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1. INTRODUCTION

Swamy and Rao [10] introduced the concept of an Almost Distributive Lattice
(ADL) as a common abstraction of almost all the existing ring theoretic general-
izations of a Boolean algebra (like regular rings, p-rings, biregular rings, associate
rings, Pj-rings etc.) on one hand and distributive lattices on the other.

In [1], Dilworth, has introduced the concept of a residuation in lattices and
in [11, 12], Ward and Dilworth, have studied residuated lattices. In [13], Ward,
has studied residuated distributive lattices. We introduced the concepts of a
residuation and a multiplication in an ADL and the concept of a residuated
ADL in our earlier paper [7]. We have proved some important properties of
residuation > and multiplication ’.” in a residuated ADL L in [8]. In [5], we
introduced the concept of principal element in a residuated ADL and in [6], we
introduced the concept of principal residuated almost distributive lattice (or P-
ADL). In this paper, we prove important properties of primary elements in a
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complete residuated ADL L and prove the uniqueness theorem in a complete
complemented residuated ADL L.

In Section 2, we recall the definition of an Almost Distributive Lattice (ADL)
and certain elementary properties of an ADL from [2, 10] and some important
results on a residuated almost distributive lattice from our earlier papers [7, 8].

In Section 3, if L is a complete residuated ADL with a maximal element m
satisfying the ascending chain condition, p is a prime element of L and ¢1, g9
are two p-primary elements of L, then we prove that ¢; A ¢o is also a p-primary
element of L. We prove important results in a complete residuated ADL L.
If L is a complete complemented residuated ADL with a maximal element m
satisfying the a.c.c. and a € L, then we prove that any two normal primary
decompositions of an element a have the same number of components and the
same set of corresponding primes.

2. PRELIMINARIES

In this section we collect a few important definitions and results which are already
known and which will be used more frequently in the paper. We begin with the
definition of an ADL:

Definition 2.1 [2]. An Almost Distributive Lattice (ADL) is an algebra (L, V, A)
of type (2,2) satisfying
(1) (avb)Ac=(aNc)V (bAc),
(2) an(bVe)=(aNnb)V(aNc),
(3) (aVb)ANb=b,
(4) (avb)Na=a,
(5) aV (aAb) =a, for all a,b,c e L.
It can be seen directly that every distributive lattice is an ADL. If there is

an element 0 € L such that 0 Aa =0 for all a € L, then (L, V, A,0) is called an
ADL with 0.

Example 2.1 [2]. Let X be a non-empty set. Fix o € X. For any z,y € L,
define

| @, fx=ux9 _J oy, ifx=umx
LI?/\y—{% if x # xo J;\/y_{% if x # xo.

Then (X, V,A,xp) is an ADL with 0 and x¢ is the zero element. This ADL is
called a discrete ADL.

For any a,b € L, we say that a is less than or equal to b and write a < b, if
a ANb=a. Then “<” is a partial ordering on L.
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Theorem 2.1 [2]. Let (L,V,A,0) be an ADL with ’0°. Then, for any a,b € L,
we have

(1) an0=0and 0Va=a,

2) aha=a=aV a,

3) (aANb)Vb=b,aV (bANa)=a and a N (aVb)=a,
4) aNb=a<=aVb=bandaNb=b<=aVb=a,
5 aANb=bAa and aVb=">bV a whenever a < b,

6) aNb<banda<aVb,

7) A is associative in L,

8) aNbAc=bAaAc,

9) (avb)Ae=(bVa)Ac,

(10) aANb=0<=bAa=0,

(11) aVv (bVa)=aVb.

(
(
(
(
(
(
(
(

It can be observed that an ADL L satisfies almost all the properties of a
distributive  lattice except, possible the right distributivity of V over A, the
commutativity of V, the commutativity of A and the absorption law (aAb)Va = a.
Any one of these properties convert L into a distributive lattice.

Theorem 2.2 [2]. Let (L,V,A,0) be an ADL with 0. Then the following are
equivalent:

(1) (L,V,A,0) is a distributive lattice,

(2) avb=>bVa, foralla,be L,

(3) anb=bAa, foralla,be L,

(4) (anb)Ve=(aVe)AN(bVec), forall a,b,c € L.

Proposition 2.1 [2]. Let (L,V,A) be an ADL. Then for any a,b,c € L with
a < b, we have

(1) anec<bAc,

( cNb,

2) cha
(3) eVa<eVhb.

<
<

Definition 2.2 [2]. An element m € L is called maximal if it is maximal in the
partially ordered set (L, <). That is, for any a € L, m < a implies m = a.

Theorem 2.3 [2]. Let L be an ADL and m € L. Then the following are equiva-
lent:

(1) m is mazimal with respect to <,
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(2) mVa=m, foralla€ L,
(3) mAa=a, for alla € L.

Lemma 2.1 [2]. Let L be an ADL with a mazimal element m and z,y € L. If
r Ay =1y and y \x =z then x is mazimal if and only if y is mazimal. Also the
following conditions are equivalent:

(i) zAy=y andy Nz =z,
(i) x Am =y Am.

Definition 2.3 [9]. If (L,V,A,0,m) is an ADL with 0 and with a maximal
element m, then the set I(L) of all ideals of L is a complete lattice under set
inclusion. In this lattice, for any I,J € I(L), the L.u.b. and g.l.b. of I,J are
givenby IVJ={(zVy)Am|zecl,yecJtand INJ=1NJ.

The set PI(L) = {(a] | a € L} of all principal ideals of L forms a sublattice
of I(L). (Since (a] V (b] = (a Vv b] and (a] N (b] = (a A b]).

Definition 2.4 [9]. An ADL L = (L,V,A,0,m) with a maximal element m is
said to be a complete ADL, if PI(L) is a complete sub lattice of the lattice I(L).

Theorem 2.4 [9]. Let L = (L,V,A,0,m) be an ADL with a mazimal element
m. Then L is a complete ADL if and only if the lattice ([0, m],V,A) is a complete
lattice.

In the following, we give the concepts of residuation and multiplication in
an almost distributive lattice (ADL) L and the definition of a residuated almost
distributive lattice taken from our earlier paper [7].

Definition 2.5 [7]. Let L be an ADL with a maximal element m. A binary
operation : on an ADL L is called a residuation over L if, for a,b,c € L the
following conditions are satisfied.

(R1) a:bis maximal if and only if a Ab =D,

(R2) anb=b= (i) (a:c)AN(b:c)=b:cand (ii) (c:b)A(c:a)=c:a,

(B3) [(a:b): ] Am=[(a: ) : b Am,

(R4) [(anD): ]/\m: (a:c)AN(b:c)Am,

(R5) [c: (aVD)]Am=(c:a)A(c:b) Am.

Definition 2.6 [7]. Let L be an ADL with a maximal element m. A binary

operation . on an ADL L is called a multiplication over L if, for a,b,c € L the
following conditions are satisfied.

(M1) (a.b) Am = (b.a) Am,
(M2) [(a.b).c) Am = [a.(b.c)] A m
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(M3) (a.m) Am =aAm,
(M4) [a.(bV )] Am = [(a.b) V (a.c)] Am.

Definition 2.7 [7]. An ADL L with a maximal element m is said to be a residu-
ated almost distributive lattice (residuated ADL), if there exists two binary opera-
tions ;" and ’.” on L satisfying conditions R1 to R5, M1 to M4 and the following
condition (A).

(A) (z:a)Ab=0bif and only if z A (a.b) = a.b, for any x,a,b € L.

We use the following properties frequently later in the results.

Lemma 2.2 [7]. Let L be an ADL with a mazimal element m and . a binary
operation on L satisfying the conditions M1-M4. Then for any a,b,c,d € L,

(i) a A (a.b) =a.b and b A (a.b) = a.b,

(i) aAb=b= (c.a) A (c.b) = ¢.b and (a.c) A (b.c) = b.c,
(iii) d A [(a.b).c] = (a.b).c if and only if d A [a.(b.c)] = a(b.c),
(iv) (a.c) A (b.c) A[(aAb).c] = (anb).c,

(v) dA(a.c)A (b.c) = (a.c) A (b.c) = dA[(aANb).c] = (aANb).c,
(vi) dA[(a.c)V (b.c)] = (a.c) V (b.c) = dA[(aVb).c]=(aVb).c.

The following result is a direct consequence of M1 of definition 2.5.

Lemma 2.3 [7]. Let L be an ADL with a maximal element m and . a binary
operation on L satisfying the condition M1. For a,b,xz € L, a A (x.b) = z.b if
and only if a A (b.x) = b.x.

2.9

In the following, we give some important properties of residuation ’:” and
multiplication ’.” in a residuated ADL L. These are taken from our earlier paper
[8].

Lemma 2.4 [8]. Let L be a residuated ADL with a mazimal element m. For
a,b,c,d € L, the following hold in L.

(1) (a:b)Na=a,

(2) [a:(a:b)]A(aVb)=aVb,

(3) [(a:b):c]Afa: (b.c)]=a: (b.c),

@) [ Bl A0 =0

(5) [(and): b A(a:b)=a:b,

(6) (a:b)A[(anb):b] = (a/\b) b,

(7) la: (aVO)]Am=(a:b)Am,

(8) [c:(anb)]A[(c:a)V(c:b)]=(c:a)V(c:b),
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(9) Ifa:b=a thenaA (b.d) =bd = aNd=d,
(10) {a:[a:(a:b)]}A(a:b)=a:b,

(11) [(aVbd):cJA[(a:c)V(b:c)]=(a:c)V(b:c),
(12) anm=2bAm = (a:c)Am=(b:c)Am,
(13) (a:b)A{a:fa:(a:b)]}=a:[a:(a:b)],
(14) aANb=b= (a.c) A (b.c) =b.c,

(15) a AbA (a.b) = a.b,

(16) [(a.b) :a] Ab=0b,

(17) (a.b) A[(a Ab).(aVb)] = (aAb).(aVDb),

(18) a Vb is mazimal = (a.b) N\a Nb=aAb.

We give the following concepts on a residuated ADL L from our earlier pa-
per [5].

Definition 2.8 [5]. An element p of a residuated ADL L is called

(i) prime, if, p is not a maximal element of L and for any a,b € L, p A (a.b)
=a.b = either pAa=aor pAb=b.,

(ii) primary, if, p is not a maximal element of L and for any a,b € L, pA (a.b) =
aband pAa#a= pAb®=0b° for some s € ZT.

Definition 2.9 [5]. An ADL L is said to satisfy the ascending chain condition
(a.c.c.), if for every increasing sequence z1 < x9 < x3 < ---, in L, there exists a
positive integer n such that z, = z,41 = Tp42 = -.

3. UNIQUENESS THEOREM IN COMPLETE RESIDUATED ADL’S

In this section, if L is a complete residuated ADL with a maximal element m
satisfying the ascending chain condition (a.c.c.), p is a prime element of L and
q1, g2 are two p-primary elements of L, then we prove that g; A ¢ is also a p-
primary element of L. We prove important results in a complete residuated ADL
L. If L is a complete complemented residuated ADL with a maximal element
m satisfying the a.c.c. and a € L, then we prove that any two normal primary
decompositions of an element a have the same number of components and the
same set of corresponding primes.
Let us recall the following definitions from [5].

Definition 3.1 [5]. An element a of a residuated ADL L is said to have a
primary decomposition, if there exists primary elements g1, ¢qo,...,q in L such
that a = ¢ A g2 A --- A q;. In this case a is called a decomposable element of L.
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Definition 3.2 [5]. Let L be an ADL and a € L. An element o’ € L is said to
be a complement of a in L if aAa’ =0 and aVa is maximal. In this case we say
that a is a complemented element of L. If each element of L is complemented,
then L is called a complemented ADL.

In the following, we give the concepts of the radical of an element and a
p-primary element in a complete ADL with a maximal element m. These are
taken from [3] and [6].

Definition 3.3 [3]. Let L be a complete ADL with a maximal element m. Sup-

pose '’ is a multiplication on L and a € L. Let R, = {# € L | a A 2* = 2%, for
some k € Zt}. Then \/ cp (x A'm) is called radical of a and it is denoted by

r(a).

Definition 3.4 [3]. Let L be a complete ADL with a maximal element m and
p, a prime element of L. An element ¢q of L is called p-primary, if ¢ is a primary
element of L and r(q) = p.

Theorem 3.1 [3]. Let L be a complete residuated ADL with a maximal element

m and a,b € L. Then

(1) r(a) Na=a and r(a) < r(r(a)).

(2) If a is a mazimal element of L, then r(a) is a maximal element of L,

(3) anb=b=r(b) <r(a) and hence b < a = r(b) < r(a),

(4) r(a.b) =r(aAb) < r(a) Ar(b),

(5) r(a)Vr®d) <r(aVvd) <rr(a) Vrb),

(6) If a AbF = bF, for some k € Z7T, then r(b) < r(a) and hence b* < a —

r(b) < r(a),

(7) Ifp is a prime element of L, then r(p) = pAm = r(pAm) and r(p") = pAm,
forallne ZT,

(8) r(m) =m.

Theorem 3.2 [3]. Let L be a complete ADL with a mazximal element m satisfying

the a.c.c. and ’. ’ a multiplication on L. Then for any a € L, there existsk € ZT
such that a A (r(a))* = (r(a))* and a A (r(a))k~1 # (r(a))*=L, for some k € Z+.

)

Lemma 3.1 [6]. Let L be an ADL with a maximal element m, ’.” a multiplication
on L and a,b € L such that a Ab=b. Then a™ Ab" = b", for any n € Z7.

We prove the following Lemma in a complete residuated ADL L with a
maximal element m.

Lemma 3.2. Let L be a complete residuated ADL with a mazximal element m.
If q is an element of L such that r(q) = p. Then q is p-primary if and only if for
any a,b € L, q A (a.b) = a.b => either qNa=a orp ANb=0.
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Proof. Suppose q is a p-primary element of L. That is, ¢ is a primary element of
L and r(q) = p. Let a,b € L such that gA (a.b) = a.b Since ¢ is a primary element
of L, we get that either ¢ Aa = a or g A b* = b® for some s € ZT. If ¢ A b5 = b,
then by Theorem 3.1 (6), we get that r(b) < r(q) = p. Now, bAm < r(b) <p
and hence p A b = b. Therefore, ¢ A (a.b) = a.b = either gAa=a or p Ab=0.
Conversely, suppose that ¢ € L and r(q) = p. Assume that ¢ A (a.b) = a.b =
either g ANa = a or p Ab = b for any a,b € L. We prove that ¢ is a primary
element of L. By Theorem 3.2, there exists n € ZT such that ¢ A p"® = p™. Now,
pAb=b.

= p" AD" =", for any n € ZT (By Lemma 3.1)

= gApP A =gA D"

= p" Ab" =g Ab" (Since g A p™ = p")

= g Ab" =" (Since p" A D" =D").
Hence ¢ is a primary element of L. Thus ¢ is a p-primary element of L. [ |

Theorem 3.3. Let L be a complete residuated ADL with a maximal element m
satisfying the ascending chain condition and p, a prime element of L. If ¢1 and
q2 are two p-primary elements of L, then q1 Aqa is also a p-primary element of L.

Proof. Suppose q; and ¢o are two p-primary elements of L. That is, ¢; and g¢o
are primary elements of L and r(q1) = p = r(g2). We prove that ¢1 A g2 is a
p-primary element of L. First we prove that r(q; A ¢2) = p. By property (4) of
Theorem 3.1, we have r(q1 A g2) < 7(q1) Ar(q2) = p. By Theorem 3.2, we have
a1 A [r(q)]F = [r(q1)]F, for some k € Z* and g2 A [r(q2)]" = [r(g2)]?, for some
t € Z+. Since r(q1) = p = 7(q2), we get that 1 A p* = p¥ and ¢ A p' = p',
for some k,t € Z*. Let s = max {k,t}. Then q1 A p* = p* and g2 A p* = p°.
Now, g1 A g2 Ap® = q1 Ap® = p°. So that p € Ry ng- Hence p < r(q1 A ¢2).
Thus r(q1 A g2) = p. Now, we prove that q; A ¢a is a primary element of L. Let
a,b € L. Suppose g1 A g2 A (a.b) = a.b and g1 A g2 A a # a. Then g1 A (a.b) = a.b
and g2 A (a.b) = a.b. We prove that ¢; A g2 A b° = b° for some s € ZT. Since
q1 N g2 N a # a, we get that either ¢y Aa # a or g Aa # a. If g1 Aa # a, then, by
Lemma 3.2, we get that p Ab =b. If g2 A a # a, then again, by Lemma 3.2, we
get that p Ab = b. By Lemma 3.2, we get that ¢; A gz Ab® = b®, for some s € ZT.
Hence ¢q; A ¢o is a primary element of L. Thus g1 A g2 is a p-primary element
of L. [ |

In the following, we give the concepts of reduced primary decomposition and
normal primary decomposition of an element in a complete residuated ADL L.
These are taken from our earlier paper [4].

Definition 3.5 [4]. Let L be a complete residuated ADL with a maximal element
m and a € L. A primary decomposition g1 AgaA---Aq; of a is said to be reduced,
if, g Agag AN ANgi—1 ANgir1i N~ ANqp# afor 1 <i <.



UNIQUENESS THEOREM IN COMPLETE RESIDUATED ADL 271

Definition 3.6 [4]. Let L be a complete residuated ADL with a maximal element
m and a € L. A reduced primary decomposition g1 A ga A --- A q of a is called a
normal primary decomposition (or a normal decomposition), if, (q;) # r(g;) for
1 # j. Here ¢; is called a component of a.

Note that from every primary decomposition, we can obtain a normal primary
decomposition by removing superfluous ¢;’s. (that is if ¢; A ¢; = ¢;, then ¢; is
removed) and ¢;’s with same radicals are combined (Theorem 3.3).

Lemma 3.3. Let L be a complete residuated ADL with a mazximal element m.
Fora € L, write Ry = {x € L | a A 2* = 2F, for some k € Z*}. If a,b,xz,y € L
such that x € R, and y € Ry, then x Ay € Rapp-

Proof. Let z,y,a,b € L. Then, since x Az Ay=xAyand yANxAy=2xAy, by
Lemma 3.1, we get that 2% A (z Ay)* = (z Ay)* and y* A (x Ay)F = (z Ay)E, for
any k € Z*. Therefore, 2% A y¥ A (z Ay)* = (x Ay)¥. Suppose that = € R, and
y € Ry. Then, we get that, a A z* = zF and b A y* = ¢*, for some k € Z*. So
that a AbAz¥ AyF = 2P Ayk. Now, a AbA (z Ay)E =aAbAZF AyP A (zAy)k =
2F AyE A (x Ay)F = (z Ay)k. Hence x Ay € Rypp. |

Lemma 3.4. Let L be a complete ADL with a mazimal element m, {x, | o €
J} C L and y, a complemented elemented element of L. Then

(i) YA Vaes(@a Am)] =V oes(y ANzo Am) and
(i) Vacs@aAm)AyAm =\ c;(@a ANy Am).

Proof. Let {z, | o€ J} C L.

(i) Write © = \/ c;(za Am) and z = \/ c;(y A xo Am). Then x,z € [0,m]
(Since [0,m] is a complete lattice). Now, zo, Am < z, for all a € J.

= yAzxaAm<KyAx, forallae J

= VacsWAza Am) <yAz

= z<yAzx.
Again, z€ Land yAxo Am < z, for all a € J.

=y V(yAzaAm) <y Vz foralaecl.

— (Y VYA V(eaAm) <y Vz foralacl.

— y' V(2o Am) <y Vz forall @ € J (Since y Vy is a maximal
element of L).

— [y V(za Am)Am< (Y Vz)Am, forall acJ.

= (za Am)V (y Am) < (y Vz)Am, for all a € J.

— 2, Am < (y Vz)Am, forall ac J.

= Vaes(®a Am) < (y' v z) Am.

= < (y Vz)Am.
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= yAz<yAy V) Am=[yAy)VyA)]Am=yAzAm < zAm = z.
= yAx <z

Therefore, we get that y Ax = z. Hence y A [\ cj(xa Am)] =V sy Nzo Am).
(ii) follows from (i). |

In the following result, if L is a complete complemented residuated ADL with
a maximal element m, then, for any a,b € L, we prove that r(a Ab) = r(a) Ar(b).

Theorem 3.4. Let L be a complete complemented residuated ADL with a mazi-
mal element m. Fora,b € L, write R, = {x € L | aAx® = 2, for some k € Z+}.
Then r(a Ab) = r(a) Ar(b).

Proof. Let a,b € L. Fix x € R,. Then, by Lemma 3.3, for any y € R}, we get
that x Ay € Ranp-

= xAyAm<r(aAbd), for any y € Ry
= Vyer, (@ Ay Am) <r(aAb)
= = A [Vyer,(y Am)] <r(aAb) (By Lemma 3.4 (i))
=z Ar(b) <r(aAb), for any x € R,
=z Ar(b) Am <r(aAb), for any z € R,
= Veer, (@ AT(b) Am) <7r(aAb)
= [Vier, (@ Am)] Ar(b) Am < r(aAb) (By Lemma 3.4 (ii))
= r(a) Ar(b) <r(a D).
By Theorem 3.1(4), we have r(aAb) < r(a)Ar(b). Hence r(aAb) = r(a)Ar(b). m

Now, we prove the following Lemma.

Lemma 3.5. Let L be an ADL with a mazximal element m and p, a prime element
of L. If, for any ay,as,...,ap € L, pAaiNasA---Nay, =ai ANas A+ ANay, then
pAa; = a;, for some i, where 1 <i < n.

Proof. Let p be a prime element of L and aq,as9,...,a, € L. Suppose that
pAairNagAN---Nap =ai Nag A---Nay. Then pAay Aag A---Nay A(aj.ag---
an) =ay ANaz A -+ ANayp A (ay.az---ayp). By property (15) of Lemma 2.4, we get
that p A (a1.a2- - an) = aj.az - - - ap. Since p is a prime element of L, we get that
p A a; = a;, for some 7, where 1 < i < n. []

Lemma 3.6. Let L be a complete residuated ADL with a mazimal element m
and p, a prime element of L. Suppose a is a decomposable element of L such that
pAa=a. Ifa=qgi ANga \---\qy is a normal primary decompo- sition of a, then
pAr(q) =r(q), for some i.

Proof. Suppose a =q1 Aga A -+ Aqy is a normal primary decomposition of a in

L. Let r(¢;) = pi, for 1 <i < n. Now, pAa=a.
= PpAQNQ@RN NG =q NG\ Nqn
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= pA¢; = g, for some ¢ (By Lemma 3.5)

= r(p) Ar(qi) =r(a)

= pAmAr(q)=1(g)

= pAr(q) =r(g), for some i. -

The following results are taken from our earlier paper [3].

Theorem 3.5 [3]. Let L be a complete residuated ADL with a maximal element
m which satisfies the a.c.c. If q is a p-primary element of L and a is any element
of L such that ¢ AN a # a then q : a is a p-primary element of L such that

(q:0) A (@) = [r(@)]* and (q: a) A (@)= # [H(@)], for some k € Z+.

Theorem 3.6 [3]. Let L be a complete residuated ADL with a maximal element
m which satisfies the a.c.c. If q is a p-primary element of L and a is any element
of L such that g \ a # a, then r(q: a) = p.

Corollary 3.1 [3]. Let L be a complete ADL with a mazimal element m and
a € L. Suppose °.” is a multiplication on L and q is a p-primary element of L.

Then p Aa # a if and only if ¢ : a = g Am.

Now, we prove the following theorem in a complete complemented residuated

ADL.

Theorem 3.7. Let L be a complete complemented residuated ADL with a maz-
imal element m satisfying the a.c.c. and a be a decomposable element of L. Let
a=q ANgA--Ag, be a normal primary decomposition of a and p; = r(¢;), for
1 <i < n. Then p;’s are precisely the prime elements that occur in {r(a : x) |
x € L} upto equivalence. Hence they are independent of the decomposition.

Proof. Let q be a p-primary element of L and x € L. Sincea =qi Aga A+ Agn
be a normal primary decomposition of a and p; = r(g;), for 1 < i < n. Therefore,
for 1 < i < n, we have

a maximal element of L, if ¢; A = x (By R1 of Definition 2.5)
q; : v =< primary and r(g; : ©) = p;, if ¢; Ax # = (By Theorems 3.5, 3.6)
q; Nm, if p; Az # x (By Corollary 3.1).

Let A = {p1,p2,...,pn} and B = {r(a : ) | x € L,r(a : x) is a prime
element of L}. We prove that A = B. Let x € L such that r(a : x) is a prime
element of L.

(a:x)Am=[(qgaANgA - q):x]Am

=(@:z)N(g:x) N - A(gn:x) Am (By R4 of Definition 2.5).
If g; ANz = x, for all 4, then g; : « is maximal. So that (a : ) Am = m. Therefore,
r(a : ) = r(m) = m. This is a contradiction to r(a : x) is a prime element of
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L. Therefore, g; A x # x for atleast one i. Hence we can rearrange qi,qo2, - -.,qn
such that ¢; Ax # x for 1 < i < kand g Ax = x for k+1 < i <n. Then
r(a:z)=r[(q1:x)A(gaANx) A+ A(gn : ) Am]. By Theorem 3.4, we get that
rla:z)=r(g:x)Ar(g:x) N A1(qe: ) AT(qkg1 2 T) A~ AT(gn ) Am
=p1Ap2A---Apg Am
=p1Ap2 A Apg.
So that py Apa A--- A pg is a prime element of L. By Lemma 3.5, we get that
r(a : ) A p; = p;, for some i. But since p; A p; = p; A p; for all j, we get that
r(a : z) Ap; = r(a: ). Therefore, r(a : ) = p;. Hence r(a : ) € A. Now,
suppose p; € A. Writex = q1 Aqga A=~ ANgi—1 N@ix1 N~ Ngn. Then g Az =z
forj:12 ,t— 1,4+ 1,...,n. Then

(a:x) A [(ql/\qg/\ /\qn): x] Am

=(q:2)N (qQ ) A+ A(gn:x) Am (By R4 of Definition 2.5)

= (g :x) A
So that, r(a: x) = r(g; : x) = p; (Since gi Az = a # z). Therefore, p; € B. Hence
A = B. Thus A = {p1,p2,...,pn} is independent of the choice of the normal
primary decomposition of a. ]

Finally, in the following, we give the uniqueness theorem whose proof follows
from Theorem 3.7 above.

Theorem 3.8. Let L be a complete complemented residuated ADL with a maz-
imal element m satisfying the a.c.c. and a € L. Then any two normal primary
decompositions of a have the same number of components and the same set of
corresponding primes.
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