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1. Introduction

Swamy and Rao [10] introduced the concept of an Almost Distributive Lattice
(ADL) as a common abstraction of almost all the existing ring theoretic general-
izations of a Boolean algebra (like regular rings, p-rings, biregular rings, associate
rings, P1-rings etc.) on one hand and distributive lattices on the other.

In [1], Dilworth, has introduced the concept of a residuation in lattices and
in [11, 12], Ward and Dilworth, have studied residuated lattices. In [13], Ward,
has studied residuated distributive lattices. We introduced the concepts of a
residuation and a multiplication in an ADL and the concept of a residuated
ADL in our earlier paper [7]. We have proved some important properties of
residuation ’:’ and multiplication ’.’ in a residuated ADL L in [8]. In [5], we
introduced the concept of principal element in a residuated ADL and in [6], we
introduced the concept of principal residuated almost distributive lattice (or P-
ADL). In this paper, we prove important properties of primary elements in a
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complete residuated ADL L and prove the uniqueness theorem in a complete
complemented residuated ADL L.

In Section 2, we recall the definition of an Almost Distributive Lattice (ADL)
and certain elementary properties of an ADL from [2, 10] and some important
results on a residuated almost distributive lattice from our earlier papers [7, 8].

In Section 3, if L is a complete residuated ADL with a maximal element m
satisfying the ascending chain condition, p is a prime element of L and q1, q2
are two p-primary elements of L, then we prove that q1 ∧ q2 is also a p-primary
element of L. We prove important results in a complete residuated ADL L.
If L is a complete complemented residuated ADL with a maximal element m
satisfying the a.c.c. and a ∈ L, then we prove that any two normal primary
decompositions of an element a have the same number of components and the
same set of corresponding primes.

2. Preliminaries

In this section we collect a few important definitions and results which are already
known and which will be used more frequently in the paper. We begin with the
definition of an ADL:

Definition 2.1 [2]. An Almost Distributive Lattice (ADL) is an algebra (L,∨,∧)
of type (2, 2) satisfying

(1) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),
(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
(3) (a ∨ b) ∧ b = b,

(4) (a ∨ b) ∧ a = a,

(5) a ∨ (a ∧ b) = a, for all a, b, c ∈ L.

It can be seen directly that every distributive lattice is an ADL. If there is
an element 0 ∈ L such that 0 ∧ a = 0 for all a ∈ L, then (L,∨,∧, 0) is called an
ADL with 0.

Example 2.1 [2]. Let X be a non-empty set. Fix x0 ∈ X. For any x, y ∈ L,
define

x ∧ y =

{
x0, if x = x0
y, if x 6= x0

x ∨ y =

{
y, if x = x0
x, if x 6= x0.

Then (X,∨,∧, x0) is an ADL with 0 and x0 is the zero element. This ADL is
called a discrete ADL.

For any a, b ∈ L, we say that a is less than or equal to b and write a 6 b, if
a ∧ b = a. Then “6” is a partial ordering on L.
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Theorem 2.1 [2]. Let (L,∨,∧, 0) be an ADL with ’0’. Then, for any a, b ∈ L,
we have

(1) a ∧ 0 = 0 and 0 ∨ a = a,

(2) a ∧ a = a = a ∨ a,

(3) (a ∧ b) ∨ b = b, a ∨ (b ∧ a) = a and a ∧ (a ∨ b) = a,

(4) a ∧ b = a⇐⇒ a ∨ b = b and a ∧ b = b⇐⇒ a ∨ b = a,

(5) a ∧ b = b ∧ a and a ∨ b = b ∨ a whenever a 6 b,

(6) a ∧ b 6 b and a 6 a ∨ b,
(7) ∧ is associative in L,

(8) a ∧ b ∧ c = b ∧ a ∧ c,
(9) (a ∨ b) ∧ c = (b ∨ a) ∧ c,

(10) a ∧ b = 0⇐⇒ b ∧ a = 0,

(11) a ∨ (b ∨ a) = a ∨ b.

It can be observed that an ADL L satisfies almost all the properties of a
distributive lattice except, possible the right distributivity of ∨ over ∧, the
commutativity of ∨, the commutativity of ∧ and the absorption law (a∧b)∨a = a.
Any one of these properties convert L into a distributive lattice.

Theorem 2.2 [2]. Let (L,∨,∧, 0) be an ADL with 0. Then the following are
equivalent:

(1) (L,∨,∧, 0) is a distributive lattice,

(2) a ∨ b = b ∨ a, for all a, b ∈ L,

(3) a ∧ b = b ∧ a, for all a, b ∈ L,

(4) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

Proposition 2.1 [2]. Let (L,∨,∧) be an ADL. Then for any a, b, c ∈ L with
a 6 b, we have

(1) a ∧ c 6 b ∧ c,
(2) c ∧ a 6 c ∧ b,
(3) c ∨ a 6 c ∨ b.

Definition 2.2 [2]. An element m ∈ L is called maximal if it is maximal in the
partially ordered set (L,6). That is, for any a ∈ L, m 6 a implies m = a.

Theorem 2.3 [2]. Let L be an ADL and m ∈ L. Then the following are equiva-
lent:

(1) m is maximal with respect to 6,
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(2) m ∨ a = m, for all a ∈ L,

(3) m ∧ a = a, for all a ∈ L.

Lemma 2.1 [2]. Let L be an ADL with a maximal element m and x, y ∈ L. If
x ∧ y = y and y ∧ x = x then x is maximal if and only if y is maximal. Also the
following conditions are equivalent:

(i) x ∧ y = y and y ∧ x = x,

(ii) x ∧m = y ∧m.

Definition 2.3 [9]. If (L,∨,∧, 0,m) is an ADL with 0 and with a maximal
element m, then the set I(L) of all ideals of L is a complete lattice under set
inclusion. In this lattice, for any I, J ∈ I(L), the l.u.b. and g.l.b. of I, J are
given by I ∨ J = {(x ∨ y) ∧m | x ∈ I, y ∈ J} and I ∧ J = I ∩ J .

The set PI(L) = {(a] | a ∈ L} of all principal ideals of L forms a sublattice
of I(L). (Since (a] ∨ (b] = (a ∨ b] and (a] ∩ (b] = (a ∧ b]).

Definition 2.4 [9]. An ADL L = (L,∨,∧, 0,m) with a maximal element m is
said to be a complete ADL, if PI(L) is a complete sub lattice of the lattice I(L).

Theorem 2.4 [9]. Let L = (L,∨,∧, 0,m) be an ADL with a maximal element
m. Then L is a complete ADL if and only if the lattice ([0,m],∨,∧) is a complete
lattice.

In the following, we give the concepts of residuation and multiplication in
an almost distributive lattice (ADL) L and the definition of a residuated almost
distributive lattice taken from our earlier paper [7].

Definition 2.5 [7]. Let L be an ADL with a maximal element m. A binary
operation : on an ADL L is called a residuation over L if, for a, b, c ∈ L the
following conditions are satisfied.

(R1) a : b is maximal if and only if a ∧ b = b,

(R2) a ∧ b = b =⇒ (i) (a : c) ∧ (b : c) = b : c and (ii) (c : b) ∧ (c : a) = c : a,

(R3) [(a : b) : c] ∧m = [(a : c) : b] ∧m,

(R4) [(a ∧ b) : c] ∧m = (a : c) ∧ (b : c) ∧m,

(R5) [c : (a ∨ b)] ∧m = (c : a) ∧ (c : b) ∧m.

Definition 2.6 [7]. Let L be an ADL with a maximal element m. A binary
operation . on an ADL L is called a multiplication over L if, for a, b, c ∈ L the
following conditions are satisfied.

(M1) (a.b) ∧m = (b.a) ∧m,

(M2) [(a.b).c] ∧m = [a.(b.c)] ∧m,
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(M3) (a.m) ∧m = a ∧m,

(M4) [a.(b ∨ c)] ∧m = [(a.b) ∨ (a.c)] ∧m.

Definition 2.7 [7]. An ADL L with a maximal element m is said to be a residu-
ated almost distributive lattice (residuated ADL), if there exists two binary opera-
tions ’:’ and ’.’ on L satisfying conditions R1 to R5,M1 to M4 and the following
condition (A).

(A) (x : a) ∧ b = b if and only if x ∧ (a.b) = a.b, for any x, a, b ∈ L.

We use the following properties frequently later in the results.

Lemma 2.2 [7]. Let L be an ADL with a maximal element m and . a binary
operation on L satisfying the conditions M1–M4. Then for any a, b, c, d ∈ L,

(i) a ∧ (a.b) = a.b and b ∧ (a.b) = a.b,

(ii) a ∧ b = b =⇒ (c.a) ∧ (c.b) = c.b and (a.c) ∧ (b.c) = b.c,

(iii) d ∧ [(a.b).c] = (a.b).c if and only if d ∧ [a.(b.c)] = a(b.c),

(iv) (a.c) ∧ (b.c) ∧ [(a ∧ b).c] = (a ∧ b).c,
(v) d ∧ (a.c) ∧ (b.c) = (a.c) ∧ (b.c) =⇒ d ∧ [(a ∧ b).c] = (a ∧ b).c,
(vi) d ∧ [(a.c) ∨ (b.c)] = (a.c) ∨ (b.c)⇔ d ∧ [(a ∨ b).c] = (a ∨ b).c.

The following result is a direct consequence of M1 of definition 2.5.

Lemma 2.3 [7]. Let L be an ADL with a maximal element m and . a binary
operation on L satisfying the condition M1. For a, b, x ∈ L, a ∧ (x.b) = x.b if
and only if a ∧ (b.x) = b.x.

In the following, we give some important properties of residuation ’:’ and
multiplication ’.’ in a residuated ADL L. These are taken from our earlier paper
[8].

Lemma 2.4 [8]. Let L be a residuated ADL with a maximal element m. For
a, b, c, d ∈ L, the following hold in L.

(1) (a : b) ∧ a = a,

(2) [a : (a : b)] ∧ (a ∨ b) = a ∨ b,
(3) [(a : b) : c] ∧ [a : (b.c)] = a : (b.c),

(4) [a : (b.c)] ∧ [(a : b) : c] = (a : b) : c,

(5) [(a ∧ b) : b] ∧ (a : b) = a : b,

(6) (a : b) ∧ [(a ∧ b) : b] = (a ∧ b) : b,

(7) [a : (a ∨ b)] ∧m = (a : b) ∧m,

(8) [c : (a ∧ b)] ∧ [(c : a) ∨ (c : b)] = (c : a) ∨ (c : b),
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(9) If a : b = a then a ∧ (b.d) = b.d =⇒ a ∧ d = d,

(10) {a : [a : (a : b)]} ∧ (a : b) = a : b,

(11) [(a ∨ b) : c] ∧ [(a : c) ∨ (b : c)] = (a : c) ∨ (b : c),

(12) a ∧m > b ∧m =⇒ (a : c) ∧m > (b : c) ∧m,

(13) (a : b) ∧ {a : [a : (a : b)]} = a : [a : (a : b)],

(14) a ∧ b = b =⇒ (a.c) ∧ (b.c) = b.c,

(15) a ∧ b ∧ (a.b) = a.b,

(16) [(a.b) : a] ∧ b = b,

(17) (a.b) ∧ [(a ∧ b).(a ∨ b)] = (a ∧ b).(a ∨ b),
(18) a ∨ b is maximal =⇒ (a.b) ∧ a ∧ b = a ∧ b.

We give the following concepts on a residuated ADL L from our earlier pa-
per [5].

Definition 2.8 [5]. An element p of a residuated ADL L is called

(i) prime, if, p is not a maximal element of L and for any a, b ∈ L, p ∧ (a.b)
= a.b =⇒ either p ∧ a = a or p ∧ b = b.,

(ii) primary, if, p is not a maximal element of L and for any a, b ∈ L, p∧ (a.b) =
a.b and p ∧ a 6= a =⇒ p ∧ bs = bs, for some s ∈ Z+.

Definition 2.9 [5]. An ADL L is said to satisfy the ascending chain condition
(a.c.c.), if for every increasing sequence x1 6 x2 6 x3 6 · · · , in L, there exists a
positive integer n such that xn = xn+1 = xn+2 = · · · .

3. Uniqueness theorem in complete residuated ADL’s

In this section, if L is a complete residuated ADL with a maximal element m
satisfying the ascending chain condition (a.c.c.), p is a prime element of L and
q1, q2 are two p-primary elements of L, then we prove that q1 ∧ q2 is also a p-
primary element of L. We prove important results in a complete residuated ADL
L. If L is a complete complemented residuated ADL with a maximal element
m satisfying the a.c.c. and a ∈ L, then we prove that any two normal primary
decompositions of an element a have the same number of components and the
same set of corresponding primes.

Let us recall the following definitions from [5].

Definition 3.1 [5]. An element a of a residuated ADL L is said to have a
primary decomposition, if there exists primary elements q1, q2, . . . , ql in L such
that a = q1 ∧ q2 ∧ · · · ∧ ql. In this case a is called a decomposable element of L.
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Definition 3.2 [5]. Let L be an ADL and a ∈ L. An element a
′ ∈ L is said to

be a complement of a in L if a∧a′
= 0 and a∨a′

is maximal. In this case we say
that a is a complemented element of L. If each element of L is complemented,
then L is called a complemented ADL.

In the following, we give the concepts of the radical of an element and a
p-primary element in a complete ADL with a maximal element m. These are
taken from [3] and [6].

Definition 3.3 [3]. Let L be a complete ADL with a maximal element m. Sup-
pose ’.’ is a multiplication on L and a ∈ L. Let Ra = {x ∈ L | a ∧ xk = xk, for
some k ∈ Z+}. Then

∨
x∈Ra

(x ∧m) is called radical of a and it is denoted by
r(a).

Definition 3.4 [3]. Let L be a complete ADL with a maximal element m and
p, a prime element of L. An element q of L is called p-primary, if q is a primary
element of L and r(q) = p.

Theorem 3.1 [3]. Let L be a complete residuated ADL with a maximal element
m and a, b ∈ L. Then

(1) r(a) ∧ a = a and r(a) 6 r(r(a)).

(2) If a is a maximal element of L, then r(a) is a maximal element of L,

(3) a ∧ b = b =⇒ r(b) 6 r(a) and hence b 6 a =⇒ r(b) 6 r(a),

(4) r(a.b) = r(a ∧ b) 6 r(a) ∧ r(b),
(5) r(a) ∨ r(b) 6 r(a ∨ b) 6 r[r(a) ∨ r(b)],
(6) If a ∧ bk = bk, for some k ∈ Z+, then r(b) 6 r(a) and hence bk 6 a =⇒

r(b) 6 r(a),

(7) If p is a prime element of L, then r(p) = p∧m = r(p∧m) and r(pn) = p∧m,
for all n ∈ Z+,

(8) r(m) = m.

Theorem 3.2 [3]. Let L be a complete ADL with a maximal element m satisfying
the a.c.c. and ’ . ’ a multiplication on L. Then for any a ∈ L, there exists k ∈ Z+

such that a ∧ (r(a))k = (r(a))k and a ∧ (r(a))k−1 6= (r(a))k−1, for some k ∈ Z+.

Lemma 3.1 [6]. Let L be an ADL with a maximal element m, ’.’ a multiplication
on L and a, b ∈ L such that a ∧ b = b. Then an ∧ bn = bn, for any n ∈ Z+.

We prove the following Lemma in a complete residuated ADL L with a
maximal element m.

Lemma 3.2. Let L be a complete residuated ADL with a maximal element m.
If q is an element of L such that r(q) = p. Then q is p-primary if and only if for
any a, b ∈ L, q ∧ (a.b) = a.b =⇒ either q ∧ a = a or p ∧ b = b.
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Proof. Suppose q is a p-primary element of L. That is, q is a primary element of
L and r(q) = p. Let a, b ∈ L such that q∧(a.b) = a.b Since q is a primary element
of L, we get that either q ∧ a = a or q ∧ bs = bs for some s ∈ Z+. If q ∧ bs = bs,
then by Theorem 3.1 (6), we get that r(b) 6 r(q) = p. Now, b ∧m 6 r(b) 6 p
and hence p ∧ b = b. Therefore, q ∧ (a.b) = a.b =⇒ either q ∧ a = a or p ∧ b = b.
Conversely, suppose that q ∈ L and r(q) = p. Assume that q ∧ (a.b) = a.b =⇒
either q ∧ a = a or p ∧ b = b for any a, b ∈ L. We prove that q is a primary
element of L. By Theorem 3.2, there exists n ∈ Z+ such that q ∧ pn = pn. Now,
p ∧ b = b.

=⇒ pn ∧ bn = bn, for any n ∈ Z+ (By Lemma 3.1)
=⇒ q ∧ pn ∧ bn = q ∧ bn
=⇒ pn ∧ bn = q ∧ bn (Since q ∧ pn = pn)
=⇒ q ∧ bn = bn (Since pn ∧ bn = bn).

Hence q is a primary element of L. Thus q is a p-primary element of L.

Theorem 3.3. Let L be a complete residuated ADL with a maximal element m
satisfying the ascending chain condition and p, a prime element of L. If q1 and
q2 are two p-primary elements of L, then q1∧q2 is also a p-primary element of L.

Proof. Suppose q1 and q2 are two p-primary elements of L. That is, q1 and q2
are primary elements of L and r(q1) = p = r(q2). We prove that q1 ∧ q2 is a
p-primary element of L. First we prove that r(q1 ∧ q2) = p. By property (4) of
Theorem 3.1, we have r(q1 ∧ q2) 6 r(q1) ∧ r(q2) = p. By Theorem 3.2, we have
q1 ∧ [r(q1)]

k = [r(q1)]
k, for some k ∈ Z+ and q2 ∧ [r(q2)]

t = [r(q2)]
t, for some

t ∈ Z+. Since r(q1) = p = r(q2), we get that q1 ∧ pk = pk and q2 ∧ pt = pt,
for some k, t ∈ Z+. Let s = max {k, t}. Then q1 ∧ ps = ps and q2 ∧ ps = ps.
Now, q1 ∧ q2 ∧ ps = q1 ∧ ps = ps. So that p ∈ Rq1∧q2 . Hence p 6 r(q1 ∧ q2).
Thus r(q1 ∧ q2) = p. Now, we prove that q1 ∧ q2 is a primary element of L. Let
a, b ∈ L. Suppose q1 ∧ q2 ∧ (a.b) = a.b and q1 ∧ q2 ∧ a 6= a. Then q1 ∧ (a.b) = a.b
and q2 ∧ (a.b) = a.b. We prove that q1 ∧ q2 ∧ bs = bs for some s ∈ Z+. Since
q1 ∧ q2 ∧ a 6= a, we get that either q1 ∧ a 6= a or q2 ∧ a 6= a. If q1 ∧ a 6= a, then, by
Lemma 3.2, we get that p ∧ b = b. If q2 ∧ a 6= a, then again, by Lemma 3.2, we
get that p∧ b = b. By Lemma 3.2, we get that q1 ∧ q2 ∧ bs = bs, for some s ∈ Z+.
Hence q1 ∧ q2 is a primary element of L. Thus q1 ∧ q2 is a p-primary element
of L.

In the following, we give the concepts of reduced primary decomposition and
normal primary decomposition of an element in a complete residuated ADL L.
These are taken from our earlier paper [4].

Definition 3.5 [4]. Let L be a complete residuated ADL with a maximal element
m and a ∈ L. A primary decomposition q1∧q2∧· · ·∧ql of a is said to be reduced,
if, q1 ∧ q2 ∧ · · · ∧ qi−1 ∧ qi+1 ∧ · · · ∧ ql 6= a for 1 6 i 6 l.
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Definition 3.6 [4]. Let L be a complete residuated ADL with a maximal element
m and a ∈ L. A reduced primary decomposition q1 ∧ q2 ∧ · · · ∧ ql of a is called a
normal primary decomposition (or a normal decomposition), if, r(qi) 6= r(qj) for
i 6= j. Here qi is called a component of a.

Note that from every primary decomposition, we can obtain a normal primary
decomposition by removing superfluous qi’s. (that is if qi ∧ qj = qj , then qi is
removed) and qi’s with same radicals are combined (Theorem 3.3).

Lemma 3.3. Let L be a complete residuated ADL with a maximal element m.
For a ∈ L, write Ra = {x ∈ L | a ∧ xk = xk, for some k ∈ Z+}. If a, b, x, y ∈ L
such that x ∈ Ra and y ∈ Rb, then x ∧ y ∈ Ra∧b.

Proof. Let x, y, a, b ∈ L. Then, since x∧ x∧ y = x∧ y and y ∧ x∧ y = x∧ y, by
Lemma 3.1, we get that xk ∧ (x∧ y)k = (x∧ y)k and yk ∧ (x∧ y)k = (x∧ y)k, for
any k ∈ Z+. Therefore, xk ∧ yk ∧ (x ∧ y)k = (x ∧ y)k. Suppose that x ∈ Ra and
y ∈ Rb. Then, we get that, a ∧ xk = xk and b ∧ yk = yk, for some k ∈ Z+. So
that a∧ b∧ xk ∧ yk = xk ∧ yk. Now, a∧ b∧ (x∧ y)k = a∧ b∧ xk ∧ yk ∧ (x∧ y)k =
xk ∧ yk ∧ (x ∧ y)k = (x ∧ y)k. Hence x ∧ y ∈ Ra∧b.

Lemma 3.4. Let L be a complete ADL with a maximal element m, {xα | α ∈
J} ⊆ L and y, a complemented elemented element of L. Then

(i) y ∧ [
∨
α∈J(xα ∧m)] =

∨
α∈J(y ∧ xα ∧m) and

(ii) [
∨
α∈J(xα ∧m)] ∧ y ∧m =

∨
α∈J(xα ∧ y ∧m).

Proof. Let {xα | α ∈ J} ⊆ L.

(i) Write x =
∨
α∈J(xα ∧m) and z =

∨
α∈J(y ∧ xα ∧m). Then x, z ∈ [0,m]

(Since [0,m] is a complete lattice). Now, xα ∧m 6 x, for all α ∈ J .

=⇒ y ∧ xα ∧m 6 y ∧ x, for all α ∈ J
=⇒

∨
α∈J(y ∧ xα ∧m) 6 y ∧ x

=⇒ z 6 y ∧ x.

Again, z ∈ L and y ∧ xα ∧m 6 z, for all α ∈ J .

=⇒ y
′ ∨ (y ∧ xα ∧m) 6 y

′ ∨ z, for all α ∈ J .

=⇒ (y
′ ∨ y) ∧ [y

′ ∨ (xα ∧m)] 6 y
′ ∨ z, for all α ∈ J .

=⇒ y
′ ∨ (xα ∧m) 6 y

′ ∨ z, for all α ∈ J (Since y
′ ∨ y is a maximal

element of L).

=⇒ [y
′ ∨ (xα ∧m)] ∧m 6 (y

′ ∨ z) ∧m, for all α ∈ J .

=⇒ (xα ∧m) ∨ (y
′ ∧m) 6 (y

′ ∨ z) ∧m, for all α ∈ J .

=⇒ xα ∧m 6 (y
′ ∨ z) ∧m, for all α ∈ J .

=⇒
∨
α∈J(xα ∧m) 6 (y

′ ∨ z) ∧m.

=⇒ x 6 (y
′ ∨ z) ∧m.
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=⇒ y∧x 6 y∧ (y
′ ∨ z)∧m = [(y∧ y′

)∨ (y∧ z)]∧m = y∧ z∧m 6 z∧m = z.
=⇒ y ∧ x 6 z.

Therefore, we get that y∧x = z. Hence y∧ [
∨
α∈J(xα ∧m)] =

∨
α∈J(y∧xα ∧m).

(ii) follows from (i).

In the following result, if L is a complete complemented residuated ADL with
a maximal element m, then, for any a, b ∈ L, we prove that r(a∧ b) = r(a)∧ r(b).

Theorem 3.4. Let L be a complete complemented residuated ADL with a maxi-
mal element m. For a, b ∈ L, write Ra = {x ∈ L | a∧xk = xk, for some k ∈ Z+}.
Then r(a ∧ b) = r(a) ∧ r(b).

Proof. Let a, b ∈ L. Fix x ∈ Ra. Then, by Lemma 3.3, for any y ∈ Rb, we get
that x ∧ y ∈ Ra∧b.

=⇒ x ∧ y ∧m 6 r(a ∧ b), for any y ∈ Rb
=⇒

∨
y∈Rb

(x ∧ y ∧m) 6 r(a ∧ b)
=⇒ x ∧ [

∨
y∈Rb

(y ∧m)] 6 r(a ∧ b) (By Lemma 3.4 (i))
=⇒ x ∧ r(b) 6 r(a ∧ b), for any x ∈ Ra
=⇒ x ∧ r(b) ∧m 6 r(a ∧ b), for any x ∈ Ra
=⇒

∨
x∈Ra

(x ∧ r(b) ∧m) 6 r(a ∧ b)
=⇒ [

∨
x∈Ra

(x ∧m)] ∧ r(b) ∧m 6 r(a ∧ b) (By Lemma 3.4 (ii))
=⇒ r(a) ∧ r(b) 6 r(a ∧ b).

By Theorem 3.1(4), we have r(a∧b) 6 r(a)∧r(b). Hence r(a∧b) = r(a)∧r(b).

Now, we prove the following Lemma.

Lemma 3.5. Let L be an ADL with a maximal element m and p, a prime element
of L. If, for any a1, a2, . . . , an ∈ L, p∧ a1 ∧ a2 ∧ · · · ∧ an = a1 ∧ a2 ∧ · · · ∧ an, then
p ∧ ai = ai, for some i, where 1 6 i 6 n.

Proof. Let p be a prime element of L and a1, a2, . . . , an ∈ L. Suppose that
p ∧ a1 ∧ a2 ∧ · · · ∧ an = a1 ∧ a2 ∧ · · · ∧ an. Then p ∧ a1 ∧ a2 ∧ · · · ∧ an ∧ (a1.a2 · · ·
an) = a1 ∧ a2 ∧ · · · ∧ an ∧ (a1.a2 · · · an). By property (15) of Lemma 2.4, we get
that p∧ (a1.a2 · · · an) = a1.a2 · · · an. Since p is a prime element of L, we get that
p ∧ ai = ai, for some i, where 1 6 i 6 n.

Lemma 3.6. Let L be a complete residuated ADL with a maximal element m
and p, a prime element of L. Suppose a is a decomposable element of L such that
p∧ a = a. If a = q1 ∧ q2 ∧ · · · ∧ qn is a normal primary decompo- sition of a, then
p ∧ r(qi) = r(qi), for some i.

Proof. Suppose a = q1 ∧ q2 ∧ · · · ∧ qn is a normal primary decomposition of a in
L. Let r(qi) = pi, for 1 6 i 6 n. Now, p ∧ a = a.

=⇒ p ∧ q1 ∧ q2 ∧ · · · ∧ qn = q1 ∧ q2 ∧ · · · ∧ qn
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=⇒ p ∧ qi = qi, for some i (By Lemma 3.5)
=⇒ r(p) ∧ r(qi) = r(qi)
=⇒ p ∧m ∧ r(qi) = r(qi)
=⇒ p ∧ r(qi) = r(qi), for some i.

The following results are taken from our earlier paper [3].

Theorem 3.5 [3]. Let L be a complete residuated ADL with a maximal element
m which satisfies the a.c.c. If q is a p-primary element of L and a is any element
of L such that q ∧ a 6= a then q : a is a p-primary element of L such that
(q : a) ∧ [r(q)]k = [r(q)]k and (q : a) ∧ [r(q)]k−1 6= [r(q)]k−1, for some k ∈ Z+.

Theorem 3.6 [3]. Let L be a complete residuated ADL with a maximal element
m which satisfies the a.c.c. If q is a p-primary element of L and a is any element
of L such that q ∧ a 6= a, then r(q : a) = p.

Corollary 3.1 [3]. Let L be a complete ADL with a maximal element m and
a ∈ L. Suppose ’.’ is a multiplication on L and q is a p-primary element of L.
Then p ∧ a 6= a if and only if q : a = q ∧m.

Now, we prove the following theorem in a complete complemented residuated
ADL.

Theorem 3.7. Let L be a complete complemented residuated ADL with a max-
imal element m satisfying the a.c.c. and a be a decomposable element of L. Let
a = q1 ∧ q2 ∧ · · · ∧ qn be a normal primary decomposition of a and pi = r(qi), for
1 6 i 6 n. Then pi’s are precisely the prime elements that occur in {r(a : x) |
x ∈ L} upto equivalence. Hence they are independent of the decomposition.

Proof. Let q be a p-primary element of L and x ∈ L. Since a = q1 ∧ q2 ∧ · · · ∧ qn
be a normal primary decomposition of a and pi = r(qi), for 1 6 i 6 n. Therefore,
for 1 6 i 6 n, we have

qi : x =


a maximal element of L, if qi ∧ x = x (By R1 of Definition 2.5)

primary and r(qi : x) = pi, if qi ∧ x 6= x (By Theorems 3.5, 3.6)

qi ∧m, if pi ∧ x 6= x (By Corollary 3.1).

Let A = {p1, p2, . . . , pn} and B = {r(a : x) | x ∈ L, r(a : x) is a prime
element of L}. We prove that A = B. Let x ∈ L such that r(a : x) is a prime
element of L.

(a : x) ∧m = [(q1 ∧ q2 ∧ · · · qn) : x] ∧m
= (q1 : x) ∧ (q2 : x) ∧ · · · ∧ (qn : x) ∧m (By R4 of Definition 2.5).

If qi∧x = x, for all i, then qi : x is maximal. So that (a : x)∧m = m. Therefore,
r(a : x) = r(m) = m. This is a contradiction to r(a : x) is a prime element of
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L. Therefore, qi ∧ x 6= x for atleast one i. Hence we can rearrange q1, q2, . . . , qn
such that qi ∧ x 6= x for 1 6 i 6 k and qi ∧ x = x for k + 1 6 i 6 n. Then
r(a : x) = r[(q1 : x) ∧ (q2 ∧ x) ∧ · · · ∧ (qn : x) ∧m]. By Theorem 3.4, we get that

r(a : x) = r(q1 : x) ∧ r(q2 : x) ∧ · · · ∧ r(qk : x) ∧ r(qk+1 : x) ∧ · · · ∧ r(qn : x) ∧m
= p1 ∧ p2 ∧ · · · ∧ pk ∧m
= p1 ∧ p2 ∧ · · · ∧ pk.

So that p1 ∧ p2 ∧ · · · ∧ pk is a prime element of L. By Lemma 3.5, we get that
r(a : x) ∧ pi = pi, for some i. But since pi ∧ pj = pj ∧ pi for all j, we get that
r(a : x) ∧ pi = r(a : x). Therefore, r(a : x) = pi. Hence r(a : x) ∈ A. Now,
suppose pi ∈ A. Write x = q1 ∧ q2 ∧ · · · ∧ qi−1 ∧ qi+1 ∧ · · · ∧ qn. Then qj ∧ x = x
for j = 1, 2, . . . , i− 1, i+ 1, . . . , n. Then

(a : x) ∧m = [(q1 ∧ q2 ∧ · · · ∧ qn) : x] ∧m
= (q1 : x) ∧ (q2 : x) ∧ · · · ∧ (qn : x) ∧m (By R4 of Definition 2.5)

= (qi : x) ∧m.

So that, r(a : x) = r(qi : x) = pi (Since qi∧x = a 6= x). Therefore, pi ∈ B. Hence
A = B. Thus A = {p1, p2, . . . , pn} is independent of the choice of the normal
primary decomposition of a.

Finally, in the following, we give the uniqueness theorem whose proof follows
from Theorem 3.7 above.

Theorem 3.8. Let L be a complete complemented residuated ADL with a max-
imal element m satisfying the a.c.c. and a ∈ L. Then any two normal primary
decompositions of a have the same number of components and the same set of
corresponding primes.
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