Discussiones Mathematicae General Algebra and Applications 39 (2019) 263–275 doi:10.7151/dmgaa.1316

UNIQUENESS THEOREM IN COMPLETE RESIDUATED ALMOST DISTRIBUTIVE LATTICES

G.C. RAO AND S.S. RAJU

Department of Mathematics Andhra University Visakhpatanam - 530003, A.P., India

e-mail: gcraomaths@yahoo.co.in ssrajumaths@gmail.com

Abstract

Important properties of primary elements in a complete residuated ADL L and the uniqueness theorem in a complete complemented residuated ADL L are proved.

Keywords: Almost Distributive Lattice (ADL), residuation, multiplication, residuated ADL, complete residuated ADL, primary decomposition, reduced primary decomposition and normal primary decomposition.

2010 Mathematics Subject Classification: 06D99, 06D15.

1. INTRODUCTION

Swamy and Rao [10] introduced the concept of an Almost Distributive Lattice (ADL) as a common abstraction of almost all the existing ring theoretic generalizations of a Boolean algebra (like regular rings, *p*-rings, biregular rings, associate rings, P_1 -rings etc.) on one hand and distributive lattices on the other.

In [1], Dilworth, has introduced the concept of a residuation in lattices and in [11, 12], Ward and Dilworth, have studied residuated lattices. In [13], Ward, has studied residuated distributive lattices. We introduced the concepts of a residuation and a multiplication in an ADL and the concept of a residuated ADL in our earlier paper [7]. We have proved some important properties of residuation ':' and multiplication '.' in a residuated ADL L in [8]. In [5], we introduced the concept of principal element in a residuated ADL and in [6], we introduced the concept of principal residuated almost distributive lattice (or P-ADL). In this paper, we prove important properties of primary elements in a complete residuated ADL L and prove the uniqueness theorem in a complete complemented residuated ADL L.

In Section 2, we recall the definition of an Almost Distributive Lattice (ADL) and certain elementary properties of an ADL from [2, 10] and some important results on a residuated almost distributive lattice from our earlier papers [7, 8].

In Section 3, if L is a complete residuated ADL with a maximal element m satisfying the ascending chain condition, p is a prime element of L and q_1 , q_2 are two p-primary elements of L, then we prove that $q_1 \wedge q_2$ is also a p-primary element of L. We prove important results in a complete residuated ADL L. If L is a complete complemented residuated ADL with a maximal element m satisfying the a.c.c. and $a \in L$, then we prove that any two normal primary decompositions of an element a have the same number of components and the same set of corresponding primes.

2. Preliminaries

In this section we collect a few important definitions and results which are already known and which will be used more frequently in the paper. We begin with the definition of an ADL:

Definition 2.1 [2]. An Almost Distributive Lattice (ADL) is an algebra (L, \lor, \land) of type (2, 2) satisfying

(1)
$$(a \lor b) \land c = (a \land c) \lor (b \land c)$$

- (2) $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c),$
- (3) $(a \lor b) \land b = b$,
- (4) $(a \lor b) \land a = a$,
- (5) $a \lor (a \land b) = a$, for all $a, b, c \in L$.

It can be seen directly that every distributive lattice is an ADL. If there is an element $0 \in L$ such that $0 \wedge a = 0$ for all $a \in L$, then $(L, \lor, \land, 0)$ is called an ADL with 0.

Example 2.1 [2]. Let X be a non-empty set. Fix $x_0 \in X$. For any $x, y \in L$, define

$$x \wedge y = \begin{cases} x_0, & \text{if } x = x_0 \\ y, & \text{if } x \neq x_0 \end{cases} \qquad x \vee y = \begin{cases} y, & \text{if } x = x_0 \\ x, & \text{if } x \neq x_0. \end{cases}$$

Then (X, \lor, \land, x_0) is an ADL with 0 and x_0 is the zero element. This ADL is called a *discrete ADL*.

For any $a, b \in L$, we say that a is less than or equal to b and write $a \leq b$, if $a \wedge b = a$. Then " \leq " is a partial ordering on L.

Theorem 2.1 [2]. Let $(L, \lor, \land, 0)$ be an ADL with '0'. Then, for any $a, b \in L$, we have

- (1) $a \wedge 0 = 0$ and $0 \vee a = a$,
- (2) $a \wedge a = a = a \lor a$,
- (3) $(a \wedge b) \vee b = b, a \vee (b \wedge a) = a \text{ and } a \wedge (a \vee b) = a,$
- (4) $a \wedge b = a \iff a \vee b = b$ and $a \wedge b = b \iff a \vee b = a$,
- (5) $a \wedge b = b \wedge a$ and $a \vee b = b \vee a$ whenever $a \leq b$,
- (6) $a \wedge b \leq b$ and $a \leq a \vee b$,
- (7) \wedge is associative in L,
- $(8) \ a \wedge b \wedge c = b \wedge a \wedge c,$
- (9) $(a \lor b) \land c = (b \lor a) \land c,$
- $(10) \ a \wedge b = 0 \Longleftrightarrow b \wedge a = 0,$
- (11) $a \lor (b \lor a) = a \lor b$.

It can be observed that an ADL L satisfies almost all the properties of a distributive lattice except, possible the right distributivity of \lor over \land , the commutativity of \lor , the commutativity of \land and the absorption law $(a \land b) \lor a = a$. Any one of these properties convert L into a distributive lattice.

Theorem 2.2 [2]. Let $(L, \lor, \land, 0)$ be an ADL with 0. Then the following are equivalent:

- (1) $(L, \lor, \land, 0)$ is a distributive lattice,
- (2) $a \lor b = b \lor a$, for all $a, b \in L$,
- (3) $a \wedge b = b \wedge a$, for all $a, b \in L$,
- (4) $(a \wedge b) \lor c = (a \lor c) \land (b \lor c)$, for all $a, b, c \in L$.

Proposition 2.1 [2]. Let (L, \vee, \wedge) be an ADL. Then for any $a, b, c \in L$ with $a \leq b$, we have

(1) $a \wedge c \leq b \wedge c$, (2) $c \wedge a \leq c \wedge b$, (3) $c \vee a \leq c \vee b$.

Definition 2.2 [2]. An element $m \in L$ is called maximal if it is maximal in the partially ordered set (L, \leq) . That is, for any $a \in L$, $m \leq a$ implies m = a.

Theorem 2.3 [2]. Let L be an ADL and $m \in L$. Then the following are equivalent:

(1) m is maximal with respect to \leq ,

- (2) $m \lor a = m$, for all $a \in L$,
- (3) $m \wedge a = a$, for all $a \in L$.

Lemma 2.1 [2]. Let L be an ADL with a maximal element m and $x, y \in L$. If $x \wedge y = y$ and $y \wedge x = x$ then x is maximal if and only if y is maximal. Also the following conditions are equivalent:

- (i) $x \wedge y = y$ and $y \wedge x = x$,
- (ii) $x \wedge m = y \wedge m$.

Definition 2.3 [9]. If $(L, \lor, \land, 0, m)$ is an ADL with 0 and with a maximal element m, then the set I(L) of all ideals of L is a complete lattice under set inclusion. In this lattice, for any $I, J \in I(L)$, the l.u.b. and g.l.b. of I, J are given by $I \lor J = \{(x \lor y) \land m \mid x \in I, y \in J\}$ and $I \land J = I \cap J$.

The set $PI(L) = \{(a) \mid a \in L\}$ of all principal ideals of L forms a sublattice of I(L). (Since $(a) \lor (b) = (a \lor b]$ and $(a) \cap (b) = (a \land b]$).

Definition 2.4 [9]. An ADL $L = (L, \lor, \land, 0, m)$ with a maximal element m is said to be a *complete ADL*, if PI(L) is a complete sub lattice of the lattice I(L).

Theorem 2.4 [9]. Let $L = (L, \lor, \land, 0, m)$ be an ADL with a maximal element m. Then L is a complete ADL if and only if the lattice $([0, m], \lor, \land)$ is a complete lattice.

In the following, we give the concepts of residuation and multiplication in an almost distributive lattice (ADL) L and the definition of a residuated almost distributive lattice taken from our earlier paper [7].

Definition 2.5 [7]. Let L be an ADL with a maximal element m. A binary operation : on an ADL L is called a *residuation* over L if, for $a, b, c \in L$ the following conditions are satisfied.

- (R1) a:b is maximal if and only if $a \wedge b = b$,
- (R2) $a \wedge b = b \Longrightarrow$ (i) $(a:c) \wedge (b:c) = b:c$ and (ii) $(c:b) \wedge (c:a) = c:a$,
- (R3) $[(a:b):c] \land m = [(a:c):b] \land m,$
- $(R4) \ [(a \land b) : c] \land m = (a : c) \land (b : c) \land m,$
- $(R5) [c: (a \lor b)] \land m = (c: a) \land (c: b) \land m.$

Definition 2.6 [7]. Let L be an ADL with a maximal element m. A binary operation . on an ADL L is called a *multiplication* over L if, for $a, b, c \in L$ the following conditions are satisfied.

- $(M1) \ (a.b) \wedge m = (b.a) \wedge m,$
- $(M2) \ [(a.b).c] \land m = [a.(b.c)] \land m,$

266

 $(M3) (a.m) \wedge m = a \wedge m,$

 $(M4) \ [a.(b \lor c)] \land m = [(a.b) \lor (a.c)] \land m.$

Definition 2.7 [7]. An ADL L with a maximal element m is said to be a *residu*ated almost distributive lattice (residuated ADL), if there exists two binary operations ':' and '.' on L satisfying conditions R1 to R5, M1 to M4 and the following condition (A).

(A) $(x:a) \wedge b = b$ if and only if $x \wedge (a.b) = a.b$, for any $x, a, b \in L$.

We use the following properties frequently later in the results.

Lemma 2.2 [7]. Let L be an ADL with a maximal element m and . a binary operation on L satisfying the conditions M1-M4. Then for any $a, b, c, d \in L$,

(i) $a \wedge (a.b) = a.b$ and $b \wedge (a.b) = a.b$,

- (ii) $a \wedge b = b \Longrightarrow (c.a) \wedge (c.b) = c.b$ and $(a.c) \wedge (b.c) = b.c$,
- (iii) $d \wedge [(a.b).c] = (a.b).c$ if and only if $d \wedge [a.(b.c)] = a(b.c)$,
- (iv) $(a.c) \land (b.c) \land [(a \land b).c] = (a \land b).c,$
- (v) $d \wedge (a.c) \wedge (b.c) = (a.c) \wedge (b.c) \Longrightarrow d \wedge [(a \wedge b).c] = (a \wedge b).c,$
- (vi) $d \wedge [(a.c) \vee (b.c)] = (a.c) \vee (b.c) \Leftrightarrow d \wedge [(a \vee b).c] = (a \vee b).c.$

The following result is a direct consequence of M1 of definition 2.5.

Lemma 2.3 [7]. Let L be an ADL with a maximal element m and . a binary operation on L satisfying the condition M1. For $a, b, x \in L$, $a \wedge (x.b) = x.b$ if and only if $a \wedge (b.x) = b.x$.

In the following, we give some important properties of residuation ':' and multiplication '.' in a residuated ADL L. These are taken from our earlier paper [8].

Lemma 2.4 [8]. Let L be a residuated ADL with a maximal element m. For $a, b, c, d \in L$, the following hold in L.

- (1) $(a:b) \wedge a = a$,
- (2) $[a:(a:b)] \land (a \lor b) = a \lor b,$
- (3) $[(a:b):c] \wedge [a:(b.c)] = a:(b.c),$
- (4) $[a:(b.c)] \land [(a:b):c] = (a:b):c,$
- (5) $[(a \wedge b) : b] \wedge (a : b) = a : b,$
- (6) $(a:b) \wedge [(a \wedge b):b] = (a \wedge b):b,$
- (7) $[a:(a \lor b)] \land m = (a:b) \land m,$
- (8) $[c:(a \land b)] \land [(c:a) \lor (c:b)] = (c:a) \lor (c:b),$

- (9) If a: b = a then $a \land (b.d) = b.d \Longrightarrow a \land d = d$,
- (10) $\{a: [a: (a:b)]\} \land (a:b) = a:b,$
- (11) $[(a \lor b) : c] \land [(a : c) \lor (b : c)] = (a : c) \lor (b : c),$
- (12) $a \wedge m \ge b \wedge m \Longrightarrow (a:c) \wedge m \ge (b:c) \wedge m$,
- (13) $(a:b) \land \{a: [a:(a:b)]\} = a: [a:(a:b)],$
- (14) $a \wedge b = b \Longrightarrow (a.c) \wedge (b.c) = b.c,$
- (15) $a \wedge b \wedge (a.b) = a.b$,
- (16) $[(a.b):a] \wedge b = b,$
- (17) $(a.b) \wedge [(a \wedge b).(a \vee b)] = (a \wedge b).(a \vee b),$
- (18) $a \lor b$ is maximal \Longrightarrow $(a.b) \land a \land b = a \land b$.

We give the following concepts on a residuated ADL L from our earlier paper [5].

Definition 2.8 [5]. An element p of a residuated ADL L is called

- (i) prime, if, p is not a maximal element of L and for any $a, b \in L$, $p \wedge (a.b) = a.b \Longrightarrow$ either $p \wedge a = a$ or $p \wedge b = b$.
- (ii) primary, if, p is not a maximal element of L and for any $a, b \in L$, $p \wedge (a.b) = a.b$ and $p \wedge a \neq a \Longrightarrow p \wedge b^s = b^s$, for some $s \in Z^+$.

Definition 2.9 [5]. An ADL *L* is said to satisfy the *ascending chain condition* (a.c.c.), if for every increasing sequence $x_1 \leq x_2 \leq x_3 \leq \cdots$, in *L*, there exists a positive integer n such that $x_n = x_{n+1} = x_{n+2} = \cdots$.

3. Uniqueness theorem in complete residuated ADL's

In this section, if L is a complete residuated ADL with a maximal element m satisfying the ascending chain condition (a.c.c.), p is a prime element of L and q_1, q_2 are two p-primary elements of L, then we prove that $q_1 \wedge q_2$ is also a p-primary element of L. We prove important results in a complete residuated ADL L. If L is a complete complemented residuated ADL with a maximal element m satisfying the a.c.c. and $a \in L$, then we prove that any two normal primary decompositions of an element a have the same number of components and the same set of corresponding primes.

Let us recall the following definitions from [5].

Definition 3.1 [5]. An element a of a residuated ADL L is said to have a primary decomposition, if there exists primary elements q_1, q_2, \ldots, q_l in L such that $a = q_1 \land q_2 \land \cdots \land q_l$. In this case a is called a decomposable element of L.

268

Definition 3.2 [5]. Let L be an ADL and $a \in L$. An element $a' \in L$ is said to be a complement of a in L if $a \wedge a' = 0$ and $a \vee a'$ is maximal. In this case we say that a is a complemented element of L. If each element of L is complemented, then L is called a complemented ADL.

In the following, we give the concepts of the radical of an element and a p-primary element in a complete ADL with a maximal element m. These are taken from [3] and [6].

Definition 3.3 [3]. Let L be a complete ADL with a maximal element m. Suppose '.' is a multiplication on L and $a \in L$. Let $R_a = \{x \in L \mid a \land x^k = x^k, \text{ for some } k \in Z^+\}$. Then $\bigvee_{x \in R_a} (x \land m)$ is called radical of a and it is denoted by r(a).

Definition 3.4 [3]. Let L be a complete ADL with a maximal element m and p, a prime element of L. An element q of L is called p-primary, if q is a primary element of L and r(q) = p.

Theorem 3.1 [3]. Let L be a complete residuated ADL with a maximal element m and $a, b \in L$. Then

- (1) $r(a) \wedge a = a \text{ and } r(a) \leq r(r(a)).$
- (2) If a is a maximal element of L, then r(a) is a maximal element of L,
- (3) $a \wedge b = b \Longrightarrow r(b) \leqslant r(a)$ and hence $b \leqslant a \Longrightarrow r(b) \leqslant r(a)$,
- (4) $r(a.b) = r(a \land b) \leqslant r(a) \land r(b),$
- (5) $r(a) \lor r(b) \leqslant r(a \lor b) \leqslant r[r(a) \lor r(b)],$
- (6) If $a \wedge b^k = b^k$, for some $k \in Z^+$, then $r(b) \leq r(a)$ and hence $b^k \leq a \Longrightarrow r(b) \leq r(a)$,
- (7) If p is a prime element of L, then $r(p) = p \wedge m = r(p \wedge m)$ and $r(p^n) = p \wedge m$, for all $n \in Z^+$,
- (8) r(m) = m.

Theorem 3.2 [3]. Let L be a complete ADL with a maximal element m satisfying the a.c.c. and '. ' a multiplication on L. Then for any $a \in L$, there exists $k \in Z^+$ such that $a \wedge (r(a))^k = (r(a))^k$ and $a \wedge (r(a))^{k-1} \neq (r(a))^{k-1}$, for some $k \in Z^+$.

Lemma 3.1 [6]. Let L be an ADL with a maximal element m, '.' a multiplication on L and $a, b \in L$ such that $a \wedge b = b$. Then $a^n \wedge b^n = b^n$, for any $n \in Z^+$.

We prove the following Lemma in a complete residuated ADL L with a maximal element m.

Lemma 3.2. Let L be a complete residuated ADL with a maximal element m. If q is an element of L such that r(q) = p. Then q is p-primary if and only if for any $a, b \in L$, $q \land (a.b) = a.b \Longrightarrow$ either $q \land a = a$ or $p \land b = b$. **Proof.** Suppose q is a p-primary element of L. That is, q is a primary element of L and r(q) = p. Let $a, b \in L$ such that $q \wedge (a.b) = a.b$ Since q is a primary element of L, we get that either $q \wedge a = a$ or $q \wedge b^s = b^s$ for some $s \in Z^+$. If $q \wedge b^s = b^s$, then by Theorem 3.1 (6), we get that $r(b) \leq r(q) = p$. Now, $b \wedge m \leq r(b) \leq p$ and hence $p \wedge b = b$. Therefore, $q \wedge (a.b) = a.b \Longrightarrow$ either $q \wedge a = a$ or $p \wedge b = b$. Conversely, suppose that $q \in L$ and r(q) = p. Assume that $q \wedge (a.b) = a.b \Longrightarrow$ either $q \wedge a = a$ or $p \wedge b = b$ for any $a, b \in L$. We prove that q is a primary element of L. By Theorem 3.2, there exists $n \in Z^+$ such that $q \wedge p^n = p^n$. Now, $p \wedge b = b$.

 $\implies p^n \wedge b^n = b^n, \text{ for any } n \in Z^+ \text{ (By Lemma 3.1)}$ $\implies q \wedge p^n \wedge b^n = q \wedge b^n$ $\implies p^n \wedge b^n = q \wedge b^n \text{ (Since } q \wedge p^n = p^n)$ $\implies q \wedge b^n = b^n \text{ (Since } p^n \wedge b^n = b^n).$

Hence q is a primary element of L. Thus q is a p-primary element of L.

Theorem 3.3. Let L be a complete residuated ADL with a maximal element m satisfying the ascending chain condition and p, a prime element of L. If q_1 and q_2 are two p-primary elements of L, then $q_1 \wedge q_2$ is also a p-primary element of L.

Proof. Suppose q_1 and q_2 are two p-primary elements of L. That is, q_1 and q_2 are primary elements of L and $r(q_1) = p = r(q_2)$. We prove that $q_1 \wedge q_2$ is a *p*-primary element of L. First we prove that $r(q_1 \wedge q_2) = p$. By property (4) of Theorem 3.1, we have $r(q_1 \wedge q_2) \leq r(q_1) \wedge r(q_2) = p$. By Theorem 3.2, we have $q_1 \wedge [r(q_1)]^k = [r(q_1)]^k$, for some $k \in Z^+$ and $q_2 \wedge [r(q_2)]^t = [r(q_2)]^t$, for some $t \in Z^+$. Since $r(q_1) = p = r(q_2)$, we get that $q_1 \wedge p^k = p^k$ and $q_2 \wedge p^t = p^t$, for some $k, t \in Z^+$. Let $s = \max \{k, t\}$. Then $q_1 \wedge p^s = p^s$ and $q_2 \wedge p^s = p^s$. Now, $q_1 \wedge q_2 \wedge p^s = q_1 \wedge p^s = p^s$. So that $p \in R_{q_1 \wedge q_2}$. Hence $p \leq r(q_1 \wedge q_2)$. Thus $r(q_1 \wedge q_2) = p$. Now, we prove that $q_1 \wedge q_2$ is a primary element of L. Let $a, b \in L$. Suppose $q_1 \wedge q_2 \wedge (a,b) = a, b$ and $q_1 \wedge q_2 \wedge a \neq a$. Then $q_1 \wedge (a,b) = a, b$ and $q_2 \wedge (a,b) = a,b$. We prove that $q_1 \wedge q_2 \wedge b^s = b^s$ for some $s \in Z^+$. Since $q_1 \wedge q_2 \wedge a \neq a$, we get that either $q_1 \wedge a \neq a$ or $q_2 \wedge a \neq a$. If $q_1 \wedge a \neq a$, then, by Lemma 3.2, we get that $p \wedge b = b$. If $q_2 \wedge a \neq a$, then again, by Lemma 3.2, we get that $p \wedge b = b$. By Lemma 3.2, we get that $q_1 \wedge q_2 \wedge b^s = b^s$, for some $s \in Z^+$. Hence $q_1 \wedge q_2$ is a primary element of L. Thus $q_1 \wedge q_2$ is a p-primary element of L.

In the following, we give the concepts of reduced primary decomposition and normal primary decomposition of an element in a complete residuated ADL L. These are taken from our earlier paper [4].

Definition 3.5 [4]. Let L be a complete residuated ADL with a maximal element m and $a \in L$. A primary decomposition $q_1 \wedge q_2 \wedge \cdots \wedge q_l$ of a is said to be reduced, if, $q_1 \wedge q_2 \wedge \cdots \wedge q_{i-1} \wedge q_{i+1} \wedge \cdots \wedge q_l \neq a$ for $1 \leq i \leq l$.

Definition 3.6 [4]. Let *L* be a complete residuated ADL with a maximal element *m* and $a \in L$. A reduced primary decomposition $q_1 \wedge q_2 \wedge \cdots \wedge q_l$ of *a* is called a normal primary decomposition (or a normal decomposition), if, $r(q_i) \neq r(q_j)$ for $i \neq j$. Here q_i is called a component of *a*.

Note that from every primary decomposition, we can obtain a normal primary decomposition by removing superfluous q_i 's. (that is if $q_i \wedge q_j = q_j$, then q_i is removed) and q_i 's with same radicals are combined (Theorem 3.3).

Lemma 3.3. Let L be a complete residuated ADL with a maximal element m. For $a \in L$, write $R_a = \{x \in L \mid a \land x^k = x^k, \text{ for some } k \in Z^+\}$. If $a, b, x, y \in L$ such that $x \in R_a$ and $y \in R_b$, then $x \land y \in R_{a \land b}$.

Proof. Let $x, y, a, b \in L$. Then, since $x \wedge x \wedge y = x \wedge y$ and $y \wedge x \wedge y = x \wedge y$, by Lemma 3.1, we get that $x^k \wedge (x \wedge y)^k = (x \wedge y)^k$ and $y^k \wedge (x \wedge y)^k = (x \wedge y)^k$, for any $k \in Z^+$. Therefore, $x^k \wedge y^k \wedge (x \wedge y)^k = (x \wedge y)^k$. Suppose that $x \in R_a$ and $y \in R_b$. Then, we get that, $a \wedge x^k = x^k$ and $b \wedge y^k = y^k$, for some $k \in Z^+$. So that $a \wedge b \wedge x^k \wedge y^k = x^k \wedge y^k$. Now, $a \wedge b \wedge (x \wedge y)^k = a \wedge b \wedge x^k \wedge y^k \wedge (x \wedge y)^k =$ $x^k \wedge y^k \wedge (x \wedge y)^k = (x \wedge y)^k$. Hence $x \wedge y \in R_{a \wedge b}$.

Lemma 3.4. Let L be a complete ADL with a maximal element m, $\{x_{\alpha} \mid \alpha \in J\} \subseteq L$ and y, a complemented elemented element of L. Then

- (i) $y \wedge [\bigvee_{\alpha \in J} (x_{\alpha} \wedge m)] = \bigvee_{\alpha \in J} (y \wedge x_{\alpha} \wedge m)$ and
- (ii) $[\bigvee_{\alpha \in J} (x_{\alpha} \wedge m)] \wedge y \wedge m = \bigvee_{\alpha \in J} (x_{\alpha} \wedge y \wedge m).$

Proof. Let $\{x_{\alpha} \mid \alpha \in J\} \subseteq L$.

(i) Write $x = \bigvee_{\alpha \in J} (x_{\alpha} \wedge m)$ and $z = \bigvee_{\alpha \in J} (y \wedge x_{\alpha} \wedge m)$. Then $x, z \in [0, m]$ (Since [0, m] is a complete lattice). Now, $x_{\alpha} \wedge m \leq x$, for all $\alpha \in J$.

$$\implies y \wedge x_{\alpha} \wedge m \leqslant y \wedge x, \text{ for all } \alpha \in J$$
$$\implies \bigvee_{\alpha \in J} (y \wedge x_{\alpha} \wedge m) \leqslant y \wedge x$$
$$\implies z \leqslant y \wedge x.$$

Again, $z \in L$ and $y \wedge x_{\alpha} \wedge m \leq z$, for all $\alpha \in J$.

 $\begin{array}{l} \Longrightarrow y^{'} \lor (y \land x_{\alpha} \land m) \leqslant y^{'} \lor z, \text{ for all } \alpha \in J. \\ \Longrightarrow (y^{'} \lor y) \land [y^{'} \lor (x_{\alpha} \land m)] \leqslant y^{'} \lor z, \text{ for all } \alpha \in J. \\ \Longrightarrow y^{'} \lor (x_{\alpha} \land m) \leqslant y^{'} \lor z, \text{ for all } \alpha \in J \text{ (Since } y^{'} \lor y \text{ is a maximal } \\ \text{element of } L). \\ \Longrightarrow [y^{'} \lor (x_{\alpha} \land m)] \land m \leqslant (y^{'} \lor z) \land m, \text{ for all } \alpha \in J. \\ \Longrightarrow (x_{\alpha} \land m) \lor (y^{'} \land m) \leqslant (y^{'} \lor z) \land m, \text{ for all } \alpha \in J. \\ \Longrightarrow x_{\alpha} \land m \leqslant (y^{'} \lor z) \land m, \text{ for all } \alpha \in J. \\ \Longrightarrow \bigvee_{\alpha \in J} (x_{\alpha} \land m) \leqslant (y^{'} \lor z) \land m, \text{ for all } \alpha \in J. \\ \Longrightarrow \chi \leqslant (y^{'} \lor z) \land m. \end{array}$

$$\implies y \land x \leqslant y \land (y' \lor z) \land m = [(y \land y') \lor (y \land z)] \land m = y \land z \land m \leqslant z \land m = z,$$
$$\implies y \land x \leqslant z.$$

Therefore, we get that $y \wedge x = z$. Hence $y \wedge [\bigvee_{\alpha \in J} (x_{\alpha} \wedge m)] = \bigvee_{\alpha \in J} (y \wedge x_{\alpha} \wedge m)$. (ii) follows from (i).

In the following result, if L is a complete complemented residuated ADL with a maximal element m, then, for any $a, b \in L$, we prove that $r(a \wedge b) = r(a) \wedge r(b)$.

Theorem 3.4. Let *L* be a complete complemented residuated ADL with a maximal element *m*. For $a, b \in L$, write $R_a = \{x \in L \mid a \land x^k = x^k, \text{ for some } k \in Z^+\}$. Then $r(a \land b) = r(a) \land r(b)$.

Proof. Let $a, b \in L$. Fix $x \in R_a$. Then, by Lemma 3.3, for any $y \in R_b$, we get that $x \wedge y \in R_{a \wedge b}$.

 $\implies x \wedge y \wedge m \leqslant r(a \wedge b), \text{ for any } y \in R_b$ $\implies \bigvee_{y \in R_b} (x \wedge y \wedge m) \leqslant r(a \wedge b)$ $\implies x \wedge [\bigvee_{y \in R_b} (y \wedge m)] \leqslant r(a \wedge b) \text{ (By Lemma 3.4 (i))}$ $\implies x \wedge r(b) \leqslant r(a \wedge b), \text{ for any } x \in R_a$ $\implies x \wedge r(b) \wedge m \leqslant r(a \wedge b), \text{ for any } x \in R_a$ $\implies \bigvee_{x \in R_a} (x \wedge r(b) \wedge m) \leqslant r(a \wedge b)$ $\implies [\bigvee_{x \in R_a} (x \wedge m)] \wedge r(b) \wedge m \leqslant r(a \wedge b) \text{ (By Lemma 3.4 (ii))}$ $\implies r(a) \wedge r(b) \leqslant r(a \wedge b).$

By Theorem 3.1(4), we have $r(a \wedge b) \leq r(a) \wedge r(b)$. Hence $r(a \wedge b) = r(a) \wedge r(b)$.

Now, we prove the following Lemma.

Lemma 3.5. Let *L* be an ADL with a maximal element *m* and *p*, a prime element of *L*. If, for any $a_1, a_2, \ldots, a_n \in L$, $p \wedge a_1 \wedge a_2 \wedge \cdots \wedge a_n = a_1 \wedge a_2 \wedge \cdots \wedge a_n$, then $p \wedge a_i = a_i$, for some *i*, where $1 \leq i \leq n$.

Proof. Let p be a prime element of L and $a_1, a_2, \ldots, a_n \in L$. Suppose that $p \wedge a_1 \wedge a_2 \wedge \cdots \wedge a_n = a_1 \wedge a_2 \wedge \cdots \wedge a_n$. Then $p \wedge a_1 \wedge a_2 \wedge \cdots \wedge a_n \wedge (a_1.a_2 \cdots a_n) = a_1 \wedge a_2 \wedge \cdots \wedge a_n \wedge (a_1.a_2 \cdots a_n)$. By property (15) of Lemma 2.4, we get that $p \wedge (a_1.a_2 \cdots a_n) = a_1.a_2 \cdots a_n$. Since p is a prime element of L, we get that $p \wedge a_i = a_i$, for some i, where $1 \leq i \leq n$.

Lemma 3.6. Let L be a complete residuated ADL with a maximal element m and p, a prime element of L. Suppose a is a decomposable element of L such that $p \wedge a = a$. If $a = q_1 \wedge q_2 \wedge \cdots \wedge q_n$ is a normal primary decomposition of a, then $p \wedge r(q_i) = r(q_i)$, for some i.

Proof. Suppose $a = q_1 \land q_2 \land \cdots \land q_n$ is a normal primary decomposition of a in L. Let $r(q_i) = p_i$, for $1 \leq i \leq n$. Now, $p \land a = a$.

 $\implies p \land q_1 \land q_2 \land \dots \land q_n = q_1 \land q_2 \land \dots \land q_n$

272

 $\implies p \land q_i = q_i, \text{ for some } i \text{ (By Lemma 3.5)} \\ \implies r(p) \land r(q_i) = r(q_i) \\ \implies p \land m \land r(q_i) = r(q_i) \\ \implies p \land r(q_i) = r(q_i), \text{ for some } i.$

The following results are taken from our earlier paper [3].

Theorem 3.5 [3]. Let L be a complete residuated ADL with a maximal element m which satisfies the a.c.c. If q is a p-primary element of L and a is any element of L such that $q \land a \neq a$ then q : a is a p-primary element of L such that $(q:a) \land [r(q)]^k = [r(q)]^k$ and $(q:a) \land [r(q)]^{k-1} \neq [r(q)]^{k-1}$, for some $k \in Z^+$.

Theorem 3.6 [3]. Let L be a complete residuated ADL with a maximal element m which satisfies the a.c.c. If q is a p-primary element of L and a is any element of L such that $q \land a \neq a$, then r(q:a) = p.

Corollary 3.1 [3]. Let L be a complete ADL with a maximal element m and $a \in L$. Suppose '.' is a multiplication on L and q is a p-primary element of L. Then $p \land a \neq a$ if and only if $q : a = q \land m$.

Now, we prove the following theorem in a complete complemented residuated ADL.

Theorem 3.7. Let L be a complete complemented residuated ADL with a maximal element m satisfying the a.c.c. and a be a decomposable element of L. Let $a = q_1 \land q_2 \land \cdots \land q_n$ be a normal primary decomposition of a and $p_i = r(q_i)$, for $1 \leq i \leq n$. Then p_i 's are precisely the prime elements that occur in $\{r(a : x) \mid x \in L\}$ upto equivalence. Hence they are independent of the decomposition.

Proof. Let q be a p-primary element of L and $x \in L$. Since $a = q_1 \land q_2 \land \cdots \land q_n$ be a normal primary decomposition of a and $p_i = r(q_i)$, for $1 \leq i \leq n$. Therefore, for $1 \leq i \leq n$, we have

 $q_i: x = \begin{cases} \text{a maximal element of L,} & \text{if } q_i \wedge x = x \text{ (By R1 of Definition 2.5)} \\ \text{primary and } r(q_i: x) = p_i, & \text{if } q_i \wedge x \neq x \text{ (By Theorems 3.5, 3.6)} \\ q_i \wedge m, & \text{if } p_i \wedge x \neq x \text{ (By Corollary 3.1).} \end{cases}$

Let $A = \{p_1, p_2, \ldots, p_n\}$ and $B = \{r(a : x) \mid x \in L, r(a : x) \text{ is a prime element of } L\}$. We prove that A = B. Let $x \in L$ such that r(a : x) is a prime element of L.

$$(a:x) \wedge m = [(q_1 \wedge q_2 \wedge \dots \cdot q_n):x] \wedge m$$

= $(q_1:x) \wedge (q_2:x) \wedge \dots \wedge (q_n:x) \wedge m$ (By R4 of Definition 2.5).

If $q_i \wedge x = x$, for all *i*, then $q_i : x$ is maximal. So that $(a : x) \wedge m = m$. Therefore, r(a : x) = r(m) = m. This is a contradiction to r(a : x) is a prime element of

L. Therefore, $q_i \wedge x \neq x$ for atleast one *i*. Hence we can rearrange q_1, q_2, \ldots, q_n such that $q_i \wedge x \neq x$ for $1 \leq i \leq k$ and $q_i \wedge x = x$ for $k + 1 \leq i \leq n$. Then $r(a:x) = r[(q_1:x) \wedge (q_2 \wedge x) \wedge \cdots \wedge (q_n:x) \wedge m]$. By Theorem 3.4, we get that $r(a:x) = r(q_1:x) \wedge r(q_2:x) \wedge \cdots \wedge r(q_k:x) \wedge r(q_{k+1}:x) \wedge \cdots \wedge r(q_n:x) \wedge m$ $= p_1 \wedge p_2 \wedge \cdots \wedge p_k \wedge m$ $= p_1 \wedge p_2 \wedge \cdots \wedge p_k.$

So that $p_1 \wedge p_2 \wedge \cdots \wedge p_k$ is a prime element of L. By Lemma 3.5, we get that $r(a:x) \wedge p_i = p_i$, for some i. But since $p_i \wedge p_j = p_j \wedge p_i$ for all j, we get that $r(a:x) \wedge p_i = r(a:x)$. Therefore, $r(a:x) = p_i$. Hence $r(a:x) \in A$. Now, suppose $p_i \in A$. Write $x = q_1 \wedge q_2 \wedge \cdots \wedge q_{i-1} \wedge q_{i+1} \wedge \cdots \wedge q_n$. Then $q_j \wedge x = x$ for $j = 1, 2, \ldots, i - 1, i + 1, \ldots, n$. Then

$$(a:x) \wedge m = [(q_1 \wedge q_2 \wedge \dots \wedge q_n):x] \wedge m$$

= $(q_1:x) \wedge (q_2:x) \wedge \dots \wedge (q_n:x) \wedge m$ (By R4 of Definition 2.5)
= $(q_i:x) \wedge m$.

So that, $r(a:x) = r(q_i:x) = p_i$ (Since $q_i \wedge x = a \neq x$). Therefore, $p_i \in B$. Hence A = B. Thus $A = \{p_1, p_2, \ldots, p_n\}$ is independent of the choice of the normal primary decomposition of a.

Finally, in the following, we give the *uniqueness theorem* whose proof follows from Theorem 3.7 above.

Theorem 3.8. Let L be a complete complemented residuated ADL with a maximal element m satisfying the a.c.c. and $a \in L$. Then any two normal primary decompositions of a have the same number of components and the same set of corresponding primes.

References

 R.P. Dilworth, Abstract residuation over lattices, Bull. Amer. Math. Soc. 44 (1938) 262-268.
 10 1000 (2000) 2004 1020 00726 5

 $\mathrm{doi:} 10.1090 / \mathrm{S0002}\text{-} 9904\text{-} 1938\text{-} 06736\text{-} 5$

- [2] G.C. Rao, Almost Distributive Lattices, Doctoral Thesis (Department of Mathematics, Andhra University, Visakhapatnam, 1980).
- [3] G.C. Rao and S.S. Raju, Complete residuated Almost Distributive Lattices, Communicated to the Journal Discussiones Mathematicae-General Algebra and Applications.
- [4] G.C. Rao and S.S Raju, Decomposition theorems in principal residuated Almost Distributive Lattices, Communicated to the Journal The Journal of the Chung Cheong Mathematical Society.
- [5] G.C. Rao and S.S Raju, Noether Almost Distributive Lattices, Bull. Intrnat. Math. Virtual Institute 9 (2019) 39–46.

- [6] G.C. Rao and S.S Raju, Principal Residuated Almost Distributive Lattices, Bull. Internat. Math. Virtual Institute 9 (2019) 219–230.
- [7] G.C. Rao and S.S Raju, Residuated Almost Distributive Lattices I, Internat. J. Math. Archive 8 (2017) 143–152.
- [8] G.C. Rao and S.S Raju, Residuated Almost Distributive Lattices II, Internat. J. Math. Archive 8 (2017) 190–198.
- G.C. Rao and Venugopalam Undurthi, Complete Almost Distributive Lattices, Asian-European J. Math. 7 (2014) 1450052 (8 pages). doi:10.1142/S1793557114500521
- [10] U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. (Series A) **31** (1981) 77–91. doi:10.1017/S1446788700018498
- [11] M. Ward and R.P. Dilworth, *Residuated lattices*, Proceedings of the National Academy of Sciences 24 (1938) 162–164. doi:10.1073/pnas.24.3.162
- M. Ward and R.P. Dilworth, *Residuated lattices*, Trans. Amer. Math. Soc. 45 (1939) 335–354.
 doi:10.1090/S0002-9947-1939-1501995-3
- [13] M. Ward, Residuated distributive lattices, Duke Math. J. 6 (1940) 641–651. doi:10.1215/S0012-7094-40-00649-4

Received 29 November 2018 Revised 11 July 2019 Accepted 12 July 2019