{\alpha(1)},\dots,x_{\alpha(n)}\right) = f_j\left(x_{\beta(1)},\dots,x_{\beta(n)}\right).$$

And,

$$y_{(i,\alpha)} \in Y \Rightarrow \varphi \left(f_i(x_{\alpha(1)}, \dots, x_{\alpha(n)}) \right) = y_{(i,\alpha)}.$$

Hence φ is an isomorphism.

2. $K^*(n,r)$ -full hypersubstitutions

A hypersubstitution of type τ is a map $\sigma: \{f_i \mid i \in I\} \to W_\tau(X)$ which maps each operation symbol f_i to an n_i -ary term $\sigma(f_i)$ of type τ . Any hypersubstitution $\sigma: \{f_i \mid i \in I\} \to W_\tau(X)$ can be uniquely extended to a map $\widehat{\sigma}: W_\tau(X) \to W_\tau(X)$ as follows:

(i) $\widehat{\sigma}[t] = t$ if $t \in X$; and

(ii)
$$\widehat{\sigma}[t] = \sigma(f_i)(\widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_{n_i}])$$
 if $t = f_i(t_1, \dots, t_{n_i})$.

The set $Hyp(\tau)$ of all hypersubstitutions of type τ forms a monoid under the associative operation \circ_h :

$$(\sigma_1 \circ_h \sigma_2)(f_i) := \widehat{\sigma}_1[\sigma_2(f_i)].$$

The identity is $\sigma: \{f_i \mid i \in I\} \to W_\tau(X)$ such that $\sigma(f_i) = f_i(x_1, \dots, x_{n_i})$, see [5]. Now, we call mappings

$$\sigma: \{f_i \mid i \in I\} \to W_{\tau_n}^{K^*(n,r)}(X_n)$$

 $K^*(n,r)$ -full hypersubstitutions of type τ_n .

To define an extension of a given $K^*(n,r)$ -full hypersubstitution of type τ_n , we need the following. For $t \in W_{\tau_n}^{K^*(n,r)}(X_n)$ and $\beta \in K^*(n,r)$, define

(i)
$$t_{\beta} := f_i(x_{\beta(\alpha(1))}, \dots, x_{\beta(\alpha(n))})$$
 if $t = f_i(x_{\alpha(1)}, \dots, x_{\alpha(n)})$.

(ii)
$$t_{\beta} := f_i((t_1)_{\beta}, \dots, (t_n)_{\beta})$$
 if $t = f_i(t_1, \dots, t_n)$.

It is observed that if t is an $K^*(n,r)$ -full term of type τ_n , then t_β is an $K^*(n,r)$ -full term of type τ_n for all $\beta \in K^*(n,r)$. Then an $K^*(n,r)$ -full hypersubstitution $\sigma: \{f_i \mid i \in I\} \to W_{\tau_n}^{K^*(n,r)}(X_n)$ of type τ_n can be extended to a mapping

$$\widehat{\sigma}: W_{\tau_n}^{K^*(n,r)}(X_n) \to W_{\tau_n}^{K^*(n,r)}(X_n)$$

as follows:

(i)
$$\widehat{\sigma}[f_i(x_{\alpha(1)},\ldots,x_{\alpha(n)})] := (\sigma(f_i))_{\alpha}$$
.

(ii)
$$\widehat{\sigma}[f_i(t_1,\ldots,t_n)] := S^n(\sigma(f_i),\widehat{\sigma}[t_1],\ldots,\widehat{\sigma}[t_n]).$$

The set of all $K^*(n,r)$ -full hypersubstitutions of type τ_n will be denoted by $Hyp^{K^*(n,r)}(\tau_n)$. It is easy to see that $(Hyp^{K^*(n,r)}(\tau_n), \circ_h)$ is a submonoid of $(Hyp(\tau_n), \circ_h)$.

Lemma 4. Let $t, t_1, ..., t_n \in W_{\tau_n}^{K^*(n,r)}(X_n)$. Then

$$S^{n}(t,\widehat{\sigma}[t_{\alpha(1)}],\ldots,\widehat{\sigma}[t_{\alpha(n)}]) = S^{n}(t_{\alpha},\widehat{\sigma}[t_{1}],\ldots,\widehat{\sigma}[t_{n}])$$

for all $\alpha \in K^*(n,r)$.

Proof. If $t = f_i(x_{\beta(1)}, \dots, x_{\beta(n)})$ where $\beta \in K^*(n, r)$, then, for $\alpha \in K^*(n, r)$, we have

$$S^{n}(t,\widehat{\sigma}[t_{\alpha(1)}],\ldots,\widehat{\sigma}[t_{\alpha(n)}]) = S^{n}(f_{i}(x_{\beta(1)},\ldots,x_{\beta(n)}),\widehat{\sigma}[t_{\alpha(1)}],\ldots,\widehat{\sigma}[t_{\alpha(n)}])$$

$$= f_{i}(\widehat{\sigma}[t_{\alpha(\beta(1))}],\ldots,\widehat{\sigma}[t_{\alpha(\beta(n))}])$$

$$= S^{n}(f_{i}(x_{\alpha(\beta(1))},\ldots,x_{\alpha(\beta(n))}),\widehat{\sigma}[t_{1}],\ldots,\widehat{\sigma}[t_{n}])$$

$$= S^{n}(t_{\alpha},\widehat{\sigma}[t_{1}],\ldots,\widehat{\sigma}[t_{n}]).$$

Let $t = f_i(s_1, \ldots, s_n)$ and assume that

$$S^{n}(s_{k},\widehat{\sigma}[t_{\alpha(1)}],\ldots,\widehat{\sigma}[t_{\alpha(n)}]) = S^{n}((s_{k})_{\alpha},\widehat{\sigma}[t_{1}],\ldots,\widehat{\sigma}[t_{n}])$$

for all $\alpha \in K^*(n,r)$. Then, for $\alpha \in K^*(n,r)$, we have

$$S^{n}(t,\widehat{\sigma}[t_{\alpha(1)}],\ldots,\widehat{\sigma}[t_{\alpha(n)}])$$

$$= S^{n}(f_{i}(s_{1},\ldots,s_{n}),\widehat{\sigma}[t_{\alpha(1)}],\ldots,\widehat{\sigma}[t_{\alpha(n)}])$$

$$= f_{i}(S^{n}(s_{1},\widehat{\sigma}[t_{\alpha(1)}],\ldots,\widehat{\sigma}[t_{\alpha(n)}]),\ldots,S^{n}(s_{n},\widehat{\sigma}[t_{\alpha(1)}],\ldots,\widehat{\sigma}[t_{\alpha(n)}]))$$

$$= f_{i}(S^{n}((s_{1})_{\alpha},\widehat{\sigma}[t_{1}],\ldots,\widehat{\sigma}[t_{n}]),\ldots,S^{n}((s_{n})_{\alpha},\widehat{\sigma}[t_{1}],\ldots,\widehat{\sigma}[t_{n}]))$$

$$= S^{n}(f_{i}((s_{1})_{\alpha},\ldots,(s_{n})_{\alpha}),\widehat{\sigma}[t_{1}],\ldots,\widehat{\sigma}[t_{n}])$$

$$= S^{n}(t_{\alpha},\widehat{\sigma}[t_{1}],\ldots,\widehat{\sigma}[t_{n}]).$$

Using Lemma 4 we can prove the following.

Theorem 5. For $\sigma \in Hyp^{K^*(n,r)}(\tau_n)$, the extension

$$\widehat{\sigma}: W_{\tau_n}^{K^*(n,r)}(X_n) \to W_{\tau_n}^{K^*(n,r)}(X_n)$$

is an endomorphism on the algebra $clone_{K^*(n,r)}(\tau_n)$.

Proof. It is clear that $\widehat{\sigma}: W_{\tau_n}^{K^*(n,r)}(X_n) \to W_{\tau_n}^{K^*(n,r)}(X_n)$. Let $t_0, t_1, \dots, t_n \in W_{\tau_n}^{K^*(n,r)}(X_n)$. We will show by induction on the complexity of t_0 that

$$\widehat{\sigma}(S^n(t_0, t_1, \dots, t_n)) = S^n(\widehat{\sigma}[t_0], \widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_n]).$$

If $t_0 = f_i(x_{\alpha(1)}, \dots, x_{\alpha(n)})$, then

$$\widehat{\sigma}(S^{n}(t_{0}, t_{1}, \dots, t_{n})) = \widehat{\sigma}(S^{n}(f_{i}(x_{\alpha(1)}, \dots, x_{\alpha(n)}), t_{1}, \dots, t_{n}))$$

$$= \widehat{\sigma}(f_{i}(t_{\alpha(1)}, \dots, t_{\alpha(n)}))$$

$$= S^{n}(\sigma(f_{i}), \widehat{\sigma}[t_{\alpha(1)}], \dots, \widehat{\sigma}[t_{\alpha(n)}])$$

$$= S^{n}(\widehat{\sigma}[t_{0}], \widehat{\sigma}[t_{1}], \dots, \widehat{\sigma}[t_{n}]).$$

Assume $t_0 = f_i(r_{\alpha(1)}, \dots, r_{\alpha(n)})$ such that

$$\widehat{\sigma}(S^n(r_{\alpha(k)}, t_1, \dots, t_n)) = S^n(\widehat{\sigma}[r_{\alpha(k)}], \widehat{\sigma}[t_1], \dots, \widehat{\sigma}[t_n])$$

for all $1 \le k \le n$. Then

$$\widehat{\sigma}(S^{n}(t_{0}, t_{1}, \dots, t_{n}))$$

$$= \widehat{\sigma}(S^{n}(f_{i}(r_{\alpha(1)}, \dots, r_{\alpha(n)}), t_{1}, \dots, t_{n}))$$

$$= \widehat{\sigma}(f_{i}(S^{n}(r_{\alpha(1)}, t_{1}, \dots, t_{n}), \dots, S^{n}(r_{\alpha(n)}, t_{1}, \dots, t_{n}))$$

$$= S^{n}(\sigma(f_{i}), \widehat{\sigma}[S^{n}(r_{\alpha(1)}, t_{1}, \dots, t_{n})], \dots, \widehat{\sigma}[S^{n}(r_{\alpha(n)}, t_{1}, \dots, t_{n})])$$

$$= S^{n}(\sigma(f_{i}), S^{n}(\widehat{\sigma}[r_{\alpha(1)}], \widehat{\sigma}[t_{1}], \dots, \widehat{\sigma}[t_{n}]), \dots, S^{n}(\widehat{\sigma}[r_{\alpha(n)}], \widehat{\sigma}[t_{1}], \dots, \widehat{\sigma}[t_{n}]))$$

$$= S^{n}(S^{n}(\sigma(f_{i}), \widehat{\sigma}[r_{\alpha(1)}], \dots, \widehat{\sigma}[r_{\alpha(n)}]), \widehat{\sigma}[t_{1}], \dots, \widehat{\sigma}[t_{n}])$$

$$= S^{n}(\widehat{\sigma}[t_{0}], \widehat{\sigma}[t_{1}], \dots, \widehat{\sigma}[t_{n}]).$$

As mentioned, the algebra $clone_{K^*(n,r)}(\tau_n)$ is generated by the set

$$F_{W_{\tau_n}^{K^*(n,r)}(X_n)} := \{ f_i(x_{\alpha(1)}, \dots, x_{\alpha(n)}) \mid i \in I, \alpha \in K^*(n,r) \}.$$

Thus, any mapping

$$\eta: F_{W_{\tau_n}^{K^*(n,r)}(X_n)} \to W_{\tau_n}^{K^*(n,r)}(X_n)$$

called $K^*(n,r)$ -full clone substitution, can be uniquely extended to an endomorphism

$$\bar{\eta}: W_{\tau_n}^{K^*(n,r)}(X_n) \to W_{\tau_n}^{K^*(n,r)}(X_n)$$

Denoted by $Subst_{K^*(n,r)}(\tau_n)$ the set of all such $K^*(n,r)$ -full clone substitutions.

For $\eta_1, \eta_2 \in Subst_{K^*(n,r)}(\tau_n)$, define

$$\eta_1 \odot \eta_2 := \bar{\eta}_1 \circ \eta_2$$

where \circ is the usual composition. Consider $\sigma \in Hyp^{K^*(n,r)}(\tau_n)$. By Theorem 5, $\widehat{\sigma}: W_{\tau_n}^{K^*(n,r)}(X_n) \to W_{\tau_n}^{K^*(n,r)}(X_n)$ is an endomorphism. Since $F_{W_{\tau_n}^{K^*(n,r)}(X_n)}$ generates $clone_{K^*(n,r)}(\tau_n)$, we have $\widehat{\sigma}|_{F_{W_{\tau_n}^{K^*(n,r)}(X_n)}}$ is an $K^*(n,r)$ -full clone substitution with

$$\overline{\widehat{\sigma}|_{F_{W_{\tau_n}^{K^*(n,r)}(X_n)}}} = \widehat{\sigma}.$$

Define a mapping $\psi: Hyp^{K^*(n,r)}(\tau_n) \to Subst_{K^*(n,r)}(\tau_n)$ by

$$\psi(\sigma) = \widehat{\sigma}|_{F_{W_{\tau_n}^{K^*(n,r)}(X_n)}}.$$

We have that ψ is a homomorphism. In fact: Let $\sigma_1, \sigma_2 \in Hyp^{K^*(n,r)}(\tau_n)$. Then

$$\psi(\sigma_1 \circ_h \sigma_2) = (\widehat{\sigma}_1 \circ \widehat{\sigma}_2)|_{F_{W_{\tau_n}^{K^*}(n,r)}(X_n)}
= \overline{\widehat{\sigma}_1|_{F_{W_{\tau_n}^{K^*}(n,r)}(X_n)}} \circ \widehat{\sigma}_2|_{F_{W_{\tau_n}^{K^*}(n,r)}(X_n)}
= \overline{\psi(\sigma_1)} \circ \psi(\sigma_2)
= \psi(\sigma_1) \odot \psi(\sigma_2).$$

Clearly, ψ is injection. Hence we have the following corollary.

Corollary 6. $(Hyp^{K^*(n,r)}(\tau_n), \circ_h)$ can be embedded into $(Subst_{K^*(n,r)}(\tau_n, \odot).$

3.
$$K^*(n,r)$$
-full closure

Let V be a variety of type τ_n , and let IdV be the set of all identities of V. Let $Id^{K^*(n,r)}V$ be the set of all identities $s \approx t$ of V such that s and t are both $K^*(n,r)$ -full terms of type τ_n ; that is

$$Id^{K^*(n,r)}V := \left(W_{\tau_n}^{K^*(n,r)}(X_n)\right)^2 \cap IdV.$$

It is well-known that IdV is a congruence on the free algebra $\mathcal{F}_{\tau_n}(X_n)$. However, in general, this is not true for $Id^{K^*(n,r)}V$. The following theorem shows that $Id^{K^*(n,r)}V$ is a congruence on $clone_{K^*(n,r)}(\tau_n)$.

Theorem 7. Let V be a variety of type τ_n . Then $Id^{K^*(n,r)}V$ is a congruence on the $clone_{K^*(n,r)}(\tau_n)$.

Proof. Assume that

$$r \approx t, r_1 \approx t_1, \dots, r_n \approx t_n \in Id^{K^*(n,r)}V.$$

We will show that

$$S^n(r, r_1, \dots, r_n) \approx S^n(t, t_1, \dots, t_n) \in Id^{K^*(n,r)}V.$$

To prove the assertion we claim that

$$S^{n}(r, r_1, \dots, r_n) \approx S^{n}(r, t_1, \dots, t_n) \in Id^{K^*(n,r)}V.$$

Assume $r = f_i(x_{\alpha(1)}, \dots, x_{\alpha(n)})$ for some $\alpha \in K^*(n,r)$. It is known that IdV is compatible with the operations \bar{f}_i of the absolutely free algebra $\mathcal{F}_{\tau_n}(X_n)$. By the definition of $K^*(n,r)$ -full terms, we have

$$f_i(r_{\alpha(1)},\ldots,r_{\alpha(n)}) \approx f_i(t_{\alpha(1)},\ldots,t_{\alpha(n)}) \in Id^{K^*(n,r)}V.$$

This means

$$S^{n}(f_{i}(x_{\alpha(1)},\ldots,x_{\alpha(n)}),r_{1},\ldots,r_{n})$$

$$\approx S^{n}(f_{i}(x_{\alpha(1)},\ldots,x_{\alpha(n)}),t_{1},\ldots,t_{n}) \in Id^{K^{*}(n,r)}V.$$

Moreover,

$$S^{n}(r, r_{1}, \dots, r_{n}) \approx S^{n}(r, t_{1}, \dots, t_{n}) \in Id^{K^{*}(n,r)}V.$$

Assume that $r = f_i(s_1, \ldots, s_n)$ such that for all $1 \le k \le n$,

$$S^n(s_k, r_1, \dots, r_n) \approx S^n(s_k, t_1, \dots, t_n) \in Id^{K^*(n,r)}V.$$

Thus

$$f_i(S^n(s_1, r_1, \dots, r_n), \dots, S^n(s_n, r_1, \dots, r_n))$$

 $\approx f_i(S^n(s_1, t_1, \dots, t_n), \dots, S^n(s_n, t_1, \dots, t_n)) \in Id^{K^*(n,r)}V.$

Further,

$$S^{n}(f_{i}(s_{1},...,s_{n}),r_{1},...,r_{n}) \approx S^{n}(f_{i}(s_{1},...,s_{n}),t_{1},...,t_{n}) \in Id^{K^{*}(n,r)}V.$$

This means

$$S^n(r, r_1, \dots, r_n) \approx S^n(r, t_1, \dots, t_n) \in Id^{K^*(n,r)}V.$$

So we proved the claim.

By

$$S^{n}(r, t_1, \dots, t_n) \approx S^{n}(t, t_1, \dots, t_n) \in Id^{K^*(n,r)}V$$

it follows that

$$S^{n}(r, r_{1}, \dots, r_{n}) \approx S^{n}(r, t_{1}, \dots, t_{n}) \approx S^{n}(t, t_{1}, \dots, t_{n}) \in Id^{K^{*}(n, r)}V.$$

Let V be a variety of type τ_n . An identity $s \approx t \in Id^{K^*(n,r)}V$ is called a $K^*(n,r)$ -full closed identity of V if

$$\hat{\sigma}[s] \approx \hat{\sigma}[t] \in IdV \text{ for all } \sigma \in Hyp^{K^*(n,r)}(\tau_n).$$

And, V is called $K^*(n,r)$ -full closed if the following hold:

$$\forall s \approx t \in Id^{K^*(n,r)}V \ \forall \sigma \in Hyp^{K^*(n,r)}(\tau_n), \ \widehat{\sigma}[s] \approx \widehat{\sigma}[t] \in IdV.$$

Then we can prove the following lemma.

Lemma 8. Let V be a variety of type τ_n . If $Id^{K^*(n,r)}V$ is a fully invariant congruence on $clone_{K^*(n,r)}(\tau_n)$ then V is $K^*(n,r)$ -full closed.

Proof. Assume that $Id^{K^*(n,r)}V$ is a fully invariant congruence on $clone_{K^*(n,r)}(\tau_n)$. Let $s \approx t \in Id^{K^*(n,r)}V$ and $\sigma \in Hyp^{K^*(n,r)}(\tau_n)$. By Theorem 5, $\widehat{\sigma}$ is an endomorphism of $clone_{K^*(n,r)}(\tau_n)$. Hence $\widehat{\sigma}[s] \approx \widehat{\sigma}[t] \in IdV$, that is V is $K^*(n,r)$ -full closed.

For a variety V of type τ_n , $Id^{K^*(n,r)}V$ is a congruence on $clone_{K^*(n,r)}(\tau_n)$ by Theorem 7. We then form the quotient algebra

$$clone_{K^*(n,r)}(V) := clone_{K^*(n,r)}(\tau_n)/Id^{K^*(n,r)}V.$$

The quotient algebra obtained belongs to V_{Menger} . Note that we have a natural homomorphism

$$nat_{Id^{K^*(n,r)}V}: clone_{K^*(n,r)}(\tau_n) \rightarrow clone_{K^*(n,r)}(\tau_n)(V)$$

such that

$$nat_{Id^{K^*(n,r)}V}(t) = [t]_{Id^{K^*(n,r)}V}.$$

Finally, we prove the following theorem.

Theorem 9. Let V be a variety of type τ_n . If $s \approx t \in Id^{K^*(n,r)}V$ is an identity in $clone_{K^*(n,r)}(V)$, then $s \approx t$ is $K^*(n,r)$ -full closed identity of V.

Proof. Assume that $s \approx t \in Id^{K^*(n,r)}V$ is an identity in $clone_{K^*(n,r)}(V)$. Let $\sigma \in Hyp^{K^*(n,r)}(\tau_n)$; then $\widehat{\sigma} : clone_{K^*(n,r)}(\tau_n) \to clone_{K^*(n,r)}(\tau_n)$ is an endomorphism by Theorem 5. Thus

$$nat_{Id^{K^*(n,r)}V} \circ \widehat{\sigma} : clone_{K^*(n,r)}(\tau_n) \to clone_{K^*(n,r)}(V)$$

is a homomorphism. By assumption,

$$nat_{Id^{K^*(n,r)}V} \circ \widehat{\sigma}(s) = nat_{Id^{K^*(n,r)}V} \circ \widehat{\sigma}(t).$$

That is

$$\operatorname{nat}_{\operatorname{Id}^{K^*(n,r)}V}(\widehat{\sigma}[s]) = \operatorname{nat}_{\operatorname{Id}^{K^*(n,r)}V}(\widehat{\sigma}[t]).$$

Thus

$$[\widehat{\sigma}[s]]_{Id^{K^*(n,r)}V} = [\widehat{\sigma}[t]]_{Id^{K^*(n,r)}V},$$

and hence

$$\widehat{\sigma}[s] \approx \widehat{\sigma}[t] \in Id^{K^*(n,r)}V.$$

Hence $s \approx t$ is a $K^*(n,r)$ -full closed identity of V.

REFERENCES

- [1] K. Denecke, Menger algebras and clones of terms, East-West J. Math. 5 (2003) 179–193.
- [2] K. Denecke and P. Jampaclon, *Clones of full terms*, Algebra and Discrete Math. 4 (2004) 1–11.
- [3] K. Denecke and L. Freiberg, *The algebra of strongly full terms*, Novi Sad J. Math. **34** (2004) 87–98.
- [4] B.M. Schein and V.S. Trochimenko, Algebras of multiplace functions, Semigroup Forum 17 (1979) 1–64. doi:10.1007/BF02194309
- [5] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publisher, 2000). doi:10.1201/9781482287516
- J.M. Howie and R.B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinb. Sect. A 114 (1990) 161–167. doi:10.1017/S0308210500024355
- [7] S. Puapong and S. Leeratanavalee, The algebra of generalized full terms, Int. J. Open Problems Compt. Math. 4 (2011) 54–65.
 doi:10.1155/2013/396464
- [8] P. Sarawut, Some algebraic properties of generalized clone automorphisms, Acta Universitatis Apulensis 41 (2015) 165–175.
 doi:10.17114/j.aua.2015.41.13

Received 11 June 2019 Revised 18 July 2019 Accepted 18 July 2019