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Abstract

Let R be a commutative ring with identity and UR be the set of all non-
zero non-units of R. The co-annihilating graph of R, denoted by CAR, is a
graph with vertex set UR and two vertices x and y are adjacent whenever
ann(x)

⋂

ann(y) = (0). In this paper, we characterize all commutative
Artinian non-local rings R for which the CAR has genus one and two. Also
we characterize all commutative Artinian non-local rings R for which CAR

has crosscap one. Finally, we characterize all finite commutative non-local
rings for which g(Γ2(R)) = g(CAR) = 0 or 1.

Keywords: co-annihilating graph, planar graph, genus, crosscap.

2010 Mathematics Subject Classification: 13A15, 05C75.

1. Introduction

The study of algebraic structures, using the properties of graphs, has become
an exciting research topic in the last two decades, leading to many interesting
results and questions. There are many papers on assigning a graph to a ring
[4, 5, 7, 8]. The comaximal graph Γ(R) with vertex set R and two vertices x

and y are adjacent if and only if Ra + Rb = R. Let Γ2(R) be the subgraph of
Γ(R) induced by the non-units element of R [4]. Recently, Akbari et al. [3] have
introduced a graph namely co-annihilating ideal graph as follows. Let A(R) be
the set of all non-zero proper ideals of R. The co-annihilating ideal graph of
R is defined as the graph AR with vertex set A(R) and two distinct vertices I

and J are adjacent whenever ann(I) ∩ ann(J) = {0}. In [2], Amjadi et al. have
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introduced and studied the properties of the co-annihilating graph of commutative
ring. The co-annihilating graph of commutative ring R, denoted by CAR, is a
simple graph with vertex set is the set of all non-zero non-units UR of R and
two vertices x and y are adjacent whenever ann(x) ∩ ann(y) = (0). One can
see that Γ2(R) \ J(R) is a subgraph of CAR, where J(R) is the intersection of
maximal ideals of R. Moreover, Wang [16] classified all finite commutative rings
R such that the genus of Γ2(R) (resp. Γ2(R) \ J(R)) at most one. The main
objective of topological graph theory is to embedded a graph into surface. There
are many article and book [9, 11, 12, 13, 14, 15, 18, 19] concerning orientable
and non-orientable embeddings of the zero-divisor graph and other graphs. In
this paper, we characterize all commutative Artinian non-local rings R for which
the CAR has genus one and two. Also we characterize all commutative Artinian
non-local rings R for which CAR has crosscap one. Finally, we characterize all
finite commutative non-local rings for which g(Γ2(R)) = g(CAR) = 0 or 1.

Let G be a simple graph with the vertex set V (G) and the edge set E(G).
A graph in which each pair of distinct vertices is joined by the edge is called a
complete graph. We use Kn to denote the complete graph with n vertices. An r

-partite graph is one whose vertex set can be partitioned into r subsets so that
no edge has both ends in any one subset. A complete r -partite graph is one in
which each vertex is joined to every vertex that is not in the same subset. The
complete bipartite graph (2-partite graph) with part sizes m and n is denoted by
Km,n. The corona of two graphs G1 and G2 is the graph G1 ◦G2 formed one copy
of G1 and |V (G1)| copies of G2, and then joining the ith vertex of G1 is adjacent
to every other vertex in the ith copy of G2. An undirected graph G is outerplanar
graph if it can be drawn in the plane without crossings in such a way that all of the
vertices belong to the unbounded face of the drawing. There is a characterization
for outerplanar graphs which says that a graph is outerplanar if and only if it
does not contain a subdivision of K4 or K2,3. Also a graph G is planar if it has
a drawing without crossings in a plane. A remarkably simple characterization
of planar graphs was given by Kuratowski in 1930. Kuratowski’s Theorem says
that a graph G is planar if and only if it does not contains a subdivision of K5

or K3,3 see [9, 12, 18].

By a surface, we mean a connected two-dimensional real manifold, i.e., a con-
nected topological space such that each point has a neighborhood homeomorphic
to an open disk. It is well known that any compact surface is either homeo-
morphic to sphere, or to a connected sum of g tori, or to a connected sum of k
projective planes [12, 18]. We denote Sg for the surface formed by a connected
sum of g tori, and Nk for the one formed by a connected sum of k projective
planes. The genus g(G) of a simple graph G is the minimum g such that G can
be embedded in Sg. Similarly, crosscap number g(G) is the minimum k such that
G can be embedded in Nk. When considering orientablity, the surface Sg and the
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sphere are orientable Nk is not orientable. Further note that if H is a subgraph
of a graph G, then g(H) ≤ g(G) and g(H) ≤ g(G). Recently, many research
articles studied on higher genus of graphs, see for example [13, 19].

Through out this paper, we assume that R is Artinian ring with identity,
Z(R) is set of all zero divisor of R, R× its group of units, UR is the set of all
non-zero non-units of R, Fq denote the field with q elements. Furthermore, for
the convenience of the reader, we state without proof a few known results in the
form of theorems, which will be used in the proofs of the main theorems.

Theorem 1.1 [6]. If R is an Artinian ring, then R is isomorphic to finite direct

product of Artinian local rings.

Theorem 1.2 [2]. Any non-zero nilpotent element of R is adjacent to only non-

unit regular elements of CAR. In particular, if R has no non-unit regular element,

then each non-zero nilpotent of R is an isolated vertex in CAR

Theorem 1.3 [2]. If (R,m) is an Artinian local ring, then CAR is empty graph.

Theorem 1.4 [2]. Let R be an Artinian ring. Then CAR is a complete bipartite

graph if and only if R is isomorphic to the direct product of two fields.

Theorem 1.5 [2]. Let R be ring. Then CAR is star of order at least two if and

only if R ∼= Z2 × F for some field F .

2. Basic properties of co-annihilating graph

In this section, we study some fundamental properties of the co-annihilating
graph. Especially identifying when the co-annihilating graph is isomorphic to
some well- known graph.

A split graph is a simple graph in which the vertices can be partitioned in to
a clique and an independent set.

Theorem 2.1 [10]. If G is simple graph with no induced subgraph isomorphic to

2K2, C4, C5. Then G is a split graph.

Theorem 2.2. Let R be an Artinian non-local ring. Then CAR is split graph if

and only if R ∼= Z2 × Z2 × Z2 or Z2 × F , where F is a field.

Proof. Assume that CAR is a split graph. By the assumption on R, R ∼=
R1 × R2 × · · · × Rn, where each (Ri,mi) is local and n ≥ 2. If n ≥ 4, then
(0, 1, 1, 1, . . . , 1)−(1, 1, 1, 0, 1, . . . , 1)−(1, 1, 0, 1, . . . , 1)−(1, 0, 1, 1, . . . , 1)−(0, 1, 1,
1, . . . , 1), is a cycle of length four and by Theorem 2.1, CAR is not split, a con-
tradiction. Hence n ≤ 3.
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Case 1. Suppose n = 3. If |R3| ≥ 3, then (1, 0, 1) − (1, 1, 0) − (1, 0, u) −
(0, 1, u) − (1, 0, 1) is a cycle of length four in CAR for some 1 6= u ∈ R×

3 , a
contradiction. Hence |Ri|=2 for all i and R ∼= Z2 × Z2 × Z2.

Case 2. Suppose n = 2. If m2 6= (0), then (1, 0)−(0, 1)−(1, x)−(0, u)−(1, 0)
is a cycle of length four in CAR for some x ∈ m

∗
2 and 1 6= u ∈ R×, a contradiction.

Hence R1 and R2 are fields and by Theorem 1.4, CAR
∼= K|R1|−1,|R2|−1. Since

CAR is split, |R1| − 1 = 1 or |R2| − 1 = 1 and so R ∼= Z2 × F , where F is a field.
Conversely, suppose R ∼= Z2×Z2 ×Z2, then CAR

∼= K3 ◦K1. If R ∼= Z2×F ,
then CAR is star by Theorem 1.5.

A graph G is said to be unicyclic if it contains a unique cycle. Now we char-
acterize all commutative Artinian non-local rings R such that the co-annihilating
graph is unicyclic.

Theorem 2.3. Let R be an Artinian non-local ring. Then CAR is unicyclic if

and only if R is isomorphic to one of the following rings: Z2 ×Z2 ×Z2, Z2 ×Z4,

Z2 ×
Z2[x]
〈x2〉

, or Z3 × Z3.

Proof. Assume that CAR is unicyclic. SinceR is Artinian, R ∼= R1×R2×· · ·×Rn,
where each (Ri,mi) is local and n ≥ 2. Suppose n ≥ 4. Let x1 = (0, 1, 1, 1, . . . , 1),
x2 = (1, 1, 1, 0, 1, . . . , 1), x3 = (1, 1, 0, 1, . . . , 1), y1 = (1, 0, 1, 1, . . . , 1) ∈ Z(R)∗.
Then x1−x2−x3−x1 as well as y1−x1−x3−y1 are two distinct cycles in CAR.
Hence n ≤ 3.

Case 1. n = 3. Suppose |R3| ≥ 3. Then (1, 0, 1)− (1, 1, 0)− (0, 1, u)− (1, 0, 1)
and (1, 0, u)−(1, 1, 0)−(0, 1, u)−(1, 0, u) are cycles in CAR for some 1 6= u ∈ R×

3 ,
a contradiction. Hence |Ri| = 2 for all i and R ∼= Z2 × Z2 × Z2.

Case 2. n = 2. If mi 6= (0) for all i. Then (1, 0)−(0, 1)−(u, 0)−(0, v)−(1, 0)
and (1, y) − (x, 1) − (u, y) − (x, v) − (1, y), where x ∈ m

∗
1, y ∈ m

∗
2, u ∈ R×

1 and
v ∈ R×

2 , are distinct cycles in CAR. So we consider R1 is field and R2 is local
ring but not a field.

Suppose that |m2| ≥ 3. Then there is two distinct cycles (1, 0) − (0, 1) −
(1, y) − (0, v) − (1, 0) and (1, y) − (0, 1) − (1, z) − (0, v) − (1, 0), where z, y ∈ m

∗
2

and v ∈ R×
2 , in CAR, a contradiction. Hence |m2| ≤ 2.

Assume that |m2| = 2. Suppose |R1| ≥ 3, then (1, 0) − (0, v) − (u1, 0) −
(0, 1) − (1, 0) and (u2, 0) − (0, v) − (1, 0) − (0, 1) − (u2, 0), where 1 6= v ∈ R×

2 ,
1 6= u1, u2 ∈ R×

1 , are two distinct cycles in CAR, a contradiction. Therefore

|R1| = 2 and R is isomorphic to Z2 ×
Z2[x]
〈x2〉 or Z2 × Z4.

If m2 = (0), then R1 and R2 are fields and by Theorem 1.4, CAR
∼=

K|R1|−1,|R2|−1. Since CAR is unicyclic, R1
∼= Z3 and R2

∼= Z3.
Conversely, suppose that R ∼= Z2 × Z2 × Z2, then CAR

∼= K3 ◦ K1. If
R ∼= Z2 × Z4 or Z2 ×

Z2[x]
x2 , then CAR is (1, 0) − (0, 1) − (1, x) − (0, u) − (1, 0),
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where 1 6= u ∈ R×
2 , x ∈ Z(R2)

∗, is a cycle with isolated vertex (0, x) by Theorem
1.2. If R ∼= Z3 × Z3, then by Theorem 1.4, CAR is K2,2.

We are now in a position to classify all commutative Artinian non-local rings
such that the co-annihilating graph is outerplanar.

Theorem 2.4. Let R be an Artinian non-local ring. Then CAR is outerplanar

if and only if R is isomorphic to one of the following ring:

Z2 × Z2 × Z2, Z2 × Z4, Z2 ×
Z2[x]
<x2>

, Z3 × Z3, or Z2 × F ,

where F is a field.

Proof. Assume that CAR is outerplanar. Since R is Artinian, R ∼= R1 ×
R2 × · · · × Rn, where each (Ri,mi) is local and n ≥ 2. Suppose n ≥ 4. Let
x1 = (0, 1, 1, 1, . . . , 1), x2 = (0, 1, 0, 1, . . . , 1), x3 = (1, 1, 0, 1, . . . , 1), x4 = (1, 1, 1,
0, . . . , 1), x5 = (1, 0, 1, 1, . . . , 1), x6 = (1, 0, 1, 0, . . . , 1) ∈ UR. It is easy to see that
the subgraph induced by {x1, x2, . . . , x6} in CAR contains a subgraph isomorphic
to K3,3, CAR is not outerplanar and n ≤ 3.

Case 1. Assume that n = 3. Suppose |R3| ≥ 3, let 1 6= u ∈ R×
3 . Consider

Ω
′

= {x1, x2, . . . , x7}, where x1 = (1, 0, u), x2 = (1, 1, 0), x3 = (0, 1, 1), x4 =
(0, 1, 0), x5 = (1, 0, 0), x6 = (1, 0, 1) and x7 = (0, 1, u). Then the subgraph
induced by Ω

′

in CAR contains a subdivision of K5, a contradiction. Therefore
|Ri| = 2 for all i and R ∼= Z2 × Z2 × Z2.

Case 2. Assume that n = 2. Suppose mi 6= (0), i = 1, 2. Let x ∈ m
∗
2,

1 6= u ∈ R×
1 , 1 6= v ∈ R×

2 . Consider the set X = {x1, x2, x3, x4, x5}, where
x1 = (1, 0), x2 = (u, 0), x3 = (1, x), x4 = (0, 1), x5 = (0, v) ∈ UR. Then the
subgraph induced by X in CAR contains K2,3 as a subgraph, a contradiction.
Hence we may assume that R1 is a field and R2 is local ring but not a field.

Suppose |m2| ≥ 3. Consider Ω = {x1, x2, x3, x4, x5}, where x1 = (1, 0), x2 =
(1, y), x3 = (1, x), x4 = (0, 1), x5 = (0, v) ∈ UR, 1 6= v ∈ R×

2 , x, y ∈ m
∗
2. Then

the subgraph induced by Ω in CAR contains K2,3 as a subgraph, a contradiction.
Hence |m2| ≤ 2. Let |m2| = 2, since R1 is a field. Suppose, without loss of
generality, that 1 6= u ∈ R×

1 . Consider the Ω
′′

= {x1, x2, x3, x4, x5}, where
x1 = (1, 0), x2 = (u, 0), x3 = (1, x), x4 = (0, 1), x5 = (0, v) ∈ UR. Then
the subgraph induced by Ω

′′

in CAR contains K2,3, a contradiction. Therefore

R1
∼= Z2 and R2

∼= Z4 or Z2[x]
<x2>

.

If m2 = (0), then R1 and R2 are fields and by Theorem 1.4, CAR
∼=

K|R1|−1,|R2|−1. Since CAR is outerplanar. Hence R is isomorphic to Z3 × Z3,
Z2 × F , where F is a field.

Conversely, suppose R ∼= Z2×Z2×Z2, then CAR
∼= K3 ◦K1. If R ∼= Z2×Z4

or Z2 ×
Z2[x]
x2 , then by Theorem 1.2, CAR is (1, 0)− (0, 1)− (1, x)− (0, u)− (1, 0)
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where 1 6= u ∈ R×
2 , x ∈ Z(R2)

∗ cycle with isolated vertex (0, x). By Theorem
1.4, if R ∼= Z3 × Z3, CAR is K2,2. If R ∼= Z2 × F , CAR is K1,|F |−1.

3. Genus of CAR

In this section, we characterize all commutative Artinian non-local rings whose
co-annihilating graphs have genus zero. A remarkably simple characterization of
planar graphs was given by Kuratowski in 1930. The Kuratowski theorem says
that a graph is planar if and only if it contains no subdivision of K5 or K3,3 (see
[10, Theorem 9.7].

As mentioned earlier, Wang [16] determined all finite commutative rings R

for which Γ2(R) is planar or toroidal respectively. The relevant result in this
regard is stated below.

Theorem 3.1 [16, Corollary 6.3]. Let R be a finite ring which is not local. Then

Γ2(R) is planar if and only if R is isomorphic to one of the following rings:

Z2 × Fq, Z3 × Fq, Z4 × Fq, Fq ×
Z2[x]
<x2>

, Z3 × Z4, Z3 ×
Z2[x]
<x2>

, Z2 × Z2 × Z2.

Theorem 3.2 [16, Theorem 6.2]. Let R be a finite ring which is not local. Then

Γ2(R) is toroidal if and only if R is isomorphic to one of the following rings:

Z2 × Z8, Z2 ×
Z2[x]
<x3>

, Z2 ×
Z4(x)

<x2−2, 2x>
, Z2 ×

Z2[x,y]
<x2,xy,y2>

, Z2 ×
Z4[x]

<2x,x2>
, Z2 × Z9,

Z2×
Z3[x]
<x2>

, Z4×Z4, Z4×
Z2[x]
<x2>

,
Z2[x]
<x2>

× Z2[x]
<x2>

, F4×F4, F4×Z5, F4×Z7, Z5×Z5,

Z2 ×Z2 ×Z3, Z2 ×Z2 × F4, Z2 ×Z2 ×Z4, Z2 ×Z2 ×
Z2[x]
<x2>

or Z2 ×Z2 ×Z2 ×Z2.

In order to characterize the rings with planar co-annihilating graphs, we need
the following results, which deal with genus properties of graphs. The first one
gives us the genus of complete and complete bipartite graphs.

Lemma 3.3 [12]. g(Kn) =
⌈

(n−3)(n−4)
12

⌉

if n ≥ 3. In particular, g(Kn) = 1 if

n = 5, 6, 7.

Lemma 3.4 [12]. g(Km,n) =
⌈

(m−2)(n−2)
4

⌉

if m,n ≥ 2. In particular, g(K4,4) =

g(K3,n) = 1 if n = 3, 4, 5, 6. Also g(K5,4) = g(K6,4) = g(Km,3) = 2 if m =
7, 8, 9, 10.

Theorem 3.5 [12]. Let G be a simple connected graph with n ≥ 3 vertices and q

edges and if G contains no cycle of length 3, then g(G) ≥
⌈

q
4 −

n
2 + 1

⌉

.

We are now in a position to classify all Artinian non-local rings such that the
co-annihilating graph is planar.
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Theorem 3.6. Let R be an Artinian non-local ring. Then CAR is planar if and

only if R is isomorphic to one of the following ring:

Z2 × Z2 × Z2, F × Z4, F × Z2[x]
<x2>

, Z3 × F , or Z2 × F .

where F is a field.

Proof. Assume that CAR is planar. Since R is Artinian, R ∼= R1×R2×· · ·×Rn,
where each (Ri,mi) is local and n ≥ 2. Suppose n ≥ 4. Assume the ver-
tex x1 = (0, 1, 1, 1, . . . , 1), x2 = (0, 1, 0, 1, . . . , 1), x3 = (1, 1, 0, 1, . . . , 1), x4 =
(1, 1, 1, 0, . . . , 1), x5 = (1, 0, 1, 1, . . . , 1), x6 = (1, 0, 1, 0, . . . , 1) ∈ UR. It is easy
to see that the subgraph induced by {x1, x2, . . . , x6} in CAR contains K3,3 as a
subgraph and so CAR is not planar, a contradiction. Hence n ≤ 3.

Case 1. Assume that n = 3. Suppose |R3| ≥ 3, let 1 6= u ∈ R×
3 . Consider

Ω = {x1, x2, . . . , x7}, where x1 = (1, 0, u), x2 = (1, 1, 0), x3 = (0, 1, 1), x4 =
(0, 1, 0), x5 = (1, 0, 0), x6 = (1, 0, 1) and x7 = (0, 1, u) ∈ UR. Then the subgraph
induced by Ω in CAR contains a subdivision of K5, a contradiction. Therefore
|Ri| = 2 for all i and R ∼= Z2 × Z2 × Z2.

Case 2. Assume that n = 2. If mi 6= (0), i = 1, 2. Let y ∈ m
∗
1, x ∈ m

∗
2

and 1 6= u ∈ R×
1 , 1 6= v ∈ R×

2 . Consider the set X = {x1, x2, x3, x4, x5, x6},
where x1 = (1, 0), x2 = (u, 0), x3 = (1, x), x4 = (0, 1), x5 = (0, v), x6 = (y, 1) ∈
UR. Then the subgraph induced by X in CAR contains K3,3 as a subgraph, a
contradiction. Hence we may assume that R1 is a field and R2 is local ring but
not a field.

If |m2| ≥ 3. Consider the set Ω = {x1, x2, x3, x4, x5, x6}, where x1 = (1, 0),
x2 = (1, y), x3 = (1, x), x4 = (0, 1), x5 = (0, v), x6 = (0, w) ∈ UR, let 1 6=
{v,w} ∈ R×

2 , x, y ∈ m
∗
2. Then the subgraph induced by Ω in CAR contains K3,3

as a subgraph, a contradiction. Hence |m2| ≤ 2. If |m2| = 2 and R1 is a field,

then F × Z4, F × Z2[x]
<x2>

.

Ifm2 = (0), thenR1 andR2 are fields and by Theorem 1.4, CAR
∼= K|R1|−1,|R2|−1.

Since CAR is planar. Hence R is isomorphic to Z3 × F , Z2 × F , where F is a
field.

Conversely, suppose R ∼= Z2 ×Z2 ×Z2, then CAR
∼= K3 ◦K1. If R ∼= F ×Z4

or F × Z2[x]
(x2)

, then CAR is K2,2(|F |−1) with isolated vertex (0, x), where x ∈ Z(R2)
∗

by Theorem 1.2. If R ∼= Z3 × F , then by Theorem 1.4, CAR is K2,|F |−1 and if
R ∼= Z2 × F , then CAR is K1,|F |−1.

Now we characterize all commutative Artinian non-local rings R such that
the co-annihilating graph is toroidal.

Theorem 3.7. Let R be an Artinian non-local ring. Then g(CAR) = 1 if and

only if R is isomorphic to one of the following rings:
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Z2×Z2×Z2×Z2, Z2×Z2×Z4, Z2×Z2×
Z2[x]
<x2>

, Z4×Z4, Z4×
Z2[x]
<x2>

,
Z2[x]
<x2>

× Z2[x]
<x2>

,

Z2×Z9, Z2×
Z3[x]
<x2>

, Z2×Z8, Z2×
Z4[x]

(2x,x2−2)
, Z2×

Z2[x,y]
(x2,xy,y2)

, Z2×
Z4[x]
(2x,x2)

, Z2×
Z2[x]
<x3>

,

Z2 ×
Z4[x]
(2,x)2 , F4 × F4, F4 × F5, F4 × F7, F5 × F5 or Z2 × Z2 × Fq, 3 ≤ q ≤ 4.

Proof. Assume that g(CAR) = 1. Since R is Artinian, R ∼= R1 ×R2 × · · · ×Rn,
where each Ri is local and n ≥ 2. Suppose n ≥ 5. Let x1 = (0, 1, 1, 1, 1, 0, . . . , 0),
x2 = (0, 1, 0, 1, 1, 0, . . . , 0), x3 = (1, 1, 0, 1, 1, 0, . . . , 0), x4 = (1, 0, 1, 1, 1, 0, . . . , 0),
x5 = (0, 0, 1, 1, 1, 0, . . . , 0), x6 = (1, 0, 0, 1, 1, 0, . . . , 0), x7 = (0, 0, 0, 1, 1, 0, . . . , 0),
x8 = (1, 1, 1, 1, 0, 1, . . . , 1), x9 = (1, 1, 1, 0, 1, . . . , 1), x10 = (1, 1, 1, 0, 0, 1, . . . , 1) ∈
UR. It is easy to see that the subgraph induced by the vertex set {x1, x2, . . . , x10}
in CAR contains K3,7 as a subgraph and by Lemma 3.4, a contradiction. Hence
n ≤ 4.

Case 1. Let n = 4. Suppose |R4| ≥ 3. Then there exists 1 6= u ∈ R×
4 such that

x1 = (0, 1, 1, 1), x2 = (0, 1, 1, u), x3 = (0, 1, 0, u), x4 = (0, 1, 0, 1), x5 = (1, 1, 0, 1),
y1 = (1, 1, 1, 0), y2 = (1, 0, 1, 1), y3 = (1, 0, 1, u), y4 = (1, 0, 1, 0) ∈ UR. It is
easy to see that K5,4 is a subgraph of CAR and by Lemma 3.4, g(CAR) > 1, a
contradiction. Therefore R ∼= Z2 × Z2 × Z2 × Z2 and n ≤ 3.

Case 2. Let n = 3. Suppose that R2 and R3 has non-zero maximal ideal, say
m2 and m3. Consider the set X = {(1, 1, 0), (1, 0, 1), (1, 0, u), (1, 0, 0), (1, 0, x)},
where x ∈ m

∗
3, 1 6= u ∈ R×

3 and Y = {(0, 1, 1), (0, v, 1), (0, 1, u), (0, v, u)}, where
1 6= v ∈ R×

2 . From this, we get K5,4 is a subgraph of CAR, a contradiction. Hence
we conclude that R1 and R2 are fields and R3 is local ring with non-zero maximal
ideal m3.

Suppose |m3| ≥ 3, let X = {(1, 1, 0), (1, 0, 1), (1, 0, u1), (1, 0, 0), (1, 0, x),
(1, 0, u2), (1, 0, y)} ∈ UR, where x, y ∈ m

∗
3, 1 6= {u1, u2} ∈ R×

3 and Y = {(0, 1, 1),
(0, 1, u1), (0, 1, u2)}. It is easy to see that the subgraph contains K3,7 whose
partite sets X and Y in CAR and by Lemma 3.4, g(CAR) > 1, a contradiction.
Hence |m3| ≤ 2.

If |m3| = 2, then R3
∼= Z4 or Z2[x]

<x2>
. Since R1 and R2 are fields, suppose that

|R2| ≥ 3. Let X = {(1, 1, 0), (1, 0, 1), (1, 0, u), (1, 0, 0), (1, 0, x)}, where x ∈ m
∗
3,

1 6= u ∈ R×
3 and Y = {(0, 1, 1), (0, v, 1), (0, 1, u), (0, v, u)}, where 1 6= v ∈ R×

2 . It
is easy to see that CAR contains K4,5 as a subgraph, a contradiction. Therefore

R1 and R2 isomorphic to Z2, and hence R ∼= Z2 × Z2 × Z4, or Z2 × Z2 ×
Z2[x]
<x2>

.

If m3 = (0), then Ri are fields for all i = 1, 2, 3. Suppose that |R2| ≥ 3 and
|R3| ≥ 3. Let X = {(1, 1, 0), (1, v, 0), (1, 0, u), (1, 0, 0), (1, 0, 1)}, where 1 6= u ∈
R×

3 , 1 6= v ∈ R×
2 and Y = {(0, 1, 1), (0, v, 1), (0, 1, u), (0, v, u)}. It is easy to see

that CAR contains K4,5 a subgraph whose partite sets X and Y , a contradiction.
Hence the product of Artinian decomposition rings at most two factors have cardi-
nality 2, say R1 and R2. Then R1

∼= R2
∼= Z2. Also since R3 is field, suppose that

|R3| ≥ 5, then consider the set X = {(1, 1, 0), (1, 0, 1), (1, 0, u), (1, 0, v), (1, 0, w)}
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and Y = {(0, 1, 1), (0, 1, v), (0, 1, u), (0, 1, w)}, where 1 6= {u, v, w} ∈ R×
3 . It is

not hard to see that the subgraph of CAR is contains K4,5 whose partite sets are
X and Y and so g(CAR) > 1, a contradiction. Hence |R3| ≤ 4. If |R3| = 2, then
R ∼= Z2 × Z2 × Z2 and by Theorem 3.6, CAR is planar. Hence 3 ≤ |R3| ≤ 4 and
R ∼= Z2 × Z2 × Fq, where 3 ≤ q ≤ 4. Thus n = 2.

Case 3. Let n = 2, Assume that mi 6= (0) for all i = 1, 2. Suppose |m1| ≥ 3
and m2 6= (0). Consider the set X = {(0, 1), (x, 1), (y, 1), (x, u), (y, u)}, where
1 6= u ∈ R×

2 , x, y ∈ m
∗
1 and Y = {(1, 0), (u1, 0), (u2, 0), (u1, z), (u2, z)}, where

z ∈ m
∗
2, 1 6= {u1, u2} ∈ R×

1 . From this, we get K5,5 is a subgraph of CAR, a

contradiction. Thus, |mi| = 2 for all i = 1, 2 and so Ri is Z4 or Z2[x]
<x2>

.

If m1 = (0) and m2 6= (0), then R1 is field and R2 is local ring but not
field. Suppose that |m2| ≥ 5. Let X = {(0, 1), (0, v), (0, w), (0, u)}, where
1 6= {u, v, w} ∈ R×

2 and Y = {(1, 0), (1, x), (1, y), (1, z), (1, s)}, where {x, y, z, s} ∈
m

∗
2. It is not hard to see that the subgraph of CAR contains K4,5 whose par-

tite sets are X and Y , g(CAR) > 1, by Lemma 3.4, a contradiction. Thus

|m2| ≤ 4. Since R either F × Z4 or F × Z2[x]
<x2>

the graph of CAR is planar,
so concluded that 3 ≤ |m2| ≤ 4. Since R1 is field, suppose |R1| ≥ 3, let
X = {(1, 0), (u, 0), (1, x), (u, y), (1, y), (u, x)}, where 1 6= u ∈ R×

1 , x, y ∈ m
∗
2 and

X = {(0, 1), (0, v), (0, w), (0, l)}, where 1 6= {l, v, w} ∈ R×
2 . It is not hard to see

that the subgraph of CAR contains K4,6 whose partite sets are X and Y and by
Lemma 3.4, g(CAR) > 1, a contradiction. Thus R1

∼= Z2 and |R2| ≤ 8 or 9, R ∼=,

Z2×Z9, Z2×
Z3[x]
<x2>

, Z2×Z8, Z2×
Z4[x]

(2x,x2−2) , Z2×
Z4[x]
(2x,x2) , Z2×

Z2[x,y]
(x2,xy,y2) , Z2×

Z2[x]
<x3>

.

Finally we assume that mi = (0) for all i, then by Theorem 1.4, R is isomorphic
to F4 × F4, F4 × F5, F4 × F7, F5 × F5.

Conversely if R ∼= Z2 × Z2 × Z2 × Z2, then consider the partions X =
{x1, x2, x3} and Y = {x4, x5, x6}, where x1 = (0, 1, 1, 1), x2 = (0, 1, 0, 1), x3 =
(1, 1, 0, 1), x4 = (1, 1, 1, 0), x5 = (1, 0, 1, 1), x6 = (1, 0, 1, 0) with x7 = (1, 0, 0, 1),
x8 = (1, 1, 0, 0), x9 = (0, 1, 1, 0), x10 = (0, 0, 1, 1), x11 = (1, 0, 0, 0), x12 =
(0, 1, 0, 0), x13 = (0, 0, 1, 0), x14 = (0, 0, 0, 1). Now, it is easy to verify that
the subgraph induced by the sets X and Y contains a subdivision of K3,3 and by
Figure 1, g(CAR) = 1.

If R is Z2×Z2×Z4 or Z2×Z2×
Z2[x]
<x2>

, then consider Ω = {x1, x2, x3, x4, x5, x6,
x7}, where x1 = (1, 0, u), x2 = (1, 1, 0), x3 = (0, 1, 1), x4 = (0, 1, 0), x5 = (1, 0, 0),
x6 = (1, 0, 1), x7 = (0, 1, u) with x8 = (1, 1, x), x9 = (0, 1, x), x10 = (1, 0, x),
x12 = (0, 0, u), x13 = (0, 0, 1), x ∈ Z(R3)

∗, 1 6= u ∈ R×
3 . Then the subgraph

induced by Ω in CAR is contains a subdivision ofK5 and by Figure 2, g(CAR) = 1.

If R ∼= Z2 × Z2 × Fq, 3 ≤ q ≤ 4, then x1 = (0, 1, 1), x2 = (0, 1, u), x3 =
(0, 1, v), y1 = (1, 0, 1), y2 = (1, 1, 0), y3 = (1, 0, 0), y4 = (1, 0, u), x8 = (1, 0, v),
z1 = (0, 1, 0), z2 = (0, 0, 1), z3 = (0, 0, u), z4 = (0, 0, v), 1 6= {u, v, w} ∈ R×

2 .
Then the subgraph of CAR is contains a subdivision of K5 and by Figure 2.
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By using Lemma 3.4, if R is Z2 × Z9, or Z2 ×
Z3[x]
<x2>

, then CAR contains a

subdivision of K3,6 and has 2 isolated vetices. If R ∼= Z2 × Z8, Z2 ×
Z4[x]

(2x,x2−2)
,

Z2 × Z2[x,y]
(x2,xy,y2) , Z2 × Z2[x]

<x3>
, Z2 × Z4[x]

(2,x)2 . It is easy to see that CAR contains a

subdivision of K4,4 and has 3 isolated vetices. By Theorem 1.4, if R ∼= F4 × F4,
then CAR

∼= K3,3. If R ∼= F4 × F5, then CAR
∼= K3,4. If R ∼= F4 × F7, then

CAR
∼= K3,6. If R ∼= F5 × F5, then CAR

∼= K4,4. Hence g(CAR) = 1.

Now, we characterize all finite commutative non-local rings for which g(Γ2(R))
= g(CAR) = 0.

Theorem 3.8. Let R be a finite commutative ring which is not local. Then

g(Γ2(R)) = g(CAR) = 0 if and only if R is isomorphic to one of the following

rings:

Z2 × Z2 × Z2, Fq × Z4, Fq ×
Z2[x]
<x2>

, Z3 × Fq, or Z2 × Fq.

Proof. Note that every finite ring is Artinian. Since Γ2(R) is a subgraph of CAR,
proof follows from Theorems 3.1 and 3.6.

Now, we characterize all finite commutative non-local rings for which g(Γ2(R))
= g(CAR) = 1.

Theorem 3.9. Let R be a finite commutative ring which is not local. Then

g(Γ2(R)) = g(CAR) = 1 if and only if R is isomorphic to one of the following

rings:

Z2×Z2×Z2×Z2, Z2×Z2×Z4, Z2×Z2×
Z2[x]
<x2>

, Z4×Z4, Z4×
Z2[x]
<x2>

,
Z2[x]
<x2>

× Z2[x]
<x2>

,

Z2×Z9, Z2×
Z3[x]
<x2>

, Z2×Z8, Z2×
Z4[x]

(2x,x2−2)
, Z2×

Z2[x,y]
(x2,xy,y2)

, Z2×
Z4[x]
(2x,x2)

, Z2×
Z2[x]
<x3>

,

Z2 ×
Z4[x]
(2,x)2

, F4 × F4, F4 × F5, F4 × F7, F5 × F5 or Z2 × Z2 × Fq, 3 ≤ q ≤ 4.

Proof. Note that every finite ring is Artinian. Since Γ2(R) is a subgraph of CAR,
proof follows from Theorems 3.2 and 3.7.

Now, we characterize all commutative Artinian non-local rings whose co-
annihilating graphs have genus two.

Theorem 3.10. Let R be an Artinian non-local ring. Then g(CAR) = 2 if and

only if R is isomorphic to one of the following rings: Z2 × Z3 × Z3, F4 × F8,

F4 × F9, F4 × F11, or F5 × F7.

Proof. Assume that g(CAR) = 2. Since R is Artinian, R ∼= R1 ×R2 × · · · ×Rn,
where each Ri is local and n ≥ 2. Suppose n ≥ 5. Let Ω = {x1, x2, . . . , x10, z1, z2,
z3, z4}, where

x1 = (0, 1, 1, 1, 1, 0, . . . , 0), x2 = (0, 1, 0, 1, 1, 0, . . . , 0), x3 = (1, 1, 0, 1, 1, 0, . . . , 0),
x4 = (1, 0, 1, 1, 1, 0, . . . , 0), x5 = (0, 0, 1, 1, 1, 0, . . . , 0), x6 = (1, 0, 0, 1, 1, 0, . . . , 0),
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x7 = (0, 0, 0, 1, 1, 0, . . . , 0), x8 = (1, 1, 1, 1, 0, 1, . . . , 1), x9 = (1, 1, 1, 0, 1, . . . , 1),
z1 = (1, 1, 0, 0, 1, 1, . . . , 1), x10 = (1, 1, 1, 0, 0, 1, . . . , 1), z2 = (1, 1, 0, 1, 0, 1, . . . , 1),
z3 = (1, 1, 0, 0, 0, 1, . . . , 1), z4 = (1, 0, 1, 0, 0, 1, . . . , 1) ∈ UR.

Consider the subgraph G
′

, defined by V (G
′

) = Ω and E(G
′

) = E(G
′

) −
{x8z1, x8x9, x9z2, x1x4, x1x3, x1x6, x4x3, x4x2, x3x5}. It is easy to see that the
subgraph G

′

induced by the vertex set Ω and it contains no cycle. Then the
subgraph G

′

have 14 vertices and 33 edges and by Theorem 3.5, g(CAR) ≥ 3.
Therefore n ≤ 4.

Case 1. Let n = 4. Suppose that |R4| ≥ 3. Let 1 6= u ∈ R×
4 and set Ω = {x1,

x2, x3, y1, y2, . . . , y6, z1, z2, z3, z4, s1, s2} where y1 = (0, 1, 1, 1), y2 = (0, 1, 1, u),
y3 = (0, 1, 0, u), y4 = (0, 1, 0, 1), y5 = (1, 1, 0, u), y6 = (1, 1, 0, 1), z1 = (1, 1, 1, 0),
z2 = (1, 0, 1, 1), z3 = (1, 0, 1, u), z4 = (1, 0, 1, 0), x1 = (1, 1, 0, 0), x2 = (1, 0, 0, 1),
x3 = (1, 0, 0, u), s1 = (0, 0, 1, 1), s2 = (0, 0, 1, u) ∈ UR. Consider the subgraph
G

′

, defined by V (G
′

) = Ω and E(G
′

) = E(G
′

)−{z1z2, z1z3, y1y6, y1y5, y2y6, y2y5,
x2z1, x3z1, x1z2, x1z3, s1z1, s2z1}. It is easy to see that the subgraph G

′

of CAR

induced by the vertex set Ω and it contains no cycle. Then the subgraph G
′

have
15 vertices and 36 edges and by Theorem 3.5, g(CAR) > 2, a contradiction. If
R ∼= Z2 × Z2 × Z2 × Z2, then g(CAR) = 1 and thus n ≤ 3.

Case 2. n = 3. Suppose that R2 and R3 has non-zero maximal ideal, say m2

and m3. Consider the setX={(1, 1, 0), (1, u, 0), (1, 0, v), (1, x, 0), (1, 1, y), (1, u, y),
(1, 0, 1)}, where x ∈ m

∗
2, y ∈ m

∗
3, 1 6= u ∈ R×

2 , 1 6= v ∈ R×
3 and Y = {(0, 1, 1),

(0, u, 1), (0, 1, v), (0, u, v)}. Then the subgraph induced by X∪Y in CAR contains
K7,4 as a subgraph and by Lemma 3.4, g(CAR) > 2, a contradiction. So we
concluded that R1 and R2 are fields and R3 is local ring with non-zero maximal
ideal m3.

Suppose |m3| ≥ 3, assume that the partions X = {(1, 1, 0), (1, 0, 1), (1, 0, u1 ),
(1, 0, 0), (1, 0, x), (1, 0, u2), (1, 0, y)}, where x, y ∈ m

∗
3, 1 6= {u1, u2, u3} ∈ R×

3 and
Y = {(0, 1, 1), (0, 1, u1), (0, 1, u2), (0, 1, u3)}. It is easy to see that the subgraph
contains K4,7 whose partite sets X and Y , g(CAR) > 2, a contradiction. Hence
|m3| ≤ 2.

Let |m3| = 2. Then R3
∼= Z4 or

Z2[x]
<x2>

. Since R1 and R2 are fields, without loss
of generality, that |R2| ≥ 3. Let X = {(1, 1, 0), (1, 0, 1), (1, 0, u), (1, 0, 0), (1, 0, x),
(1, 1, x), (1, v, 0)}, where x ∈ m

∗
3, 1 6= v ∈ R×

2 , 1 6= u ∈ R×
3 and Y = {(0, 1, 1),

(0, v, 1), (0, 1, u), (0, v, u)}. It is easy to see that the subgraph of CAR contains
K4,7 whose partite sets X and Y , g(CAR) > 2, by Lemma 3.4 a contradiction.
Therefore R1 and R2 isomorphic to Z2, and hence R ∼= Z2 × Z2 × Z4, or Z2 ×
Z2×

Z2[x]
<x2>

. By Theorem 3.7, g(CAR) = 1. Therefore we concluded that m3 = (0)
and Ri are fields for i = 1, 2, 3.

Suppose |Ri| = 3 for all i. Let X = {(1, 1, 0), (1, 0, 1), (1, 0, u), (1, 0, 0),
(w, 0, 1), (1, v, 0), (w, v, 0)}, where 1 6= u ∈ R×

3 , 1 6= v ∈ R×
2 , 1 6= w ∈ R×

1 and
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Y = {(0, 1, 1), (0, v, 1), (0, 1, u), (0, v, u)}. It is easy to see that the subgraph of
CAR contains K4,7 whose partite sets X and Y , g(CAR) > 2, by Lemma 3.4
a contradiction. Hence |Ri| ≤ 2 for some i, say R1

∼= Z2. Suppose |R3| ≥ 5.
Ω = {x1, x2, x3, x4, y1, y2, . . . , y6, z1}, where y1 = (1, 1, 0), y2 = (1, 0, 1), y3 =
(1, 0, u), y4 = (1, 0, v), y5 = (1, 0, w), y6 = (1, 0, 0), x1 = (0, 1, 1), x2 = (0, 1, u),
x3 = (0, 1, v), x4 = (0, 1, w), z1 = (0, 1, 0), 1 6= {u, v, w} ∈ R×

3 . Consider the
subgraph G

′

, defined by V (G
′

) = Ω and E(G
′

) = E(G
′

)−{y1y2, y1y3, y1y4, y1y5}.
It is easy to see that the subgraph G

′

of CAR induced by the vertex set Ω and
it contains no cycle. Then the subgraph G

′

have 11 vertices and 28 edges and
by Theorem 3.5, g(CAR) ≥ 3, a contradiction. Thus |R3| ≤ 4. If |R2| = 2, then
g(CAR) = 1. Suppose |R3| = 4, without loss of generality that |R2| ≥ 3. Let X =
{(1, 1, 0), (1, 0, 1), (1, 0, u), (1, 0, 0), (1, 0, v)}, where 1 6= k ∈ R×

2 , 1 6= {u, v} ∈ R×
3

and Y = {(0, 1, 1), (0, 1, u), (0, 1, v), (0, k, 1), (0, k, u)}. It is easy to see that the
subgraph in CAR contains K5,5 whose partite sets X and Y , g(CAR) > 2, a
contradiction. Hence R ∼= Z2 × Z3 × Z3.
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Figure 3. Embedding of CAZ2×Z3×Z3
in S2.

Case 3. Let n = 2. Assume that mi 6= (0) for all i = 1, 2. Suppose |m1| ≥ 3
and m2 6= (0). Consider the set X = {(0, 1), (x, 1), (y, 1), (x, u), (y, u)}, where
1 6= u ∈ R×

2 , x, y ∈ m
∗
1 and Y = {(1, 0), (u1, 0), (u2, 0), (u1, z), (u2, z)}, where
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z ∈ m
∗
2, 1 6= {u1, u2} ∈ R×

1 . From this, we get K5,5 is a subgraph of CAR and by
Lemma 3.4, a contradiction. Thus |mi| = 2 for all i = 1, 2 and so by Theorem
3.7, g(CAR) = 1. Therefore m1 = (0) and m2 6= (0). Suppose that |m2| ≥ 5.
Let X = {(0, 1), (0, v), (0, w), (0, u), (0, k)}, where 1 6= {u, v, w, k} ∈ R×

2 and
Y = {(1, 0), (1, x), (1, y), (1, z), (1, s)}, where {x, y, z, s} ∈ m

∗
2. It is not hard to

see that the subgraph of CAR contains K5,5 whose partite sets are X and Y and
by Lemma 3.4, g(CAR) > 2, a contradiction. Thus |m2| ≤ 4.

If |m2| = 4, then |R1| ≥ 3 and by Theorem 3.7. Let X = {(0, 1), (0, v), (0, w),
(0, u)} and Y = {(1, 0), (1, x), (1, y), (1, z), (k, 0), (k, x), (k, y), (k, z)}, where
{x, y, z} ∈ m

∗
2, 1 6= k ∈ R×

1 , 1 6= {u, v, w, k} ∈ R×
2 . From this, we get K4,8 is a

subgraph of CAR and by Lemma 3.4, g(CAR) > 2, a contradiction. Similarly if
|m2| = 3 and |R1| ≥ 3, then it easy to see the CAR contains K5,5. If m2 = 0, then
R1 and R2 are fields and CAR is complete bipartite by Theorem 1.4. Hence R is
isomorphic to F4 × F8, F4 × F9, F4 × F11, F5 × F7.

Conversely, if R ∼= Z2×Z3×Z3, then X = {x1 = (1, 1, 0), x2 = (1, 0, 1), x3 =
(1, 2, 0), x4 = (1, 0, 2), x5 = (1, 0, 0)} and Y = {1 = (0, 1, 1), 2 = (0, 2, 2), 3 =
(0, 2, 1), 4 = (0, 1, 2)}. It is easy to see that the subgraph of CAR contains K4,5

whose partite sets X and Y . So g(CAR) ≥ 2 and Figure 3, g(CAR) = 2. By using
Theorem 1.4 and Lemma 3.4, if R is isomorphic to F4 × F8, F4 × F9, F4 × F11,
F5 × F7, then g(CAR) = 2.

Open Problem. Let R be an Artinian non-local ring. Then g(Γ2(R)) = 2 if
and only if R is isomorphic to one of the following rings: Z2 × Z3 × Z3, F4 × F8,
F4 × F9, F4 × F11, or F5 × F7.

4. Crosscap of CAR: Non-local case

In this section, we shall classify all Artinian non-local rings R (up to isomorphism)
with crosscap of CAR is one. The following are useful in the sequel of this section
and hence given below:

Lemma 4.1 [12]. g(Kn) =
⌈

(n−3)(n−4)
6

⌉

if n ≥ 3, n 6= 7, and if n = 7, then

g(K7) = 3. In particular, g(Kn) = 1 if n = 5, 6.

Lemma 4.2 [12]. g(Km,n) =
⌈

(m−2)(n−2)
2

⌉

if m,n ≥ 2. In particular, g(K3,n) =

1 if n = 3, 4.

Theorem 4.3. Let G be a connected graph with n ≥ 3 vertices and q edges, then

g(G) ≥
⌈

q
3 − n+ 2

⌉

.

Now, we characterize all commutative Artinian non-local rings whose co-
annihilating graphs have crosscap one.
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Theorem 4.4. Let R be an Artinian non-local ring. Then g(CAR) = 1 if and only

if R is isomorphic to one of the following rings: Z2×Z2×Z2×Z2, Z2×Z2×Z4,

Z2 × Z2 ×
Z2[x]
<x2>

, Z2 × Z2 × F3, F4 × F4, F4 × F5, F5 × F5.

Proof. Assume that g(CAR) = 1. Since R is Artinian, R ∼= R1 ×R2 × · · · ×Rn,
where each Ri is local and n ≥ 2. Suppose n ≥ 5. Let x1 = (0, 1, 1, 1, 1, 0, . . . , 0),
x2 = (0, 1, 0, 1, 1, 0, . . . , 0), x3 = (1, 1, 0, 1, 1, 0, . . . , 0), x4 = (1, 0, 1, 1, 1, 0, . . . , 0),
x5 = (0, 0, 1, 1, 1, 0, . . . , 0), x6 = (1, 1, 1, 1, 0, 1, . . . , 1), x7 = (1, 1, 1, 0, 1, . . . , 1),
x8 = (1, 1, 1, 0, 0, 1, . . . , 1). It is easy to see that the subgraph induced by the
vertex set {x1, x2, . . . , x8} contains K3,5 whose partite sets are {x1, x2, . . . , x5}
and {x6, x7, x8} and so g(CAR) > 1, a contradiction. Hence n ≤ 4.

Case 1. Suppose n = 4, without loss of generality, that i = 4. Assume
1 6= u ∈ R×

4 and let x1 = (0, 1, 1, 1), x2 = (0, 1, 1, u), x3 = (0, 1, 0, u), x4 =
(0, 1, 0, 1), y1 = (1, 1, 1, 0), y2 = (1, 0, 1, 1), y3 = (1, 0, 1, u), y4 = (1, 0, 1, 0). It
is easy to see that the subgraph of CAR induced by K4,4 whose partite sets are
{x1, x2, x3, x4} and {y1, y2, y3, y4}. Hence g(CAR) > 1, a contradiction by Lemma
4.2. So R ∼= Z2 × Z2 × Z2 × Z2 and thus n ≤ 3.

Case 2. Let n = 3. Suppose that R2 and R3 has non-zero maximal ideal,
say m2 and m3. Consider the set X = {(1, 1, 0), (1, 0, 1), (1, 0, u), (1, 0, x)}, where
x ∈ m

∗
3, 1 6= u ∈ R×

3 and Y = {(0, 1, 1), (0, v, 1), (0, 1, u), (0, v, u)}, where 1 6= v ∈
R×

2 . Then the subgraph induced by X ∪ Y in CAR contains K4,4 as a subgraph,
g(CAR) > 1 and so by Lemma 4.2, a contradiction. So we concluded that R1 and
R2 are fields and R3 is local ring with non-zero maximal ideal m3.

Suppose |m3| ≥ 3, assume that the partions X = {(1, 1, 0), (1, 0, 1), (1, 0, 0),
(1, 0, x), (1, 0, y)} and Y = {(0, 1, 1), (0, 1, u1), (0, 1, u2)}, where x, y ∈ m

∗
3, 1 6=

{u1, u2} ∈ R×
3 . It is easy to see that the subgraph contains K3,5 whose partite

sets X and Y , g(CAR) > 1, a contradiction. Hence |m3| ≤ 2.

Let |m3| = 2. Then R3
∼= Z4 or Z2[x]

<x2>
. Since R1 and R2 are fields, suppose

that |R2| ≥ 3. Let X = {(1, 1, 0), (1, 0, 1), (1, 0, u), (1, 0, x)}, where x ∈ m
∗
3,

1 6= u ∈ R×
3 and Y = {(0, 1, 1), (0, v, 1), (0, 1, u), (0, v, u)}, where 1 6= v ∈ R×

2 . It
is easy to see that the subgraph of CAR contains K4,4 whose partite sets X and
Y , g(CAR) > 1, by Lemma 4.2 a contradiction. Therefore R1 and R2 isomorphic

to Z2, and hence R ∼= Z2 × Z2 × Z4, or Z2 × Z2 ×
Z2[x]
<x2>

.

If m3 = (0), then Ri are fields for all i = 1, 2, 3. Suppose that |R2| ≥ 3
and |R3| ≥ 3. Let X = {(1, 1, 0), (1, v, 0), (1, 0, u), (1, 0, 0), (1, 0, 1)}, where 1 6=
u ∈ R×

3 , 1 6= v ∈ R×
2 and Y = {(0, 1, 1), (0, v, 1), (0, 1, u), (0, v, u)}. It is easy

to see that the subgraph of CAR contains K4,5 whose partite sets X and Y and
g(CAR) > 1, a contradiction. Hence the product of Artinian decomposition rings
at most two factor have cardinality 2, say R1 and R2. Then R1

∼= R2
∼= Z2. Also

since R3 is field.
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Suppose that |R3| ≥ 4, then consider the set X = {(1, 1, 0), (1, 0, 1), (1, 0, u),
(1, 0, v), (1, 0, 0)} and Y = {(0, 1, 1), (0, 1, v), (0, 1, u)}, where 1 6= {u, v} ∈ R×

3 .
It is not hard to see that the subgraph of CAR contains K3,5 whose partite sets
are X and Y , g(CAR) > 1, by Lemma 4.2 a contradiction. Hence |R3| ≤ 3. If
|R3| = 2, then R ∼= Z2 × Z2 × Z2, CAR is planar by Theorem 3.6. Therefore,
|R3| = 3 and R ∼= Z2 × Z2 × F3.

Case 3. If n = 2, Assume that mi 6= (0) for all i = 1, 2. Consider the
set X = {(0, 1), (x, 1), (0, u), (x, u)}, where 1 6= u ∈ R×

2 , x ∈ m
∗
1 and Y =

{(1, 0), (u1, 0), (1, z), (u1 , z)}, where z ∈ m
∗
2, 1 6= u1 ∈ R×

1 . This partions form
K4,4 on CAR, which is a contradiction. Therefore we assume that m1 = (0)
and m2 6= (0). Suppose that |m2| ≥ 5. Let X = {(0, 1), (0, v), (0, w), (0, u)},
where 1 6= {u, v, w} ∈ R×

2 , and Y = {(1, 0), (1, x), (1, y), (1, z), (1, s)}, where
{x, y, z, s} ∈ m

∗
2. It is not hard to see that the subgraph of CAR contains K4,5

whose partite sets are X and Y and by Lemma 4.2, g(CAR) > 1, a contradiction.
Thus |m2| ≤ 4.

Since the ring R either F × Z4 or F × Z2[x]
<x2>

the graph CAR is planar, so we
concluded that 3 ≤ |m2| ≤ 4. SinceR1 is field and suppose that |m2| = 3. LetX =
{(0, 1), (0, v), (0, w), (0, u), (0, s), (0, t)}, where 1 6= {u, v, w, s, t} ∈ R×

2 , and Y =
{(1, 0), (1, x), (1, y)}, where {x, y} ∈ m

∗
2. It is not hard to see that the subgraph of

CAR contains K3,6 whose partite sets are X and Y , g(CAR) > 1, by Lemma 4.2 a
contradiction. If |m2| = 4, then consider X = {(0, 1), (0, v), (0, w), (0, u)}, where
1 6= {u, v, w} ∈ R×

2 and Y = {(1, 0), (1, x), (1, y), (1, z)}, where {x, y, z} ∈ m
∗
2. It

is not hard to see that the subgraph of CAR contains K4,4 whose partite sets are
X and Y and by Lemma 4.2, g(CAR) > 1, a contradiction. So we conclude that
R1 and R2 are fields and CAR is complete bipartite by Theorem 1.4. Hence R is
isomorphic to F4 × F4, F4 × F5, F5 × F5.

Conversely, if R ∼= Z2 × Z2 × Z2 × Z2, then consider the partions X =
{x1, x2, x3} and Y = {x4, x5, x6}, where x1 = (0, 1, 1, 1), x2 = (0, 1, 0, 1), x3 =
(1, 1, 0, 1), x4 = (1, 1, 1, 0), x5 = (1, 0, 1, 1), x6 = (1, 0, 1, 0) with x7 = (1, 0, 0, 1),
x8 = (1, 1, 0, 0), x9 = (0, 1, 1, 0), x10 = (0, 0, 1, 1), x11 = (1, 0, 0, 0), x12 =
(0, 1, 0, 0), x13 = (0, 0, 1, 0), x14 = (0, 0, 0, 1). Now, it is easy to verify that the
subgraph induced by the sets X and Y contains a subdivision of K3,3 and by Fig-

ure 4, g(CAR) = 1. If R is Z2×Z2×Z4 or Z2×Z2×
Z2[x]
<x2>

or Z2×Z2×F3. Consider
Ω = {x1, x2, x3, x4, x5, x6, x7}, where x1 = (1, 0, u), x2 = (1, 1, 0), x3 = (0, 1, 1),
x4 = (0, 1, 0), x5 = (1, 0, 0), x6 = (1, 0, 1) x7 = (0, 1, u) and y1 = (1, 1, x),
y2 = (0, 1, x), y3 = (1, 0, x), y4 = (0, 0, u), y5 = (0, 0, 1). Then the subgraph
induced by Ω in CAR contains a subdivision of K5 and Figure 4, g(CAR) = 1.
Now by Theorem 1.4, if R ∼= F4 × F4, then CAR

∼= K3,3. If R ∼= F4 × F5, then
CAR

∼= K3,4. Hence g(CAR) = 1.
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