AN INJECTIVE PSEUDO-BCI ALGEBRA IS TRIVIAL

Grzegorz Dymek

Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Konstantynów 1H, 20–708 Lublin, Poland

e-mail: gdymek@o2.pl

Abstract

Injective pseudo-BCI algebras are studied. There is shown that the only injective pseudo-BCI algebra is the trivial one.

Keywords: pseudo-BCI algebra, injective pseudo-BCI algebra. **2010 Mathematics Subject Classification:** 03G25, 06F35.

1. Introduction

In 1966, Imai and Iséki [11, 12] defined two classes of algebras called BCK-algebras and BCI-algebras as algebras connected with some logics. They have connections with BCK/BCI-logic being the BCK/BCI-system in combinatory logic. Next, in 2001, Georgescu and Iorgulescu [10] introduced the notion of pseudo-BCK algebras as an extension of BCK-algebras, and in 2008, Dudek and Jun [2] defined pseudo-BCI algebras as generalization of BCI-algebras as well as pseudo-BCK algebras.

Pseudo-BCI algebras are algebraic models of some extension of a non-commutative version of the BCI-logic. These algebras have also connections with other algebras of logic such as, for instant pseudo-MV algebras [8] and pseudo-BL algebras [9]. So results obtained for pseudo-BCI algebras are, in some sense, fundamental for other algebras of logic.

In [5] the author investigates the category \mathbf{psBCI} of pseudo-BCI algebras and homomorphisms between them. He shows that the category \mathbf{psBCI} has zero objects, zero morphisms, products, equalizers, coequalizers, pullbacks and limits, and that it is concrete, complete, is not balanced and is not abelian. Moreover, considering the category $\mathbf{psBCI_p}$ of p-semisimple pseudo-BCI algebras and homomorphisms between them, the author shows in [5] that the category $\mathbf{psBCI_p}$

is isomorphic with the category **Grp** of groups and group homomorphisms and that it is a full and reflective subcategory of the category **psBCI**.

This paper is a continuation of [5]. We investigate the categorical notion of injectivity of pseudo-BCI algebras. Here we show that the trivial pseudo-BCI algebra is the only injective object in the category **psBCI**.

2. Preliminaries

A pseudo-BCI algebra is a structure $(X; \leq, \rightarrow, \rightsquigarrow, 1)$, where \leq is binary relation on X, \rightarrow and \rightsquigarrow are binary operations on X and 1 is an element of X such that for all $x, y, z \in X$, we have

(a1)
$$x \to y \le (y \to z) \leadsto (x \to z), \quad x \leadsto y \le (y \leadsto z) \to (x \leadsto z),$$

(a2)
$$x \le (x \to y) \leadsto y$$
, $x \le (x \leadsto y) \to y$,

- (a3) $x \leq x$,
- (a4) if $x \leq y$ and $y \leq x$, then x = y,
- (a5) $x \le y$ iff $x \to y = 1$ iff $x \leadsto y = 1$.

It is obvious that any pseudo-BCI algebra $(X; \leq, \to, \leadsto, 1)$ can be regarded as a universal algebra $(X; \to, \leadsto, 1)$ of type (2, 2, 0). Note that every pseudo-BCI algebra satisfying $x \to y = x \leadsto y$ for all $x, y \in X$ is a BCI-algebra.

Every pseudo-BCI algebra satisfying $x \leq 1$ for all $x \in X$ is a pseudo-BCK algebra. A pseudo-BCI algebra which is not a pseudo-BCK algebra will be called *proper*.

Troughout this paper we will often use X to denote a pseudo-BCI algebra. Any pseudo-BCI algebra X satisfies the following, for all $x, y, z \in X$,

- (b1) if $1 \le x$, then x = 1,
- (b2) if $x \le y$, then $y \to z \le x \to z$ and $y \leadsto z \le x \leadsto z$,
- (b3) if $x \le y$ and $y \le z$, then $x \le z$,
- (b4) $x \to (y \leadsto z) = y \leadsto (x \to z),$
- (b5) $x < y \rightarrow z$ iff $y < x \rightsquigarrow z$,
- (b6) $x \to y \le (z \to x) \to (z \to y), \quad x \leadsto y \le (z \leadsto x) \leadsto (z \leadsto y),$
- (b7) if $x \le y$, then $z \to x \le z \to y$ and $z \leadsto x \le z \leadsto y$,
- (b8) $1 \rightarrow x = 1 \rightsquigarrow x = x$,
- (b9) $((x \to y) \leadsto y) \to y = x \to y$, $((x \leadsto y) \to y) \leadsto y = x \leadsto y$,

(b10)
$$x \to y \le (y \to x) \leadsto 1$$
, $x \leadsto y \le (y \leadsto x) \to 1$,

(b11)
$$(x \to y) \to 1 = (x \to 1) \leadsto (y \leadsto 1), \quad (x \leadsto y) \leadsto 1 = (x \leadsto 1) \to (y \to 1),$$

(b12)
$$x \to 1 = x \leadsto 1$$
.

If $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCI algebra, then, by (a3), (a4), (b3) and (b1), $(X; \leq)$ is a poset with 1 as a maximal element. Note that a pseudo-BCI algebra has also other maximal elements.

For any $x \in X$, by (b12), we can define:

$$x^- = x \rightarrow 1 = x \rightsquigarrow 1.$$

Then, for any $x, y \in X$, we easily have:

(a1')
$$x \to y \le y^- \leadsto x^-, \quad x \leadsto y \le y^- \to x^-,$$

(a2')
$$x \le (x^-)^-$$
,

(b2') if
$$x \leq y$$
, then $y^- \leq x^-$,

(b5')
$$x \le y^- \text{ iff } y \le x^-,$$

(b9')
$$((x^{-})^{-})^{-} = x^{-},$$

(b10')
$$x \to y \le (y \to x)^-$$
, $x \leadsto y \le (y \leadsto x)^-$,

(b11')
$$(x \to y)^- = x^- \leadsto y^-, (x \leadsto y)^- = x^- \to y^-.$$

Proposition 2.1 [6]. The structure $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCI algebra if and only if the algebra $(X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) satisfies the following:

(i)
$$(x \to y) \leadsto [(y \to z) \leadsto (x \to z)] = 1$$
,

(ii)
$$(x \leadsto y) \to [(y \leadsto z) \to (x \leadsto z)] = 1$$
,

- (iii) $1 \to x = x$,
- (iv) $1 \rightsquigarrow x = x$,
- (v) $x \rightarrow y = 1$ and $y \rightarrow x = 1$, then x = y.

Example 2.2. Let $X = \{a, b, c, d, 1\}$ and define the binary operations \rightarrow and \rightsquigarrow on X by the following tables:

\rightarrow	a	b	c	d	1		~→	$\mid a \mid$	b	c	d	1
\overline{a}	1	b	c	c	1	=					d	
b	a	1	c	d	1		b	a	1	c	c	1
c	c	c	1	b	c		c	c	c	1	a	c
d	c	c	1	1	c		d	c	c	1	1	c
1	a	b	c	d	1		1	a	b	c	d	1

Then $(X; \to, \leadsto, 1)$ is a (proper) pseudo-BCI algebra. Observe that it is not a pseudo-BCK algebra because $d \nleq 1$.

Example 2.3 [6]. Let $Y = \{a, b, c, d, e, f, 1\}$ and define the binary operations \rightarrow and \rightsquigarrow on Y by the following tables:

\rightarrow	a	b	c	d	e	f	1	~→	a	b	c	d	e	f	1
\overline{a}	1	d	e	b	c	\overline{a}	\overline{a}	\overline{a}	1	c	b	e	d	\overline{a}	\overline{a}
b	c	1	a	e	d	b	b	b	d	1	e	a	c	b	b
c	e	a	1	c	b	d	d	c	b	e	1	c	a	d	d
d	b	e	d	1	a	c	c	d	e	a	d	1	b	c	c
e	d	c	b	a	1	e	e	e	c	d	a	b	1	e	e
f	a	b	c	d	e	1	1	f	a	b	c	d	e	1	1
						f		1	a	b	c	d	e	f	1

Then $(Y; \to, \leadsto, 1)$ is a (proper) pseudo-BCI algebra. Observe that it is not a pseudo-BCK algebra because $a \nleq 1$.

Example 2.4 [3]. Let $Z = (-\infty, 0] \times \mathbb{R}^2$ and define the binary operations \to and \leadsto on Z by

$$(x_1, y_1, z_1) \to (x_2, y_2, z_2) =$$

$$\left\{ \begin{array}{l} \left(0, y_2 - y_1, (z_2 - z_1)e^{-y_1}\right) & \text{if } x_1 \le x_2, \\ \left(\frac{2x_2}{\pi} \arctan\left(\ln\left(\frac{x_2}{x_1}\right)\right), y_2 - y_1, (z_2 - z_1)e^{-y_1}\right) & \text{if } x_2 < x_1, \end{array} \right.$$

$$(x_1, y_1, z_1) \rightsquigarrow (x_2, y_2, z_2) = \begin{cases} (0, y_2 - y_1, z_2 - z_1 e^{y_2 - y_1}) & \text{if } x_1 \le x_2, \\ \left(x_2 e^{-\tan(\frac{\pi x_1}{2x_2})}, y_2 - y_1, z_2 - z_1 e^{y_2 - y_1}\right) & \text{if } x_2 < x_1 \end{cases}$$

for all $(x_1, y_1, z_1), (x_2, y_2, z_2) \in Z$. Then $(Z; \to, \leadsto, (0, 0, 0))$ is a proper pseudo-BCI algebra. Notice that Z is not a pseudo-BCK algebra because there exists $(x, y, z) = (0, 1, 1) \in Z$ such that $(x, y, z) \nleq (0, 0, 0)$.

Example 2.5. Let W be the set of all bijections $f: \mathbb{N} \to \mathbb{N}$. Define the binary operations \to and \leadsto on W by

$$f \to g = gf^{-1},$$
$$f \leadsto g = f^{-1}g$$

for all $f, g \in W$. Then the algebra $(W; \to, \leadsto, id_{\mathbb{N}})$ is a proper pseudo-BCI algebra.

For any pseudo-BCI algebra $(X; \rightarrow, \rightsquigarrow, 1)$, the set

$$K(X) = \{x \in X : x \le 1\}$$

is a subalgebra of X (called the pseudo-BCK part of X). Then $(K(X); \to, \leadsto, 1)$ is a pseudo-BCK algebra. Note that a pseudo-BCI algebra X is a pseudo-BCK algebra if and only if X = K(X).

It is easily seen that for the pseudo-BCI algebras X, Y, Z and W from Examples 2.2, 2.3, 2.4 and 2.5 we have $K(X) = \{a, b, 1\}, K(Y) = \{f, 1\}, K(Z) = \{(x, 0, 0) : x \leq 0\}$ and $K(W) = \{id_{\mathbb{N}}\}$, respectively.

We will denote by M(X) the set of all maximal elements of X and call it the p-semisimple part of X. Obviously, $1 \in M(X)$. Notice that $M(X) \cap K(X) = \{1\}$. Indeed, if $a \in M(X) \cap K(X)$, then $a \leq 1$ and a is a maximal element of X, which means that a = 1. Moreover, observe that 1 is the only maximal element of a pseudo-BCK algebra. Therefore, for a pseudo-BCK algebra X, $M(X) = \{1\}$. In [4] and [3] there is shown that $M(X) = \{x \in X : x = (x^-)^-\}$ and it is a subalgebra of X.

Observe that for the pseudo-BCI algebras X, Y, Z and W from Examples 2.2, 2.3, 2.4 and 2.5 we have $M(X) = \{c, 1\}, M(Y) = \{a, b, c, d, e, 1\}, M(Z) = \{(0, y, z) : y, z \in \mathbb{R}\}$ and M(W) = W, respectively.

Let $(X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI algebra. Then X is p-semisimple if it satisfies, for all $x \in X$,

if
$$x < 1$$
, then $x = 1$.

Note that X is a p-semisimple pseudo-BCI algebra if and only if $K(X) = \{1\}$. Hence, if X is a p-semisimple pseudo-BCK algebra, then $X = \{1\}$. Moreover, as it is proved in [3], M(X) is a p-semisimple pseudo-BCI subalgebra of X and the following are equivalent: (1) X is p-semisimple, (2) X = M(X), (3) $(x \to y) \leadsto y = x = (x \leadsto y) \to y$ for any $x, y \in X$.

It is not difficult to see that the pseudo-BCI algebras X, Y and Z from Examples 2.2, 2.3 and 2.4, respectively, are not p-semisimple and the pseudo-BCI algebra W from Example 2.5 is p-semisimple.

3. Injective pseudo-BCI algebras

The reader can find in [1] all notions from the category theory occurring in this section.

An object Q in a category \mathbf{C} is called *injective* if for any morphism $f: X \to Q$ and any monomorphism $g: X \to Y$ there is a morphism $h: Y \to Q$ such that

the diagram

commutes, that is, $h \circ g = f$.

Let **psBCK** and **psBCI** denote the categories of pseudo-BCK algebras and pseudo-BCI algebras, respectively, and their corresponding homomorphisms. In [5] we have shown the following fact.

Proposition 3.1 [5]. In the category **psBCI**, the injective morphisms and monomorphisms coincide.

Remark. In fact the same is true in the category psBCK (see [5]).

First, we study injective objects in the category **psBCK**. The following fact will be needed in the sequel.

Proposition 3.2. Let X be a pseudo-BCK algebra and let $\delta \notin X$. Then $X \cup \{\delta\}$ is a bounded pseudo-BCK algebra with δ as the smallest element, where $x \to \delta = x \leadsto \delta = \delta$, $\delta \to x = \delta \leadsto x = 1$ and $\delta \to \delta = \delta \leadsto \delta = 1$ for any $x \in X$.

 ${\it Proof.}$ Axioms of a pseudo-BCK algebra can be verified by routine calculation.

In order to prove the next theorem, the notion of a retraction will be useful. A morphism $f: X \to Y$ is called a *retraction* if there exists a morphism $g: Y \to X$ such that $f \circ g = id_Y$.

Theorem 3.3. An object X is injective in the category **psBCK** if and only if $X = \{1\}$.

Proof. It is obvious that $\{1\}$ is injective in **psBCK**. Conversely, assume that X is injective in **psBCK**. Consider a bounded pseudo-BCK algebra $X \cup \{\delta\}$, where $\delta \notin X$, as in Proposition 3.2. Since the inclusion map $i: X \to X \cup \{\delta\}$ is an injective morphism in **psBCK**, it is a monomorphism. Hence and by the fact that X is injective there is a retraction $r: X \cup \{\delta\} \to X$ such that $r \circ i = id_X$:

Thus we have r(x) = x for any $x \in X$. Now, let $z = r(\delta) \in X$. We have

$$z = r(\delta) = r(z \to \delta) = r(z) \to r(\delta) = z \to z = 1,$$

that is, $r(\delta) = 1$. Hence, for any $x \in X$, we get

$$1 = r(1) = r(\delta \to x) = r(\delta) \to r(x) = 1 \to x = x.$$

Therefore, $X = \{1\}.$

Now, we investigate injective objects in the category **psBCI**.

Theorem 3.4. If X is injective in the category **psBCI**, then it is p-semisimple.

Proof. First, we prove that if X is injective in **psBCI**, then K(X) is injective in **psBCK**. Let $f: Y \to K(X)$ be a morphism in **psBCK** and $g: Y \to Z$ be a monomorphism in **psBCK**. Then we have a morphism $i \circ f: Y \to X$ in **psBCI**, where $i: K(X) \to X$ is the inclusion. Since g is a monomorphism in **psBCK**, it is an injective morphism, that is, it is a monomorphism in **psBCI**. Since X is injective in **psBCI**, there is a morphism $\overline{h}: Z \to X$ in **psBCI** such that

$$\overline{h} \circ q = i \circ f.$$

But Z is an object in **psBCK** whence $z \leq 1$ for any $z \in Z$. Thus $\overline{h}(z) \leq 1$ for any $z \in Z$, that is, $\overline{h}(z) \in K(X)$ for any $z \in Z$. So, \overline{h} determines a morphism $h: Z \to K(X)$ in **psBCK** such that

$$i \circ h = \overline{h}$$
.

The following diagram illustrates the situation:

Hence, we have $i \circ h \circ g = \overline{h} \circ g = i \circ f$. Since i is a monomorphism in **psBCI**, we get

$$h \circ g = f$$
.

Thus, K(X) is injective in **psBCK**. Now, by Theorem 3.3, $K(X) = \{1\}$. This means that X is p-semisimple.

Denote by $\mathbf{psBCI_p}$ the category of p-semisimple pseudo-BCI algebras and homomorphisms between them.

Corollary 3.5. If X is injective in psBCI, then it is injective in $psBCI_p$.

Now, we have the following two facts.

Proposition 3.6 [5]. The category **psBCI**_p is isomorphic with the category **Grp** of groups and group homomorphisms.

Proposition 3.7 [7]. The only injective object in the category **Grp** is the trivial group.

From Corollary 3.5 and Propositions 3.6 and 3.7 we obtain the following.

Theorem 3.8. An object X is injective in the category **psBCI** if and only if $X = \{1\}$.

References

- [1] D. Buşneag, Categories of algebraic logic, Editura Academiei Romane, Bucharest, 2006.
- [2] W.A. Dudek and Y.B. Jun, *Pseudo-BCI algebras*, East Asian Math. J. **24** (2008) 187–190.
- [3] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461–474.
- [4] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. **52** (2012) 73–90.
- [5] G. Dymek, On the category of pseudo-BCI-algebras, Demonstratio Math. 46 (2013) 631-644.
- [6] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167–187.
- [7] S. Eilenberg and J.C. Moore, Foundations of relative homological algebra, Mem. Amer. Math. Soc., Vol. 55, 1965.
- [8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, Romania, May (1999), 961–968.
- [9] G. Georgescu and A. Iorgulescu, *Pseudo-BL algebras: a noncommutative extension of BL-algebras*, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February 2000, 90–92.
- [10] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97–114.

- [11] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966) 19–22. doi:10.3792/pja/1195522169
- [12] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26–29. doi:10.3792/pja/1195522171

Received 26 October 2017 Revised 7 June 2019 Accepted 25 June 2019