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Abstract

In this paper, we introduce the notion of topological UP-algebras and
several types of subsets of topological UP-algebras, and prove the general-
ization of these subsets. We also introduce the notions of quotient topolog-
ical spaces of topological UP-algebras and topological UP-homomorphisms.
Furthermore, we study the relation between topological UP-algebras, Haus-
dorff spaces, discrete spaces, and quotient topological spaces, and prove some
properties of topological UP-algebras.
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1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important classes of alge-
bras. Examples of these are BCK-algebras [12], BCI-algebras [13], BCH-algebras
[8], BCC-algebras [5], BE-algebras [16], UP-algebras [9], and others. They are
strongly connected with logic. For example, BCI-algebras introduced by Iseki [13]
in 1966 have connections with BCI-logic being the BCI-system in combinatory
logic which has application in the language of functional programming. BCK
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and BCI-algebras are two classes of logical algebras. They were introduced by
Imai and Iseki [12, 13] in 1966 and have been extensively investigated by many
researchers.

Alo and Deeba [2] tried to study the topological aspects of the BCK-structures
and initiated the study of various topologies on BCK-algebras analogous to which
has already been studied on lattices, but no attempts have been made to study
the topological structures making the BCK-operation continuous.

Several researchers introduced a new class of algebras related to logical alge-
bras and semigroups. In 1997, Hoo [7] conceptualized topological MV-algebras
and gave their properties. In 1998, Lee and Ryu [18] presented the notion of topo-
logical BCK-algebras. In 1999, Jun et al. [15] studied topological BCI-algebras.
In 2008, Ahn and Kwon [1] discussed the relation between some topologies and
special ideals of BCC-algebras. In 2017, Mehrshad and Golzarpoor [19] stud-
ied some properties of uniform topology and topological BE-algebras. Jansi and
Thiruveni [14] introduced the concept of topological BCH-algebras.

In this paper, we introduce the notion of topological UP-algebras and obtain
several properties of this structure. We need some preliminary materials that are
necessary for the development of the paper. In Section 2, we study the relation
between topological UP-algebras, Hausdorff spaces, and discrete spaces and prove
some properties of topological UP-algebras. In Section 3, we introduce several
types of subsets of topological UP-algebras and prove the generalization of these
subsets. In Section 4, we introduce the concept of quotient topological spaces
of topological UP-algebras and discuss the relation between quotient topological,
Hausdorff, and discrete spaces. We also introduce the notion of topological UP-
homomorphisms.

Before we begin our study, we will give the definition of a UP-algebra.

Definition 1.1 [9]. An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra
where A is a nonempty set, · is a binary operation on A, and 0 is a fixed element
of A (i.e., a nullary operation) if it satisfies the following axioms:

(UP-1) (∀x, y, z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),

(UP-2) (∀x ∈ A)(0 · x = x),

(UP-3) (∀x ∈ A)(x · 0 = 0), and

(UP-4) (∀x, y ∈ A)(x · y = 0, y · x = 0 ⇒ x = y),

From [9], we know that the notion of UP-algebras is a generalization of KU-
algebras.

On a UP-algebra A = (A, ·, 0), we define a binary relation ≤ on A as follows:

(∀x, y ∈ A)(x ≤ y ⇔ x · y = 0).
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Example 1.2 [23]. Let X be a universal set and let Ω ∈ P(X) where P(X)
means the power set of X. Let PΩ(X) = {A ∈ P(X) | Ω ⊆ A}. Define a binary
operation · on PΩ(X) by putting A·B = B∩(AC∪Ω) for all A,B ∈ PΩ(X) where
AC means the complement of a subset A. Then (PΩ(X), ·,Ω) is a UP-algebra
and we shall call it the generalized power UP-algebra of type 1 with respect to Ω.
Let PΩ(X) = {A ∈ P(X) | A ⊆ Ω}. Define a binary operation ∗ on PΩ(X) by
putting A ∗ B = B ∪ (AC ∩ Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is a
UP-algebra and we shall call it the generalized power UP-algebra of type 2 with
respect to Ω. In particular, (P(X), ·, ∅) is a UP-algebra and we shall call it the
power UP-algebra of type 1, and (P(X), ∗,X) is a UP-algebra and we shall call
it the power UP-algebra of type 2.

Example 1.3 [4]. Let N be the set of all natural numbers with two binary
operations ◦ and • defined by,

(∀x, y ∈ N)

(

x ◦ y =

{

y if x < y,
0 otherwise

)

.

and

(∀x, y ∈ N)

(

x • y =

{

y if x > y or x = 0,
0 otherwise.

)

.

Then (N, ◦, 0) and (N, •, 0) are UP-algebras.

For more examples of UP-algebras, see [3, 10, 11, 17, 22, 23].

In a UP-algebra A = (A, ·, 0), the following assertions are valid (see [9, 10]).

(∀x ∈ A)(x · x = 0),(1.1)

(∀x, y, z ∈ A)(x · y = 0, y · z = 0 ⇒ x · z = 0),(1.2)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (z · x) · (z · y) = 0),(1.3)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (y · z) · (x · z) = 0),(1.4)

(∀x, y ∈ A)(x · (y · x) = 0),(1.5)

(∀x, y ∈ A)((y · x) · x = 0 ⇔ x = y · x),(1.6)

(∀x, y ∈ A)(x · (y · y) = 0),(1.7)

(∀a, x, y, z ∈ A)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0),(1.8)

(∀a, x, y, z ∈ A)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0),(1.9)

(∀x, y, z ∈ A)(((x · y) · z) · (y · z) = 0),(1.10)

(∀x, y, z ∈ A)(x · y = 0 ⇒ x · (z · y) = 0),(1.11)

(∀x, y, z ∈ A)(((x · y) · z) · (x · (y · z)) = 0), and(1.12)

(∀a, x, y, z ∈ A)(((x · y) · z) · (y · (a · z)) = 0).(1.13)
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Definition 1.4 [6, 9, 24]. A nonempty subset S of a UP-algebra (A, ·, 0) is called

(1) a UP-subalgebra of A if (∀x, y ∈ S) (x · y ∈ S).

(2) a UP-filter of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) (∀x, y ∈ A)(x · y ∈ S, x ∈ S ⇒ y ∈ S).

(3) a UP-ideal of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) (∀x, y, z ∈ A)(x · (y · z) ∈ S, y ∈ S ⇒ x · z ∈ S).

(4) a strongly UP-ideal of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) (∀x, y, z ∈ A)((z · y) · (z · x) ∈ S, y ∈ S ⇒ x ∈ S).

Guntasow et al. [6] proved that the concept of UP-subalgebras is a general-
ization of UP-filters, UP-filters is a generalization of UP-ideals, and UP-ideals is
a generalization of strongly UP-ideals. Furthermore, they proved that the only
strongly UP-ideal of a UP-algebra A is A.

Let S be a UP-ideal of a UP-algebra A = (A, ·, 0). Define the binary relation
∼S on A as follows:

(∀x, y ∈ A)(x ∼S y ⇔ x · y ∈ S, y · x ∈ S).

An equivalence relation ρ on A is called a congruence if

(∀x, y, z ∈ A)(xρy ⇒ x · zρy · z, z · xρz · y).

From [9], we have ∼S is a congruence on A. Let ρ be a congruence on A. If
x ∈ A, then the ρ-class of x is the set (x)ρ = {y ∈ A | yρx}. Then the set of all
ρ-classes is called the quotient set of A by ρ, and is denoted by A/ρ. From [9],
we have (A/ ∼S, ∗, (0)∼S

) is a UP-algebra under the ∗ multiplication defined by
(x)∼S

∗ (y)∼S
= (x · y)∼S

for all x, y ∈ A, called the quotient UP-algebra of A
induced by the congruence ∼S.

Theorem 1.5 [9]. Let S be a UP-ideal of a UP algebra A. Then the mapping
πS : A → A/ ∼S defined by πS(x) = (x)∼S

for all x ∈ A is a UP-epimorphism
with Ker(πS) ⊆ S, called the natural projection from A to A/ ∼S.

Theorem 1.6 [9]. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras and g : A → B a
UP-homomorphism. Then the following statements hold:

(1) g(0A) = 0B , and

(2) Ker(g) is a UP-ideal of A.
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Theorem 1.7 [11]. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras, and g : A → B
a UP-homomorphism. Then there exists uniquely a UP-homomorphism h from
A/ ∼Ker(g) to B such that g = h ◦ πKer(g). Moreover,

(1) πKer(g) is a UP-epimorphism and h a UP-monomorphism, and

(2) g is a UP-epimorphism if and only if h is UP-isomorphism.

For any subsets X and Y of a UP-algebra A, we denote the product of X
and Y by X · Y := {x · y | x ∈ X and y ∈ Y }.

By (1.1), we have the following lemma.

Lemma 1.8. If X and Y are subsets of a UP-algebra A such that X ∩ Y 6= ∅,
then 0 ∈ X · Y .

The converse of Lemma 1.8 is not true.

Example 1.9. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by
the following Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 0 0 3
3 0 0 0 0

Then A = (A, ·, 0) is a UP-algebra. Let X = {3} and Y = {1, 2}. Then 0 =
3 · 1 ∈ X · Y but X ∩ Y = ∅.

2. Topological UP-algebras

In what follows, Nx denotes a neighborhood of an element x in a topological
space A.

Definition 2.1 [20]. Let (A, τ) be a topological space. Then the subset B of τ
is called a basis for topology τ if for each N ∈ τ such that N 6= ∅ and

N =
⋃

i∈I

Bi, for some {Bi | i ∈ I} ⊆ B.

Definition 2.2 [21]. Let {Ai | i ∈ I} be a nonempty family of sets. The cartesian
product (in short, product)

∏

i∈I Ai =
{

f : I →
⋃

i∈I Ai | (i ∈ I)(f(i) ∈ Ai)
}

.

Definition 2.3 [20]. Let {(Ai, τi) | i ∈ {1, 2, . . . , n}} be a finite family of topolog-
ical spaces. Then the cartesian product space

∏n
i=1(Ai, τi) = (A1, τ1)× (A2, τ2)×
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· · · × (An, τn) which consists of the product
∏n

i=1Ai with the topology τ having
as its basis the family

B =

{

n
∏

i=1

Ni | Ni ∈ τi, i ∈ {1, 2, . . . , n}

}

.

The topology τ is called the cartesian product topology.

Definition 2.4 [20]. Let A be a nonempty set. If τ = P(A), then τ is called the
discrete topology on the set A and the topological space (A, τ) is called a discrete
space or discrete. Equivalently, the singleton set {x} ∈ τ for all x ∈ A. Clearly,
every subset of a discrete space A is both open and closed in A. If τ ′ = {∅, A},
then τ is called the indiscrete topology on the set A and the topological space
(A, τ) is called an indiscrete space or indiscrete.

A topological space satisfying a Ti-space is called Ti. A T2-space is also
known as Hausdorff.

Theorem 2.5 [20]. A topological space A is T1 if and only if every singleton
subset of A is closed.

Theorem 2.6 [20]. Let (A, τA) and (B, τB) be topological spaces. The mapping
f : A → B is continuous if and only if for each x ∈ A and Nf(x) in B, there exists
Nx in A such that f(Nx) ⊆ Nf(x).

Now, we will introduce the notion of topological UP-algebras.

Definition 2.7. Let (A, τ) be a topological space. A topology τ on a UP-
algebra (A, ·, 0) is said to be a UP-topology, and (A, ·, 0, τ) is called a topological
UP-algebra (in short, TUP-algebra) if the mapping

f : A×A → A defined by f(x, y) = x · y for all x, y ∈ A

is continuous from the product space(A × A, τ ′) to the topological space (A, τ),
where τ ′ is the cartesian product topology of A×A.

From now on, we shall let A be a TUP-algebra (A, ·, 0, τ) unless otherwise
specified.

Example 2.8. Let (A, ·, 0) be a UP-algebra. Then (A, ·, 0,P(A)) is a TUP-
algebra.

Proof. Clearly, (A,P(A)) is a topological space. Now, let (a, b) ∈ A × A and
Y be a neighborhood of f(a, b) = a · b. Since {a} ∈ P(A) and {b} ∈ P(A), we
have {a} × {b} is in the basis of A×A. Thus {a} × {b} is open in A× A which
contains (a, b), and

f({a} × {b}) = {y ∈ A | y = f(a, b) = a · b} = {a · b} ⊆ Y.

Therefore, f is a continuous mapping, that is, (A, ·, 0,P(A)) is a TUP-algebra.
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Example 2.9. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by
the following Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 1 2 0

Then (A, ·, 0) is a UP-algebra. Let τ = {∅, {1}, {0, 2, 3}, A}. Then τ is a UP-
topology. Now,

f−1({1}) = {(0, 1), (2, 1), (3, 1)}

= {0, 2, 3} × {1} and

f−1({0, 2, 3}) = {(0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 2),

(3, 3), (0, 2), (1, 2), (3, 2), (0, 3), (1, 3), (2, 3)}

= ({1} ×A) ∪ ({0, 2, 3} × {0, 2, 3})

are open in A×A. Hence, (A, ·, 0, τ) is a TUP-algebra.

Remark 2.10. Let A be a TUP-algebra and Z a neighborhood of an element z
in A. Then there exist neighborhoods X of x and Y of y in A such that z = x · y
and X × Y ⊆ f−1(Z). Indeed, f−1(Z) is an open set in A × A which contains
an element (x, y) ∈ A × A such that z = f(x, y) = x · y. Then there exist
neighborhoods (open sets) X of x and Y of y in A such that X × Y ⊆ f−1(Z).

Theorem 2.11. Let τ be a UP-topology on a UP-algebra A. Then A is a TUP-
algebra if and only if for each x and y in A and each neighborhood Z of x · y,
there are neighborhoods X of x and Y of y such that X · Y ⊆ Z.

Proof. Let A be a TUP-algebra. Let x, y ∈ A and Z is a neighborhood of x · y.
Since f(x, y) = x · y, we have f(x, y) ∈ Z. So (x, y) ∈ f−1(Z) and f−1(Z) is
open in A×A. Thus there exist neighborhoods X of x and Y of y in A such that
(x, y) ∈ X × Y ⊆ f−1(Z). Hence,

X · Y = {a · b | a ∈ X, b ∈ Y }

= {a · b | (a, b) ∈ X × Y }

⊆ {a · b | (a, b) ∈ f−1(Z)}

= {a · b | f(a, b) ∈ Z}

= {a · b | a · b ∈ Z}

⊆ Z.

Conversely, let Z be open in A. If (x, y) ∈ f−1(Z), then x · y = f(x, y) ∈ Z.
Thus Z is a neighborhood of x ·y and by assumption, there exist Nx and Ny in A
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such that Nx ·Ny ⊆ Z. Thus (x, y) ∈ Nx×Ny and so Nx×Ny is a neighborhood
of (x, y). Hence,

f−1(Z) ⊇ {(a, b) ∈ A×A | a · b ∈ Nx ·Ny ⊆ Z}

= {(a, b) ∈ A×A | a ∈ Nx, y ∈ Ny}

= Nx ×Ny.

This implies that f−1(Z) is open in A × A and so f is a continuous mapping.
Therefore, A is a TUP-algebra.

By Theorem 2.11, we have the following remark.

Remark 2.12. If Nx·y is open in a TUP-algebra A which contains x · y, then
there exist neighborhoods Nx and Ny such that Nx ·Ny ⊆ Nx·y.

Remark 2.13. If z is an interior point of a subset S of a TUP-algebra A, then
there exist neighborhoods Nx, Ny, and Nz such that Nx ·Ny ⊆ Nz = Nx·y.

Proof. Assume that z is an interior point of a subset S. Then there exists a
neighborhood Nz such that Nz ⊆ S. Since z ∈ A, we have z = x · y for some
x, y ∈ A. By Theorem 2.11, there exist neighborhoods Nx and Ny such that
Nx ·Ny ⊆ Nz = Nx·y.

By Example 2.8, we have A = (A, ·, 0,P(A)) is a TUP-algebra. We call a
TUP-algebra A discrete.

Theorem 2.14. Let A be a TUP-algebra. Then the following statements hold:

(1) {0} is open in A if and only if A is discrete, and

(2) {0} is closed in A if and only if A is T2 (Hausdorff).

Proof. (1) Assume that {0} is open in A and let x ∈ A. By (1.1), we have
x · x = 0 ∈ {0}. By Theorem 2.11, there exist neighborhoods X and Y of x such
that X · Y = {0}. Choose Z = X ∩ Y . Then Z is open in A which contains x
and Z ·Z ⊆ X · Y = {0}, so Z ·Z = {0}. If y ∈ Z, then x · y, y · x ∈ Z ·Z = {0}.
Thus x · y = 0 and y · x = 0. By (UP-4), we have x = y. Thus Z = {x}, that is,
{x} is open in A. Hence, A is discrete.

The converse is obvious.

(2) Assume that {0} is closed in A and let x, y ∈ A such that x 6= y. By
(UP-4), we have x · y 6= 0 or y ·x 6= 0. Without loss of generality, we may assume
that x · y 6= 0. Then {0}C is open in A which contains x · y. By Theorem 2.11,
there exist neighborhoods X of x and Y of y such that X · Y ⊆ {0}C . Thus
0 /∈ X · Y . It follows from Lemma 1.8 that X ∩ Y = ∅. Hence, A is T2.

Conversely, assume that A is T2 and let x ∈ {0}C . Then x 6= 0 and so there
exist disjoint neighborhoods Nx and N0. Thus 0 /∈ Nx and so Nx ⊆ {0}C . Hence,
{0}C is open in A, that is, {0} is closed in A.



Topological UP-algebras 239

Corollary 2.15. If {0} is open in a TUP-algebra A, then every subset of A is
both open and closed in A.

Theorem 2.16. Let S be open in a TUP-algebra (A, ·, 0, τ) which is a UP-
subalgebra of a UP-algebra (A, ·, 0). Then (S, ·, 0, τS) is also a TUP-algebra where
τS = {N ∩ S | N is open in A}.

Proof. We can show that τS is a UP-topology on S. Let x, y ∈ S and Z is
a neighborhood of x · y in S. Then there exists an open set N in A such that
x · y ∈ N ∩ S ⊆ Z. Thus N is a neighborhood of x · y in A. By Theorem 2.11,
there exist neighborhoods X of x and Y of y in A such that X · Y ⊆ N . Let
XS = S ∩ X and YS = S ∩ Y . Then XS and YS are neighborhoods of x and
of y in S, respectively. Thus XS · YS = (S ∩ X) · (S ∩ Y ) ⊆ X · Y ⊆ N . Since
S is a UP-subalgebra of A, we have XS · YS = (S ∩ X) · (S ∩ Y ) ⊆ S · S ⊆ S.
Hence, XS · YS ⊆ N ∩ S ⊆ Z. It follows from Theorem 2.11 that (S, ·, 0, τS) is a
TUP-algebra.

Theorem 2.17. Let A be a TUP-algebra and L0 the least open set containing 0.
If x ∈ L0, then L0 is the least open set containing x.

Proof. Let x ∈ L0 and N be open in A which contains x. By (UP-2), we have
0 ·x = x ∈ N . By Theorem 2.11, there exist neighborhoods N0 and Nx such that
N0 ·Nx ⊆ N . Since N0 is an open set containing 0, it follows from assumption
and (1.1) that 0 = x · x ∈ L0 · Nx ⊆ N0 · Nx ⊆ N . Thus N is an open set
containing 0. By assumption, we have L0 ⊆ N . Hence, L0 is the least open set
containing x.

Theorem 2.18. Let (A, ·, 0, τ) be a TUP-algebra and S a UP-filter of a UP-
algebra (A, ·, 0). Then the following statements hold:

(1) 0 is an interior point of S if and only if S is open in A,

(2) if S is open in A, then S is closed in A, and

(3) if L0 is the least open set containing 0 and S is closed in A, then S is open
in A.

Proof. (1) Assume that 0 is an interior point of S. Then there exists N0 ⊆ S.
Let x ∈ S. By (1.1), we have x · x = 0 ∈ N0. It follows from Theorem 2.11 that
there exist neighborhoods X and Y of x such that X · Y ⊆ N0 ⊆ S. To show
that Y ⊆ S, let y ∈ Y . Then x · y ∈ X · Y ⊆ S. Since x ∈ S and S is a UP-filter
of A, we have y ∈ S and so Y ⊆ S. Hence, S is open in A.

The converse is obvious.

(2) Assume that S is open in A and let x ∈ SC . By (1.1), we have x · x =
0 ∈ S. It follows from Theorem 2.11 that there exist neighborhoods X and Y of
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x such that X ·Y ⊆ S. If X 6⊆ SC , then s ∈ X for some s ∈ S. Thus s · y ∈ S for
all y ∈ Y . Since s ∈ S and S is a UP-filter of A, we have y ∈ S for all y ∈ Y and
so Y ⊆ S. Thus x ∈ S, which is a contradiction. Hence, X ⊆ SC . Hence, SC is
open in A, so S is closed in A.

(3) Assume that L0 is the least open set containing 0 and S is closed in A.
Then SC is open in A. Suppose that S is not open in A. By (1), it follows that
0 is not an interior point of S. Thus N0 * S for all neighborhood N0, so L0 * S.
Thus L0 ∩ SC 6= ∅, so there exists x ∈ L0 ∩ SC . By Theorem 2.17, we have
L0 ⊆ SC . Thus 0 ∈ SC , which is a contradiction. Hence, S is open in A.

Theorem 2.19. Let A be a TUP-algebra. Then the following statements are
equivalent.

(1) A is T0 (Kolmogorov).

(2) A is T1 (Fréchet).

(3) A is T2.

Proof. (1)⇒(2) Assume that A is T0 and let x, y ∈ A such that x 6= y. Then,
by (UP-4), we have x · y 6= 0 or y · x 6= 0. Without loss of generality, we may
assume that x · y 6= 0. By T0 axiom, we consider 2 cases:

Case 1. There exists Nx·y such that 0 /∈ Nx·y. By Theorem 2.11, there exist
Nx and Ny such that Nx · Ny ⊆ Nx·y. But 0 /∈ Nx·y, we have 0 /∈ Nx · Ny. By
Lemma 1.8, we have Nx ∩Ny = ∅. Thus y /∈ Nx.

Case 2. There exists N0 such that x · y /∈ N0. By (1.1), we have x · x =
0 ∈ N0. By Theorem 2.11, there exist neighborhoods X1 and X2 of x such that
X1 ·X2 ⊆ N0. But x · y /∈ N0, we have x · y /∈ X1 ·X2. Thus y /∈ X2.

Hence, A is T1.

(2)⇒(3) Assume that A is T1. Then {0} is closed in A. By Theorem 2.14(2),
we have A is T2.

(3)⇒(1) Clearly, T2 is T0.

3. Special subsets of topological UP-algebras

In this section, we introduce the notion of topological UP-subalgebras, topological
UP-filters, topological UP-ideals, topological strongly UP-ideals of of topological
UP-algebras, provide the necessary examples, and prove its generalizations.

Definition 3.1. A subset S of a TUP-algebra (A, ·, 0, τ) is called a topologi-
cal UP-subalgebra (resp., topological UP-filter, topological UP-ideal, topologi-
cal strongly UP-ideal) of A if S is a UP-subalgebra (resp., UP-filter, UP-ideal,
strongly UP-ideal) of (A, ·, 0), and S is an open set in (A, τ).
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We have Theorems 3.2, 3.4, and 3.6, and Corollaries 3.8 and 3.9 directly from
a result quoted in Definition 1.4 and Theorem 2.18.

Theorem 3.2. Every topological UP-filter of A is a topological UP-subalgebra
of A.

Example 3.3. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by
the following Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 0 0 3
3 0 1 2 0

Then (A, ·, 0) is a UP-algebra. Let τ = {∅, {1}, {2}, {1, 2}, {0, 3}, {0, 1, 3}, {0, 2, 3},
A}. Then τ is a UP-topology. Since

f−1({1}) = {(0, 1), (3, 1)}

= {0, 3} × {1},

f−1({2}) = {(0, 2), (1, 2), (3, 2)}

= {0, 1, 3} × {2},

f−1({1, 2}) = {(0, 1), (3, 1), (0, 2), (1, 2), (3, 2)}

= ({0, 3} × {1}) ∪ ({0, 3} × {2}) ∪ ({1} × {2}),

f−1({0, 3}) = {(0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 2),

(3, 3), (2, 1), (0, 3), (1, 3), (2, 3)}

= ({0, 1, 3} × {0, 3}) ∪ ({2} ×A) ∪ ({1} × {1}),

f−1({0, 1, 3}) = {(0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 2),

(3, 3), (2, 1), (0, 1), (3, 1), (0, 3), (1, 3), (2, 3)}

= ({0, 1, 3} × {0, 1, 3}) ∪ ({2} ×A), and

f−1({0, 2, 3}) = {(0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 2), (3, 3),

(2, 1), (0, 2), (1, 2), (3, 2), (0, 3), (1, 3), (2, 3)}

= ({0, 2, 3} × {0, 2, 3}) ∪ ({1} ×A) ∪ ({2} × {1}),

we have f−1({1}), f−1({2}), f−1({1, 2}), f−1({0, 3}), f−1({0, 1, 3}), and f−1({0, 2,
3}) are open in A. Hence, (A, ·, 0, τ) is a TUP-algebra. Let S = {0, 2, 3}. Then
S is a topological UP-subalgebra of A. Since 2 · 1 = 0 ∈ S and 2 ∈ S but 1 /∈ S,
we have S is not a UP-filter of (A, ·, 0). Hence, S is not a topological UP-filter
of A.

Theorem 3.4. Every topological UP-ideal of A is a topological UP-filter of A.
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Example 3.5. Let A = {0, 1, 2, 3} be a set with a binary operation · defined by
the following Cayley table:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 2
2 0 1 0 2
3 0 1 0 0

Then (A, ·, 0) is a UP-algebra. Let τ = P(A). Then (A, ·, 0, τ) is a TUP-algebra.
Let S = {0, 1}. Then S is a topological UP-filter of A. Since 2 · (1 · 3) = 0 ∈ S
and 1 ∈ S but 2 · 3 = 2 /∈ S, we have S is not a UP-ideal of (A, ·, 0). Hence, S is
not a topological UP-ideal of A.

Theorem 3.6. Every topological strongly UP-ideal of A is a topological UP-ideal
of A.

Example 3.7. In Example 3.3, let S = {0, 1, 3}. Then S is a topological UP-
ideal of A. Since S 6= A, we have S is not a strongly UP-ideal of (A, ·, 0). Hence,
S is not a topological strongly UP-ideal of A.

Corollary 3.8. For every TUP-algebra A with the least open set containing 0,
every topological UP-filter of A is both open and closed in A.

Corollary 3.9. Every topological strongly UP-ideal of A is both open and closed
in A.

By Theorems 3.2, 3.4, and 3.6 and Examples 3.3, 3.5, and 3.7, we have that
the notion of topological UP-subalgebras is a generalization of topological UP-
filters, the notion of topological UP-filters is a generalization of topological UP-
ideals, and the notion of topological UP-ideals is a generalization of topological
strongly UP-ideals.

4. Quotient topological spaces and topological

UP-homomorphisms

In this section, we introduce the notion of quotient topological spaces of topo-
logical UP-algebras and study the relation between quotient topological, Haus-
dorff, and discrete spaces. We also introduce the notion of topological UP-
homomorphisms.

Theorem 4.1. Let S be a UP-ideal of a TUP-algebra (A, ·, 0, τ) and πS the nat-
ural projection from A to A/ ∼S. Then the quotient UP-algebra A/ ∼S consists
of the topology

τ∼S
=

{

Q ⊆ A/ ∼S | π
−1
S (Q) ∈ τ

}

.
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The topology τ∼S
is called the quotient topology on A/ ∼S and the topological

space (A/ ∼S, τ∼S
) is called the quotient topological space. Moreover, the natural

projection πS is a continuous mapping.

Proof. Since π−1
S (∅) = ∅ ∈ τ , we have ∅ ∈ τ∼S

. Since, by Theorem 1.5, πS is
surjective, we have π−1

S (A/ ∼S) = A ∈ τ . Thus A/ ∼S∈ τ∼S
. Next, we will

show that τ∼S
is closed under arbitrary union. Let Qi ∈ τ∼S

for all i ∈ I. Then
π−1
S (Qi) ∈ τ for all i ∈ I, so π−1

S

(
⋃

i∈I Qi

)

=
⋃

i∈I π
−1
S (Qi) ∈ τ . Therefore,

⋃

i∈I Qi ∈ τ∼S
. Finally, we will show that τ∼S

is closed under finite intersection.
Let Q1, Q2 ∈ τ∼S

. Then π−1
S (Q1), π

−1
S (Q2) ∈ τ , so π−1

S (Q1 ∩ Q2) = π−1
S (Q1) ∩

π−1
S (Q2) ∈ τ . Therefore, Q1 ∩Q2 ∈ τ∼S

. Hence, τ∼S
is a topology on A/ ∼S.

Theorem 4.2. Let S be a topological UP-ideal of a TUP-algebra (A, ·, 0, τ). Then
the following statements hold:

(1) πS(N) is open in A/ ∼S for every subset N of A. In particular, the natural
projection πS is an open mapping,

(2) (A/ ∼S, ∗, (0)∼S
, τ∼S

) is a TUP-algebra, and

(3) τ∼S
= P(A/ ∼S).

Proof. (1) Let N be a subset of A. We shall show that πS(N) is open in A/ ∼S,
that is, π−1

S (πS(N)) is open in A. Let x ∈ π−1
S (πS(N)). Then (x)∼S

= πS(x) ∈
πS(N), so (x)∼S

= πS(n) = (n)∼S
for some n ∈ N . Thus x ∼S n, that is,

x · n, n · x ∈ S. Since S is open in A and x · n, n · x ∈ S, it follows from Theorem
2.11 that there exist neighborhoods X1 and X2 of x, and N1 and N2 of n such
that X1 · N1 ⊆ S and N2 · X2 ⊆ S. Thus (X1 ∩ X2) · N1 ⊆ X1 · N1 ⊆ S and
N2 · (X1∩X2) ⊆ N2 ·X2 ⊆ S. If y ∈ X1∩X2, then y ·n ∈ S and n ·y ∈ S, that is,
y ∼S n. Thus πS(y) = (y)∼S

= (n)∼S
= πS(n) ∈ πS(N) and so y ∈ π−1

S (πS(N)).
Therefore, x ∈ X1 ∩X2 ⊆ π−1

S (πS(N)). Hence, π−1
S (πS(N)) is open in A.

(2) We shall only show that the mapping f defined by f((x)∼S
, (y)∼S

) =
(x)∼S

∗ (y)∼S
, is continuous from A/ ∼S ×A/ ∼S to A/ ∼S . Let Z be open

in A/ ∼S . Let ((x)∼S
, (y)∼S

) ∈ f−1(Z). Then f((x)∼S
, (y)∼S

) ∈ Z. We see
that πS(x · y) = (x · y)∼S

= (x)∼S
∗ (y)∼S

= f((x)∼S
, (y)∼S

) ∈ Z and πS is a
continuous mapping. So π−1

S (Z) is open in A which contains x · y. Since A is a
TUP-algebra and by Theorem 2.11, there existNx andNy in A such thatNx·Ny ⊆
π−1
S (Z). By (1), we have πS is open and follows that πS(Nx) and πS(Ny) are open

in A/ ∼S which contains (x)∼S
and (y)∼S

, respectively. Let ((a)∼S
, (b)∼S

) ∈
πS(Nx) × πS(Ny). Then πS(a) = (a)∼S

∈ πS(Nx) and πS(b) = (b)∼S
∈ πS(Ny).

Thus πS(a) = πS(ax) and πS(b) = πS(by) for some ax ∈ Nx and by ∈ Ny.
Since ax · by ∈ Nx · Ny ⊆ π−1

S (Z), we have f((a)∼S
, (b)∼S

) = (a)∼S
∗ (b)∼S

=
(ax)∼S

∗ (by)∼S
= (ax · by)∼S

= πS(ax · by) ∈ Z. Thus ((a)∼S
, (b)∼S

) ∈ f−1(Z), so
((x)∼S

, (y)∼S
) ∈ πS(Nx)×πS(Ny) ⊆ f−1(Z). This implies that f−1(Z) is open in
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A/ ∼S ×A/ ∼S, that is, f is a continuous mapping. Hence, (A/ ∼S, ∗, (0)∼S
, τ∼S

)
is a TUP-algebra.

(3) It suffices to show that P(A/ ∼S) ⊆ τ∼S
. Let Q ∈ P(A/ ∼S). Then

π−1
S (Q) ⊆ A. It follows from (1) that πS(π

−1
S (Q)) is open in A/ ∼S . Since πS is

surjective, we have πS(π
−1
S (Q)) = Q. Hence, Q ∈ τ∼S

, that is, τ∼S
= P(A/ ∼S).

Example 4.3. In Example 2.9, let S = {0}. Then S is a UP-ideal of a UP-
algebra (A, ·, 0), but not open in A. Then

∼S= {(0, 0), (1, 1), (2, 2), (3, 3)}.

Since (0)S = {0}, (1)S = {1}, (2)S = {2}, and (3)S = {3}, we have

A/ ∼S= {{0}, {1}, {2}, {3}}.

Since τ = {∅, {1}, {0, 2, 3}, A} and π−1
S ({{0}}) = {0}, π−1

S ({{1}}) = {1}, π−1
S

({{2}}) = {2}, π−1
S ({{3}}) = {3}, we have {{1}} is open in A/ ∼S . Hence,

τ∼S
= {∅, A/ ∼S , {{1}}} 6= P(A/ ∼S).

Theorem 4.4. Let (A, ·, 0, τ) be a TUP-algebra, S a UP-ideal of a UP-algebra
(A, ·, 0), and (A/ ∼S , ∗, (0)∼S

, τ∼S
) a TUP-algebra. Then the following state-

ments hold:

(1) if A/ ∼S is Hausdorff, then S is closed in A,

(2) if there exists the least open set containing 0 and S is closed in A, then
A/ ∼S is Hausdorff, and

(3) A/ ∼S is discrete if and only if S is open in A.

Proof. (1) Assume that A/ ∼S is Hausdorff. If S = A, then S is closed in A.
Assume that S ⊂ A and let x /∈ SC . Since 0 ∈ S and 0·x = x /∈ S, we have x ≁S 0.
Thus (x)∼S

6= (0)∼S
∈ A/ ∼S. This implies that there exist N(x)∼S

and N(0)∼S

in A/ ∼S such that (0)∼S
/∈ N(x)∼S

and (x)∼S
/∈ N(0)∼S

and N(x)∼S
∩N(0)∼S

= ∅.
By Theorem 4.1, we have πS is a continuous mapping. Since N(x)∼S

is open

in A/ ∼S which contains (x)∼S
= πS(x), we have π−1

S (N(x)∼S
) is open in A

which contains x. Since πS is surjective, we have πS(π
−1
S (N(x)∼S

)) = N(x)∼S
and

πS(π
−1
S (N(0)∼S

)) = N(0)∼S
. We know that π−1

S (N(x)∼S
) ∩ π−1

S (N(0)∼S
) = ∅ and

so π−1
S (N(x)∼S

) ∩ S = ∅. Thus x ∈ π−1
S (N(x)∼S

) ⊆ SC . This means that SC is
open in A. Hence, S is closed in A.

(2) Assume that there exists the least open set containing 0 and S is closed
in A. Let (x)∼S

6= (y)∼S
in A/ ∼S. Without loss of generality, we may assume

that (x)∼S
∗ (y)∼S

6= (0)∼S
. Then (x · y)∼S

6= (0)∼S
and so x · y ≁S 0, that is,
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(x·y)·0 /∈ S or 0·(x·y) /∈ S. By (UP-3), we have (x·y)·0 = 0 ∈ S. Then, by (UP-
3), we have x · y = 0 · (x · y) /∈ S. Since S is closed in A, we have SC is open in A
which contains x·y. Thus there exists Nx·y such that Nx·y ⊆ SC . So Nx·y∩S = ∅.
By assumption and Theorem 2.18(3), we have S is open in A, and so πS is an
open mapping by Theorem 4.2(1). Thus πS(Nx·y) is a neighborhood of πS(x · y)
and πS(Nx·y) ∩ πS(S) = ∅. Since πS(0) ∈ πS(S), we have πS(0) /∈ πS(Nx·y). We
know that πS(x · y) = (x · y)∼S

= (x)∼S
∗ (y)∼S

∈ πS(Nx·y). By Theorem 2.11,
there exist N(x)∼S

and N(y)∼S
in A/ ∼S such that N(x)∼S

∗ N(y)∼S
⊆ πS(Nx·y).

Since πS(0) = (0)∼S
/∈ πS(Nx·y), we have (0)∼S

/∈ N(x)∼S
∗ N(y)∼S

. By Lemma
1.8, we have N(x)∼S

∩N(y)∼S
= ∅. Hence, A/ ∼S is Hausdorff.

(3) Assume that A/ ∼S is discrete. By Theorem 2.14(1), we have {(0)∼S
}

is open in A/ ∼S. Thus π−1
S ({(0)∼S

}) ∈ τ and 0 ∈ π−1
S ({(0)∼S

}). Let x ∈
π−1
S ({(0)∼S

}). Then (x)∼S
= πS(x) ∈ {(0)∼S

}. Thus (x)∼S
= (0)∼S

, so x ∼S 0.
By (UP-2) and (UP-3), we have 0 = x · 0 ∈ S and x = 0 · x ∈ S. Thus
π−1
S ({(0)∼S

}) ⊆ S and 0 is an interior point of S. By Theorem 2.18(1), we have
S is open in A.

Conversely, assume that S is open in A. We shall show that {(0)∼S
} is open

in A/ ∼S, that is, π−1
S ({(0)∼S

}) is open in A. Let x ∈ π−1
S ({(0)∼S

}). Then
(x)∼S

= πS(x) ∈ {(0)∼S
}, so (x)∼S

= (0)∼S
. Thus x ∼S 0. By (UP-2) and

(UP-3), we have 0 = x · 0 ∈ S and x = 0 · x ∈ S. Since S is open in A and by
Theorem 2.11, there exist neighborhoods X1,X2 of x and Y1, Y2 of 0 such that
X1 · Y1 ⊆ S and Y2 · X2 ⊆ S. Since x ∈ X1 ∩ X2 and 0 ∈ Y1 ∩ Y2, we have
(X1 ∩X2) · Y1 ⊆ X1 · Y1 ⊆ S and (Y1 ∩ Y2) ·X2 ⊆ Y2 ·X2 ⊆ S. Let y ∈ X1 ∩X2.
Then 0 · y ∈ S and y · 0 ∈ S, so y ∼S 0. Thus πS(y) = (y)∼S

= (0)∼S
∈ {(0)∼S

}
and so y ∈ π−1

S ({(0)∼S
}). Therefore, x ∈ X1 ∩X2 ⊆ π−1

S ({(0)∼S
}). This implies

that π−1
S ({(0)∼S

}) is open in A and so {(0)∼S
} is open in A/ ∼S . By Theorem

2.14(1), we have A/ ∼S is discrete.

Definition 4.5. Let (A, ·, 0A, τA) and (B, ∗, 0B , τB) be TUP-algebras. A map-
ping g from A to B is called a topological UP-homomorphism if

(1) g is a UP-homomorphism from (A, ·, 0A) to (B, ∗, 0B), and

(2) g is a continuous mapping from (A, τA) to (B, τB).

Example 4.6. Let A = {0A, 1, 2, 3} and B = {0B , a, b, c} be sets with a binary
operation · and ∗, respectively, defined by the following Cayley tables:

· 0A 1 2 3

0A 0A 1 2 3
1 0A 0A 2 3
2 0A 0 0A 3
3 0A 0 2 0A

∗ 0B a b c

0B 0B a b c
a 0B 0B 0 0
b 0B a 0B c
c 0B a 0 0B
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Then (A, ·, 0A) and (B, ∗, 0B) are UP-algebras. Let τA = {∅, A} and τB = {∅, B}.
Then (A, ·, 0A, τA) and (B, ∗, 0B , τB) are TUP-algebras. We define a mapping
g : A → B as follows:

g(0A) = 0B , g(1) = 0B , g(2) = 0B , and g(3) = c.

Then g is a UP-homomorphism and a continuous mapping, that is, g is a topo-
logical UP-homomorphism.

Definition 4.7. Let (A, ·, 0A, τA) and (B, ∗, 0B , τB) be TUP-algebras. A map-
ping g from A to B is called a topological UP-isomorphism if

(1) g is a UP-isomorphism from (A, ·, 0A) to (B, ∗, 0B), and

(2) g is a homeomorphism from (A, τA) to (B, τB), that is, g : A → B is bijective
and continuous and g−1 : B → A is also continuous (g is an open mapping).

Example 4.8. Let A = {0A, 1, 2, 3} and B = {0B , a, b, c} be sets with a binary
operation · and ∗, respectively, defined by the following Cayley tables:

· 0A 1 2 3

0A 0A 1 2 3
1 0A 0A 2 3
2 0A 1 0A 3
3 0A 1 2 0A

∗ 0B a b c

0B 0B a b c
a 0B 0B b c
b 0B a 0B c
c 0B a b 0B

Then (A, ·, 0A) and (B, ∗, 0B) are UP-algebras. Let τA = {∅, {1}, {0A , 2, 3}, A}
and τB = {∅, {a}, {0B , b, c}, B}. Then (A, ·, 0A, τA) and (B, ∗, 0B , τB) are TUP-
algebras. We define a mapping g : A → B:

g(0A) = 0B , g(1) = a, g(2) = b, and g(3) = c.

Then g is a UP-isomorphism and a homeomorphism, that is, g is a topological
UP-isomorphism.

For a fixed element s of a TUP-algebra A, define a self-map fs : A → A by
fs(x) = x · s for all x ∈ A.

Definition 4.9. A TUP-algebra A is said to be transitive open if for each s ∈ A,
the self-map fs is open and continuous.

Theorem 4.10. Let N be open in a transitive open TUP-algebra A and s ∈ A.
Then the following statements hold:

(1) fs(N) = N · s is open in A,

(2) f−1
s (N) = {x ∈ A | x · s = fs(x) ∈ N} is open in A, and
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(3) N ·X is open in A for every subset X of A.

Proof. (1) Now,

fs(N) = {y ∈ A | y = fs(x) for some x ∈ N}

= {y ∈ A | y = x · s for some x ∈ N}

= {x · s | x ∈ N}

= N · s.

Since fs is open, we have N · s is open in A.

(2) It is clear that f−1
s (N) is open in A.

(3) Since N ·X =
⋃

s∈X N · s and by (1), we have N ·X is open in A.

Theorem 4.11. Let A and B be transitive open TUP-algebras and g a UP-
homomorphism from (A, ·, 0A) to (B, ∗, 0B). Then the following statements hold:

(1) if for each neighborhood Y of 0B in B, there exists a neighborhood X of 0A
in A such that g(X) ⊆ Y , then g is a continuous mapping, that is, g is a
topological UP-homomorphism, and

(2) if for each neighborhood X of 0A in A, there exists a neighborhood Y of 0B
in B such that Y ⊆ g(X), then g is an open mapping.

Proof. (1) Assume that V is open inB. If V ∩Im(g) = ∅, then g−1(V ) = ∅ is open
in A. Assume that V ∩Im(g) 6= ∅ and let x ∈ g−1(V ). Then y := g(x) ∈ V ∩Im(g).
By Lemma 4.10(2), we have f−1

y (V ) = {b ∈ B | b ∗ y = fy(b) ∈ V } is open
in B. Let v ∈ Y := f−1

y (V ). By (UP-2), we have 0B ∗ y = y ∈ V and so
0B ∈ Y . By assumption, there exists a neighborhood X of 0A in A such that
g(X) ⊆ Y . We know that X · x is open in A by Lemma 4.10(1). By (UP-2),
we have x = 0A ∗ x ∈ X · x. Since v ∗ y ∈ Y ∗ y, we have v ∗ y ∈ V . So
Y ∗ y ⊆ V . Now, g(X · x) = g(X) ∗ g(x) = g(X) ∗ y ⊆ Y ∗ y ⊆ V . Thus
x ∈ X · x ⊆ g−1(g(X · x)) ⊆ g−1(V ). This implies that g−1(V ) is open in A.
Hence, g is a continuous mapping, so g is a topological UP-homomorphism.

(2) Assume that U is open in A and let y ∈ g(U). Then y = g(x) for some
x ∈ U . By Lemma 4.10(2), we have f−1

x (U) = {a ∈ A | a · x = fx(a) ∈ U} is
open in A. Let u ∈ X := f−1

x (U). By (UP-2), we have 0A · x = x ∈ U and so
0A ∈ X. By assumption, there exists a neighborhood Y of 0B in B such that
Y ⊆ g(X). We know that Y ∗ y is open in B by Lemma 4.10(1). By (UP-2), we
have y = 0B ∗ y ∈ Y ∗ y. Since u · x ∈ X · x, we have u · x ∈ U . So X · x ⊆ U .
Thus g(X · x) ⊆ g(U). Now, Y ∗ y = Y ∗ g(x) ⊆ g(X) ∗ g(x) = g(X · x) ⊆ g(U).
Thus y ∈ Y ∗ y ⊆ g(U). This implies that g(U) is open in B. Hence, g is an open
mapping.
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Theorem 4.12. Let (A, ·, 0A, τA) and (B, •, 0B , τB) be TUP-algebras, g : A → B
an open topological UP-homomorphism having I := Ker(g), and {0B} open in B.
Then the following statements hold:

(1) I is a topological UP-ideal of A,

(2) there exists uniquely a topological UP-homomorphism h from A/ ∼I to B
such that g = h ◦ πI , and

(3) g is a UP-epimorphism if and only if h is a topological UP-isomorphism.

Proof. (1) By Theorem 1.6(2), we have I is a UP-ideal of a UP-algebra A. Since g
is a continuous mapping and {0B} is open in B, we have I = Ker(g) = g−1({0B})
is open in A. Hence, I is a topological UP-ideal of A.

(2) By (1), we have I is a topological UP-ideal of A. It follows from Theorem
4.2(2) that (A/ ∼I , ∗, (0A)∼I

, τ∼I
) is a TUP-algebra. Define a mapping

(4.1) h : A/ ∼I→ B, (x)∼I
7→ g(x).

Assume that Y is open in B. Let (x)∼I
∈ h−1(Y ). Then g(x) = h((x)∼I

) = y
for some y ∈ Y . Since g is a continuous mapping, it follows from Theorem 2.6
that there exists a neighborhood X of x in A such that g(X) ⊆ Y . Since I is a
topological UP-ideal of A and by Theorem 4.2(1), we have πI is an open mapping.
Thus πI(X) is open in A/ ∼I which contains (x)∼I

. Now,

h(πI(X)) = {h((x)∼I
) | (x)∼I

∈ πI(X)}

= {g(x) | x ∈ X}

= g(X)

⊆ Y.

Thus (x)∼I
∈ πI(X) ⊆ h−1(h(πI(X))) ⊆ h−1(Y ). This implies that h is a

continuous mapping. By Theorem 1.7, we have h is a UP-homomorphism, g =
h ◦ πI , and h is unique. Hence, h is a topological UP-homomorphism.

(3) Assume that g is a UP-epimorphism. By Theorem 1.7(2) and (2), we
have h is a UP-isomorphism and continuous mapping. We shall show that h−1

is a continuous mapping. Next, let X∗ be a neighborhood of h−1(y) = (x)∼I

in A/ ∼I where y = g(x). Since πI(x) = (x)∼I
∈ X∗, we have x ∈ π−1

I (X∗).
Since πI is a continuous mapping, we have π−1

I (X∗) is open in A which contains
x. Thus g(x) = h((x)∼I

) = h(h−1(y)) = y. Let X = π−1
I (X∗). Since g is an

open mapping, we have g(X) is open in B which contains y and so there exists a
neighborhood Y of y in B such that Y ⊆ g(X). Let a∗ ∈ h−1(Y ). Then h(a∗) ∈
Y ⊆ g(X) and so h(a∗) = g(a) for some a ∈ X. Since a ∈ X = π−1

I (X∗), we
have (a)∼I

= πI(a) ∈ X∗. Thus a∗ = h−1(h(a∗)) = h−1(g(a)) = h−1(h((a)∼I
)) =
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(a)∼I
∈ X∗. This means that h−1(Y ) ⊆ X∗. By Theorem 2.6, we have h−1 is a

continuous mapping. Hence, h is a topological UP-isomorphism.

Conversely, it is clear by Theorem 1.7(2).
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