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Abstract

An nd-full hypersubstitution maps any operation symbols to the set of
full terms of type 7,,. Nd-full hypersubstitutions can be extended to map-
pings which map sets of full terms to sets of full terms. The aims of this
paper are to show that the extension of an nd-full hypersubstitution is an en-
domorphism of some clone and that the set of all nd-full hypersubstitutions
forms a monoid.
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1. INTRODUCTION

Now we consider algebras of n-ary type, that is, all operation symbols have the
same fixed arity n. Let 7, := (n;);er be a fixed type where n; = n for all i € I
with operation symbols (f;);c; indexed by some set I.

Definition [2]. Let H, be the set of all permutations s : {1,...,n} —{1,...,n}
and let f; be an operation symbol of type 7,,. Full terms of type 7, are defined
in the following way:

(1) fi(mga), -5 Tsn)) is a full term of type 7,.
(2) If t1,...,t, are full terms of type 7,, then f;(t1,...,t,) is a full term of
type 7.

The set of all full terms of type 7, is denoted by WX (X,,).
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Example 1. Let 7 := (2,2) and let s : {1,2} — {1,2} and r : {1,2} —
{1,2} which are defined by s(1) = 2,s(2) = 1 and (1) = 1,7(2) = 2. Then
g(xs(l)axs(Q)))f(xr(l)axr(Q)) and f(g(xs(l)aws(Q))v f(xr(l)vxr(Q))) are full terms of
type 2.

Definition [3]. Let W (X,) be a set of full terms of type 7,,. Then the super-
position operations

Sm s (WE (X)) = WE(X,),

Tn
are defined in the following way. For ¢,t, € WTIZ(X,Z), 1<¢g<nneN;

(1) if t = fi(zs1)s- - > To(n)) Where s € Hy, then S™(fi(wg1ys- - Tym))st1,-- -
tn) = filtsr)s - ts(n))s

(2) if t = fi(s1,...,sn) and if we assume that S"(sq,t1,...,t,) are already
defined, then S™(fi(s1,...,5n),t1,.--,tn) := fi(S™(s1,t1,. -, tn)y. .., S™(sn,
tyeeestn)).

For a full term ¢ we need the full term ¢; arising from ¢ by replacement a
variable x; in ¢ by a variable z;) for a mapping s € Hy,. This can be defined as
follows.

Definition [3]. Let ¢ be a full term in W (X,,) and let s,r € H,,. We define the
full term t, in the following step:

(1) Tt = fi(@pays - s Tpmy), then ts:= fi(g(r(1))s -+ Ts(r(n)))-
(2) It = fitra),---str))s then ts = filtsp)), - - tser)))-

Example 2. Let 7o := (2,2) and let s : {1,2} — {1,2} and r : {1,2} — {1,2}
which are defined by s(1) = 2,s(2) = 1 and (1) = 1,7(2) = 2. Let t = f(g(zs1),
Ts(2)), f(Tr(1)s Zr(2)))- Then

Let P(WX(X,)) be a set of all subsets of W/ (X,). Let T = {t | t €
WZI(X,)} and let s € H,. Then we set T, := {t; | t € W (X,,)} and T, := 0 if
T = 0.
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2. SUPERPOSITION OPERATIONS OF SETS OF FULL TERMS

Let us consider the following superposition operation
“n n+1
S* (PWE (X)) =P (WE(Xy)),

which is defined by S™(T,T1, ..., Tp) := {S™(t, t1,...,tn) [t € T, t, € T, 1 < q <
n,n € N}, where T, T, C WTZ (X,). Such superposition operation does not satisfy
the superassociative law, as the following example.

Example 3. Let 7o = (2,2,2,2,2,2), Xo = {x1, 22} and WT};(XQ) be a set of all
full terms of type . Let 1,1y, S, C Wf;(Xg), 1<q<2where T = {f(x1,22)},
T = {gi(z1,22)}, To = {ga(w2,21)}, S1 = {h1(x2,21)} and Sy = {ha(21,22),

hs(xa,21)}. Then let us consider the following equations:

S%(T1, 81, 52) = 5*({g1 (w1, 22)}, {1 (w2, 21)}, {ha(w1, 22), ha(w2,21)})
= {5%(g1 (w1, 2), b1 (22, 21), ho(z1, 22))}
U {S%(g1(21,22), hi (w2, 21), ha(x2, 1)}
= {g1(h1 (w2, 21), h3(22,21))} U {g1(h1 (22, 21), b3 (22, 21))}
= {g91(h1(x2,21), h3(22,21))} and,

S%(Ty, 81, 52) = 5*({ga(wa, 21)}, {1 (w2, x1)}, {ha(w1, 22), ha(22,21)})
= {S?%(ga (w2, x1), ha (22, x1), ho(x1, 22))}
U {S%(g2(z2, 21), b1 (w2, 21), ha(x2, 1)}
= {g2(ha(z1, 22), h1 (22, 21)) } U {g2(h3(z2, 21), h1 (22, 21)) }
= {g2(h2(z1,22), h1(z2, 21)), g2(h3(z2, 21), ha (22, 21))}.

Therefore

S2(T, 52(Ty, 81, S), S*(Ts, S1, S2))
= {S?(f(w1,22), g1 (h1 (w2, m1), ha(w2, 1)), g2 (ha(w1, 22), h1 (w2, 21)))}
U {S?(f (1, x2), g1 (R (22, 21), ha (w2, 1)), ga(ha (g, 21), ha (22, 21)))}
= {f(g1(h1(z2,21), h3(x2, 71)), g2(ha(z1, ¥2), h1 (22, 21)))}
U {f(g1(h1(z2, 21), h1 (22, 21)), g2(h3(x2, 21), h1 (22, 21)))}
= {f(g1(h1 (22, 21), h3(x2, 71)), g2(h2 (71, ¥2), ho (21, 2))),
flg1(hi(x2, 1), hi(w2,21)), g2(h3(w2, 21), k1 (2, 71))) }-

Let us consider the other equations:

SYHT, T1,Ty) = {S?(f(z1,22), g1(w1,22), ga (w2, 71))}
= {f(g1(w1,72), ga(w2,71))} and,
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S2(8%(T, Ty, Ty), S1, S2)
= S2({ f(g1 (21, 32), g2 (22, 1))}, 51, S2)
= {S%(f(g1(21,22), ga (w2, 1)), b1 (w2, 1), ha (1, 22))}
U {S?(f(g1(21,22), ga(w2, 21)), hi (w2, 1), ha(x2, 1))}
= {f(g1(h1(z2, 21), ha(21, 22)), g2 (h2(21, 22), h1 (22, 21)))}
U {f(g1(h1(z2, 21), ha(x2, 21)), g2(h3(x2, 21), hi (22, 21))) }
= {f(g1(h1(z2, 21), ha(z1,22)), g2(h2(®1, 22), h1 (22, 71))),
flg1(ha (22, 21), h3(z2, 1)), g2(hs(w2, 21), b (22, 21))) }-

Therefore we have S%(T,S?(Ty,S1,Ss),S%(Ts, S1,52)) # S2(S(T,T1,Ts),
S1,55).

Definition. Let WTZ (X,) be the set of all n-ary full terms of type 7,,. Then the
superposition operations

ns (POWE (X)) = P (WE(X,)

n

for T, T, C WTI:: (Xn),1 < ¢ < n,n € N such that T, T, are non-empty sets, the
SE(T,T,...,T,) are defined in the following way:

(1) T = {fz( (1) -»Ts(n))} Where s € H,, then
Shallfi(@s@ys - sm) b Ty Tn) = {filts)s - - tsm) | s(q) € To(g) }-
(2) fT = {fi(tl, ... tn)} where t1,...,t, € WE(X,,), then
St filt, ot BT Tn) s ={fi(r, o) [ g€ ST ({te ), Thy - Th) 3
(3) If T is an arbitrary subset of W/ (X,,), then
S (T, T, .. ) o= Uer Siy({t), T, .- Th).

If at least one of the sets T',T1,...,T}, is an empty set, then S),(T,T1,...,T,)
= 0.

Example 4. Let 75 := (2,2) and let s : {1,2} — {1,2} and r : {1,2} — {1,2}
which are defined by s(1) = 2,5(2) = 1 and (1) = 1,7(2) = 2. Let T' = {g(z,()
Ts(2))s (@) Tr2)) b Tt = {f (1) Tr(2) } and T = {g(241), T5(2))}. Then we
have

Sra{g(xsys To2)) ), T1, To) ai({g(x2,21)}, T, T)

2,01) | v2 € To,v1 € Ty}
(Ts(1), Ts2)), F(Tr(1)s Tr(2)))
(

x9,21), f(x1,22))} and,

d
{g(v
{9(g
{9(g
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Sz f @y wr2) 1 T, To) = Spg({f (21, 22)}, T, Th)
= {f(ul,ug | ug € Ty, us € To}
= {f(f(@r1)s Tr(2)), 9(T5(1)s To(2))) }
= {f(f ($1,$2)a9(9€2,$1))}-

Therefore we have

Spg(T, T, Ty) = Sid({g(fﬂs (1)s Ts2))s F(Tr(1), Tr(2)) 1> T1, T2)
Sra{g(xa, 1), fa1,22)}, T, T)
d({g($2ax1)} T1, o) U Shy({f(z1,22)}, T1, T2)
= {g(g9(@2,21), f(z1,22))} U{f(f (21, 22), 9(x2, 1))}
= {9(g(2, 1), f(21,32)), f(f (21, 22), g(w2, 1))}
Now we give some properties of such superposition.
Proposition 5. Let T, T, C WTIZ(X”), 1<q¢<nneNandsec H, Then we
have

Sna(Ts, T1, - Ty) = Spg(T, Tyrys - - Tymy)-

Proof. If T is empty, then the claim is clearly true. If T" is non-empty, then we
consider in the following steps.

(1) If T is a singleton, then
Case 1. T' = {fi(v,q1),- - -, %pn))} Where r € H,,, we have

Spa(Ts, T, T) = Sﬁd(({fi(ivm),---wr(n))})saTh---»Tn)
na({fi(zs(r(1y) Ty(r(n)) )} T, ..., Ty)
= {fz( s(r(1)) ,t ) | tser) € Ts(rq)}
= Snd({fl( Tp(1)s- -+ s Tr(n) )}’Ts 1) L))

= S;Ld(Ta Ts(l): e aTs(n))7

Case 2. T = {fi(u1,...,u,)} where uy,...,u, € Wr(X,), and we assume
that the equations
Spa{ugts, v, Tn) = Spa{ugh, Toys - -+ Tomy)s
are satisfied, we have
St (Ts,Th, ..., Tn) = SP(({filur, .oy un) e, Ths - Th)
= Spa{filusa 7"'7us(n))} Tl,---,Tn)

= {fi(vsqays -+ - Vs(m)) ’vs( Sta{us@g b Ty -+ To)}
= {filvs(1), -+ > Vstn)) | Vs(q) € Shg{tg}s, 1y, Tn)}

= {fi(vs1ys -+ > Vs(m)) | vs(q) € 5 g}, Toay, - Tony)) }

= nd({fl(ulv"'7un>}7Ts(1)a---a Ty(n))

- Snd(T7 Ts(l)a e ,Ts(n))
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(2) If T is an arbitrary subset of W' (X,,), then

ST T T) = U S({th T o T) = U Stk Tha 0 Th)
teT

=U m ({th Ty TmﬂZZﬂﬂﬂmwwﬂwf_

Proposition 6. Let T', T, C WTl:(Xn), 1<q¢g<n,neNandse H, Then we
have

Se (T, T, ..., Tn) = (Shy(T, T, ..., Th))s-

Proof. If T is empty, then the claim is clearly true. If T is non-empty, then we
consider in the following steps.

(1) If T is a singleton, then
Case 1. T' = {fi(v,q1),- - -, %pn))} Where r € H,,, we have

Sna(Ts, T, Tn) = S),(({ fi(z, . 7$T(n))})81 T,...,Ty)
= Spa{fi(zsr(1)) )} Tr,...,Ty)
= {[filtstr(1) a‘-'us(rn)|t 0) € Tsrqn}
= {(f'i(tr(l)a . 7t7“(n ))s | ts(’r @) 6 To(r(q)) }
= ({filtr), - tr) | triq) € Tr) })s
= ( nd({fz( xr(n))}ale-uaTn))s
= (S (T,Tl,...,Tn))s.
Case 2. T = {fi(u1,...,un)} where us,...,u, € WE(X,), and we assume

that the equations

Sgd({uq}& Ty,...,T,) = (Sﬁd({uq}v Ty, ..., Th))s,

are satisfied, we have

S (T, T, ..., Ty)
= Sgd(({fi(uh"'7un)})s>TIa"'7Tn)
= Zd({fl( s(1)s - s(n))} T17~--7T )

- {fl(vs (1)s -+ Us(n) ) ‘ Us(q E Snd({us(q } Th,. .. 7Tn)}
{fl( (1)« -+ 5 Us(n) ) ‘ Us(q) € Snd({uq}saTh .. aTn)}
- {fl( (1)s - Us(n)) ‘ Us(q) € (Sgd({uq}’Th s 7Tn)) }

= {(filvi,---,vn))s | (vg)s € (Spa({ugh, Th, ..., Tn))s}
= ({fi(vl’ ce ,Un) ’ Vg € S;le({uq}lev' .- ’Tn)})s
=(SP ({fitur,.. ., un) b, T, Th))s = (S)(T, T, .. 1)) s
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(2) If T is an arbitrary subset of W' (X,,), then
St (T, T, ..., Th)= U S({ts}, T, ... Th) = U St Th, .., Th)
teT teT

= USm{h 1 T = (U Sp(eh T, 1)

teT ter s
= (S;ld(T,Tl,...,Tn))s. m

By Proposition 5 and Proposition 6 we have:

Proposition 7. Let T, T, C WTI:L(Xn), 1<q¢g<n,neNandse H, Then we
have
i (T Ty1ys - Tyny) = (Spg(T, T, Th))s

Next theorem we show that the superposition operation S7; is satified the
superassociative law.

Theorem 8. Let T,T,,S, C WTFn (Xn),1 <qg<n,neN. Then we have

(TS (ST, T, S0y (Sn, T - T)
=SSP (T, S, ...,5),T1,....,Ty).
Proof. If T is empty, then the claim is clearly true. If T is non-empty, then we
consider in the following steps.
(1) If T is a singleton, then
Case 1. T'= {fi(w41), -, Tgmn))} Where s € H,, we have

S (T, sgd(sl,Tl,...,Tn),...,sgd(sn,Tl,...,Tn))
= 5™ ({fily 1),.. )} ST (S0 Ty Ty ooy 82y (Sny T, T))

= {fi(rsq), - n)) |7“s € S i(Ss(q), T, Tn)}

= {fi(vs1ys -+, Vsn)) | Vs(q) € Sna(Ss(q)s T1s---,Tn)}

= {fi(vs1)s- -+, Vstn)) | Vs(q) € Sna({Ps(q) | Ps(q) € Ss(gp}s 115+, Tn)}
= Snd({fl(ps( -vas(n)) | Ps(q) € Ss(q) 1> 115+ Th)

= Sna(Sna{ fi(zsrys s Tsm)) }5 51, -+ Sn), Ty -+, Th)
_Sgd(S;;d(T Sty Sn), Th, ..., Th).

Case 2. T = {fi(u1,...,un)} where uy,...,u, € er:(Xn)a and we assume
that the equations

S™ ({ugh, S ,(S1, Th, .. T, o Sy (S, Th, ... T)
= Sgd(sgd({uq}a 517 SRR Sn)’ Tla s aTn)
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are satisfied, we have

S™ (T, 8™ (S1, oy T)s oy S™ (S, T, -, T))
= S™ ({filur, . un)}, S™(S1, Ty oo Ty ooy S7y(Sns Ty - -+, T)

= {filr1,...,rn) | rg € SPa({ug}, S7y(S1, Thy o Ty oo Siy(Sny T, oo T)) }
= {filr1, ... .n) [ g € SRy(Shg({ugh Sty Sn), Ths - T}

= {fi(r1,. .., mn) | 7 € S™({vg | vg € S ({ug}, Sty s Su) b, Thy -+ Ti) )

=8P ({filvi, ... vn) | vg € SPy({ug}, S1s-- . S) 1, Ty -0, T)

=SS ({filu, .oy un) b, Sy, Sn), Ty -, )

= S (8" (T, S1,. ., S0), Th, ..., Th).

(2) If T is an arbitrary subset of W' (X,,), then

S™ (T, S (S, T, Ty ™Sy T, - T))

= U 87,({t}, 87, (S1, T, ..., Tn), ooy S™ (S Thsy -, T))
teT
= U S%(S™,({t}, 81, ., Sn), Th, - . Tny)
teT
=S (U S™({t}, S, Su), Th, ..., T)
teT

= 8" (ST, Sy, ... Sp). T, ..., T). i
Using this superposition operation we can form algebra (P(W/ (X,,)); S™,)
of type (n + 1). This algebra is called nd-clonepT,.

3. ND-FULL HYPERSUBSTITUTIONS

Hypersubstitutions for terms over one-sorted algebras were introduced by E.
Graczyniska and Schweigert [5]. Our definitions and the properties of superpo-
sition operations can be used to define non-deterministic full hypersubstitutions
and their extensions. First we introduce the following notation.

Definition. A mapping 0™ : {f; | i € I} — P(W} (X,,)) is called non-deter-
ministic full hypersubstitution or nd-full hypersubstitution, for short. Let nd-
Hyp" (1) be a set of all nd-full hypersubstitutions. Any such nd-full hypersub-
stitution, o™ uniquely determine a mapping

" P(W)(X5)) = PWE (X)),

is defined in the following way:

(1) 6™[0] =0.
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(2) 6™ fiays - 2ay)}] = (074(fi))s for every s € H,

(3) 6" U{fi(t1, ... tn)}] := S (™ (f:), 6™ {t1}], ..., 6™ [{t,}]) and we assume
that 6"[{t1}],...,6"[{t,}] are already defined.
(4) 6T := U,er 6™[{t}] where T is an arbitrary subset of W (X,,).

Example 9. Let 7o := (2,2) and let s : {1,2} — {1,2} and r : {1,2} —
{1, 2} which are defined by s(1) = 2,s5(2) = 1 and r(1) = 1,7(2) = 2. Let
T = {g( ( (1) xr(2)))g(xs(1)axs( ))) f(xr(l)al'r )}7 and let o™ : {g7f} -

P(WE(X3)) be defined by 0™4(g) := {f(2,(1),x )}7 o™ (f) == {g(z51), T5(2)) }-
Then we have

6" (T) = 6" ({g(f(zr1), Tr2)s 9(T5(1) Ts(2)))s [ (Tr(1)s Tr(2)) })
= 6" ({g(f(zra)s Tr(2)), 9(@5(1), Ts(2))) } U™ f (2r1)s Tr(2)) })-

Let us consider the following equations:

m({g(f (%(1 s ZTr(2)), 9(Ts(1), To(2))) }
—S?uz(ff “g),6 "d({f(  2r2)) 1), 6" ({9(25(1)s T5(2)) 1))
= §2,(a™(g), (6" (f))r, ( ”d(g))s)
= S2,(0"(g), {g(s(1y, Zo2)) s ({F (@r1)s Tr(2)) })s)
= 5240 9), {g(x2, 21)})r, ({f (21, 22)})s)
= 52 2(0"(9), {9(xr (2 1)) 1 {f (T501), T5(2))})

S2,({f @1y, 22) 3 {9 (2, 1), {f(ivzafvl)})

d({ (361,962)} {9(z2,21)}, {f(z2,21)})
= {f( r1,12) [ 11 € {g(z2,21)}, 72 € {f(22,21)}}
= {f(g(z2,71), f(22,21))} and

" {f (zry, 2r2)} = (0™HF))r = {9(zs1)s Ts(2)) e
= ({g9(z2, 21)})r = {9(zr2), 2r (1)) } = {9(2,21)}.

Therefore,

6"UT) = {f(g(xa,21), f(w2,21))} U{g(z2,21)}
= {f(9(x2, 1), f(72,71)), g(x2,71)}.

Lemma 10. Let T be a subset of WTIZ (Xyn) and s € Hy,. Then we have

6"[Ty] = (6™[T1)s.
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Proof. If T is empty, then the claim is clearly true. If T is non-empty, then we
consider in the following steps.

(1) If T is a singleton, then
Case 1. T = {fi(%yy, - -+, Tp(n))} Where r € H,, we have

&nd[TS] = &nd[({fl($r(1)v s 7$r(n))}) ] [{fl( Ls(r(1))s $s(r(n)))}]
= a-nd[{fi(x(sor)(l)a v 7x(so7")(n))}} = (Un (fi))(sor)
= (0" (fi))r)s = @ fi(xrays - - ey }])s = (6™[T])s

Case 2. T = {f;(t1,...,tn)} where t1,...,t, € WE(X,), and we assume
that the equations

"{t,}) = (6[{ta}))s 1 < g < mm €N,

are satisfied, we have

o"Ts) = 6" ({filtr, - tn)})s] = 6" { fitsays - - s ts(m))}]
= S0 (fi), " [{ts)}s - " {ts(m) )
= Spy(a™(fi), 6™ ({t: })s]; - - - ﬁnd[({tn})s])
= Sp (o™ (fi), (6™ [{t1}])ss - -5 (6" {tn}])s)
= [{t:}]

Spa(a"(fi), ™ {t1}], -, 6" [{ta}]))s
G filtes - t)H)s = (6™T])s.

(2) If T is an arbitrary subset of W' (X,,), then

6T = U 6m[{ths] = U (6™[{th)s = ( U a™[{1}]) = (6m[T))..

teT teT teT s =

The next theorem will show that this extension is an endomorphism of the
nd-clonept,.

Theorem 11. A mapping 6™ : P(WE(X,)) = P(WE(X,)) is an endomor-
phism of nd-clonepT,.

Proof. Let T and T;,1 < ¢ < n,n € N be subsets of WTZ (X,). We have to show
that the equation hold:

GMST (T, Ty, ..., T,)] = ST (&”d[T],&"d[Tl], . ,&”d[TnD .

If T' is empty, the claim is clearly true.
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(1) If T is a singleton, then

Case 1. T'= {fi(w41), ., Tgmn))} Where s € H,, we have

em[sn (T, Th, ..., T,)]

= ™S ({fi(2says > Ts(m))}s Ths o )]

= "[{f; (Ts(l)u s Tsm)) | Ts(q) € Ts(q)}]

= SP(a™(f3), 6™ {rsqy | Ts1y € Tsy}s - > 6™ {rsiny | Ts(n) € Tomy})
= Spy(a™(fi), 6" Ty, -, 6™ s(n)])

= Spa(a"(f:), (& d[ 1])s: ( UT))s)

= Spy((0™(f:))s, 6T ] "T,))

= Sy (6" [{ filzsa s(n))}] Mn,. .., 6" T))

= Szd(&”d[T] [Tl], o 6MT)).

Case 2. T = {f;(tr,...,tn)} where t1,...,t, € WL (X,), and we assume
that the equations

6" [Shal{te}, T1, - Tn)] = Sia(6™[{tg}], 6"[T1), ..., 6™ [T3]),

are satisfied, we have

A”d[sn (T,T1,...,T,)]

=™ St ({filtr, .. t)}, T, T)]

M filry o) [rg € Shy({tgh Trs - To) Y]

( M(fi), 6™ {ry [ € Spy({t ) Ths - T, -

il | rp € S"({t, ), 1, ..., T)})

= 57, (o™ (f;), 6™ [S™, ({1}, Ths - - T, - -, 674 0S” ({0}, Ty - T)])

= Sp3(0™(fi), Spg (6™ {11 }], 6T, ., 67T, - -, Sig (67 (],
o™y, .., 6™ T,)))

= Sy (Shy(a™ (i), 6™ [{t1}], - .- [{tn}]),ff

= Spa(6" [{fi(tla---vtn)}]v&nd[T] "(T,))

= S, (6™ (T, 6™T],. .., 6™ T,]).

Q

qry),...,6" T,))

(2) If T is an arbitrary subset of W' (X,,), then
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&nd [Sgd(Ta Tla s 7Tn)] = a.nd|: U Sgd({t}aTlv s aTn):|
teT

N th And[Sgd({t}’ L, ... Tn)]

= U S}, 0™, " (T
- n(tu G}, 6™, ., 6™

= 8", (61,6 [T1]),...,6"T)) . n

Let o7 024 € nd-Hyp®(7,,). Since the extension of non-derministic full
hypersubstitution maps P(W£ (X,)) to P(WE (X,)) we can define a product

a?d ond agd by

nd nd

. and nd
Ul Ond 0'2 = Ul

00y .

Here o is the usual composition of mappings. Since a"d gd maps {f; | i € I}
to P(WE (X)), it is a non-derterministic full hypersubstitution.

The following lemma shows that the extension of this product is the product
of the extensions of o7¢ and o3¢

Lemma 12. Let o4, 03¢ € nd-Hyp" (7,). Then we have

nd

(01 nd . ~nd

Ondggd)A:a'l OGQ .
Proof. Let T be a subset of W/ (X,,). We have to show that
(074 0ng 05 [T] = (57 0 539)[T.

If T is empty, then the claim is clearly true. If T' is non-empty, then we consider
in the following steps.
(1) If T is a singleton, then

Case 1. T = {fi(ws1);- - T(n ))} where s € H,,, we have

(U{Ld Ond 0y ) [T] = (01 ona 03 ) [{fi<ms(1)7"'ax5(n))}]
(077 ona o5 (f1))s = (G703 (fi))s

RS = FUF Uiy )]
= o[ T]] = (7 o 3T

Case 2. T = {fi(t1,...,tn)} where t1,...,t, € WT}Z(Xn), and we assume
that the equations

(079 ona o57) [{tg}] = (677 0 65 [{t}]-
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where 1 < ¢ < n,n € N are satisfied, we have
(07 0ng 059) (T}

(O'Tlld da2 )[{ ( ISR )}]

= Spa((074 0ong a5 (f3), (079 ong o3 [{t1}], ., (077 ong o59) [{tn}])
= Sna(61o54(f)], (679 0 53 [{ta}], -, (6 055‘d)[{tn}])

= Spa(61 o5 (f)], 679 [o5 [{ta})], - -, 67 [65 [{ta}]])

= 67 9[S (o5 (f, i),vg [{t1}], -, 5 [{tn}])]

=615 [{fi(tr, - .. ta) Y]] = 679657 (T]).

(2) If T is an arbitrary subset of W' (X,,), then

(o1 ona o) [T] = U (01" ona o8 {2} = U (670 63 [{1}]
= U aloslie)] = o[ U s3]

= o1?[63[T]] = (674 0 63)(T].

From Lemma 12 we have the binary operation o,4 is associative.
Lemma 13. The binary operation o,g is associative.

Proof. Let o7, o8 o8 € nd-Hyp® (1,). We have to show that the equation

nd

71 01 (03" 00 73") = (0} 3

nd
Ond 09 ) nd 03

is satisfied. By Lemma 3.5, we have

o 0,4 (059 0,0 057) = 6700 (05 0,9 05%) = 679 0 (657 0 559)
= (o7 002 ool = (0] opg 0§?) 0 057
:( Ond 0y ) ndagd-

Let ol € nd-Hyp" (7,). We define o™(f;) := {fi(21,...,2,)} and the next
lemma we show that the extension of aldd is an identity mapping.

Lemma 14. Let T C W (X,,). Then we have
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Proof. If T is empty, then the claim is clearly true. If T is non-empty, then we
consider in the following steps.

(1) If T' is a singleton, then
Case 1. T = {fi(w41), - -+, Tgmn))} Where s € H,,, we have

Hfilmgay, -5 Tgm)) )]
W(fi))s = {fil@r, . zn)})s
= {filzs)s- - Tsm))} =T

Case 2. T = {f;(t1,...,tn)} where t1,...,t, € WE(X,), and we assume
that the equations

o7 {ta}] = {t4}-
where 1 < g < n,n € N are satisfied, we have
G T] = o [{fi(tr, - ta)}] = Spa(ofid (), 63 [{ta}], - - o3 [{tn }])
= Spa{filzr, . zn) b {ti ) {tn})
={fi(ri,....m) | rqg € {tg}} ={filt1,.. .. tn)} =T.

(2) If T is an arbitrary subset of W1 (X,,), then

oI = U o3dl{t}] = Ut =1

teT €T |

Lemma 15. The O‘?dd in nd-Hyp® (1,) is an identity element in the set nd-
Hyp" (Tn) with respect to the associative binary operation o,g.

Proof. Let o™ ¢ nd-Hyp ( ) and f; be an operation symbol. We have to show
that (6" opq o7y )(fz) =o" (f) = ( Z&d Ond Und)(fl)-

(0" ong o) (fi) = "ol (f)] —U"d[{fz(ﬂ«“lv--- 2n)}]
i) = oilo"(f)] = (o7 ona a")(f2)- -

= O’ (
Now we have that:
Theorem 16. The structure (nd-Hyp" (,); ona, o7) is a monoid.
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