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Abstract

In a recent paper, Çeven and Öztürk have generalized the notion of
derivation on a lattice to f -derivation, where f is a given function of that
lattice into itself. Under some conditions, they have characterized the dis-
tributive and modular lattices in terms of their isotone f -derivations. In this
paper, we investigate the most important properties of isotone f -derivations
on a lattice, paying particular attention to the lattice (resp. ideal) structures
of isotone f -derivations and the sets of their f -fixed points. As applications,
we provide characterizations of distributive lattices and principal ideals of a
lattice in terms of principal f -derivations.
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1. Introduction

The notion of derivation appeared on the ring structures and it has many appli-
cations (see, e.g. [1]). Szász [15, 16] has extended the notion of derivation on
a lattice structure L as a function d of L into itself satisfying the following two
conditions:
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d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)) and d(x ∨ y) = d(x) ∨ d(y),

for any x, y ∈ L. Ferrari [5] has investigated some properties of this notion and
provided some interesting examples in particular classes of lattices. Xin et al.

[19] have ameliorated the notion of derivation on a lattice by considering only
the first condition, and they have showed that the second condition is obviously
holds for the isotone derivations on a distributive lattice. In the same paper,
they characterized also the distributive and modular lattices in terms of their
isotone derivations. Later on, Xin [20] has focused his attention to the structure
of the fixed sets of derivations on a lattice and showed some relationships between
lattice ideals and these fixed sets.

In the same direction, Çeven and Öztürk [3] have generalized the notion of
derivation on a lattice L to f -derivation on L by using a function f of L into
itself. For a given function f of L into itself, an f -derivation on a lattice L is a
function d of L into itself satisfying:

d(x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y)), for any x, y ∈ L.

In this context, they also characterized the distributive and modular lattices by
isotone f -derivations.

This notion of f -derivation on a lattice is witnessing increased attention.
It studies, among others, in semi-lattices [21], in bounded hyperlattices [17], in
quantales and residuated lattices [6, 18], in distributive lattices [12], and in several
kinds of algebras [7, 9, 10]. Furthermore, it used in the definition of congruences
and ideals in a distributive lattice [11].

The aim of the present paper is to investigate the most important properties
of isotone and principal f -derivations on a lattice. We pay particular attention
to the lattice structure of isotone f -derivations on a lattice, and to the ideal
structure of their f -fixed points sets. More specifically, we show some cases that
the set of principal f -derivations on a lattice has a lattice structure, and we
provide a representation of any lattice in terms of its principal f -derivations.
We give a relationship between a distributive lattice and its lattice of isotone
f -derivations, and we show a characterization theorem of a distributive lattice
in terms of its principal f -derivations. Furthermore, we investigate the structure
of the set of f -fixed points of an isotone f -derivation on a lattice, and we show
some cases that this set is an ideal (resp. a principal ideal). As applications, we
provide a representation of any lattice in terms of its principal f -derivations, and
we show characterization theorems of distributive lattices (resp. principal ideals
of a lattice) in terms of principal f -derivations.

The remainder of the paper is structured as follows. In Section 2, we recall the
necessary basic concepts and properties of lattices and f -derivations on lattices.
In Section 3, we provide a representation (resp. a characterization theorem)
of any lattice (resp. distributive lattice) in terms of its principal f -derivations.
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In Section 4, we study the structure of the f -fixed points set of an isotone f -
derivation on a lattice, and we provide a characterization theorem of principal
ideals of a lattice in terms of its principal f -derivations. In Section 5, we show that
the set of f -fixed points sets of isotone f -derivations on a distributive lattice has
also a structure of a distributive lattice, and we provide a representation of any
distributive lattice based on the f -fixed points sets of its principal f -derivations.
Finally, we present some concluding remarks in Section 6.

2. Basic concepts

In this section, we recall the necessary basic concepts and properties of lattices
and f -derivations on lattices.

2.1. Lattices

In this subsection, we recall some definitions and properties of lattices that will
be needed throughout this paper. Further information can be found in [2, 4, 8,
13, 14].

An order relation 6 on a set X is a binary relation on X that is reflexive,
antisymmetric and transitive. A set X equipped with an order relation 6 is called
a partially ordered set (poset, for short), denoted (X,6). Let (X,6) be a poset
and A be a subset of X. An element x0 ∈ X is called a lower bound of A if
x0 6 x, for any x ∈ A. x0 is called the greatest lower bound (or the infimum)
of A if x0 is a lower bound and m 6 x0, for any lower bound m of A. Upper

bound and least upper bound (or supremum) are defined dually. Let (X,6X) and
(Y,6Y ) be two posets. A mapping ϕ : X −→ Y is called an order isomorphism

if it is surjective and satisfies the following condition:

x 6X y if and only if ϕ(x) 6Y ϕ(y), for any x, y ∈ X.

If X = Y , an order isomorphism ϕ : X −→ X is called an order automorphism.
A poset (L,6) is called a ∧-semi-lattice if any two elements x and y have a

greatest lower bound, denoted by x ∧ y and called the meet (infimum) of x and
y. Analogously, it is called a ∨-semi-lattice if any two elements x and y have a
smallest upper bound, denoted by x∨y and called the join (supremum) of x and y.
A poset (L,6) is called a lattice if it is both a ∧-semi-lattice and a ∨-semi-lattice.
A lattice can also be defined as an algebraic structure: a set L equipped with two
binary operations ∧ and ∨ that are idempotent, commutative and associative,
and satisfy the absorption laws (i.e., x∧ (x∨ y) = x and x∨ (x ∧ y) = x, for any
x, y ∈ L). The order relation and the meet and join operations are then related
as follows: x 6 y if and only if x∧ y = x; x 6 y if and only if x∨ y = y. Usually,
the notation (L,6,∧,∨) is used for a lattice. A poset (L,6) is called bounded
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if it has a least and a greatest element, respectively denoted by 0 and 1. Often,
the notation (L,6,∧,∨, 0, 1) is used to describe a bounded lattice. A non-empty
subset M of a lattice (L,6,∧,∨) is called a sublattice of L if, for any x, y ∈ M ,
it holds that x ∧ y ∈ M and x ∨ y ∈ M . A poset (L,6) is called a complete
lattice if every subset A of L has both a greatest lower bound, denoted by

∧

A
and called the infimum of A, and a least upper bound, denoted by

∨

A and called
the supremum of A, in (L,6). A lattice (L,6,∧,∨) is called distributive if one
of the following two equivalent conditions holds:

(a) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), for any x, y, z ∈ L;

(aδ) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), for any x, y, z ∈ L.

Let (L,6,∧,∨) and (M,�,⌢,⌣) be two lattices. A mapping ϕ : L −→ M
is called a ∧-homomorphism (resp. ∨-homomorphism), if it satisfies ϕ(x ∧ y) =
ϕ(x) ⌢ ϕ(y) (resp. ϕ(x ∨ y) = ϕ(x) ⌣ ϕ(y)), for any x, y ∈ L. A ∧-
monomorphism is an injective ∧-homomorphism. Also, a ∧-epimorphism is
a surjective ∧-homomorphism. ∨-monomorphism and ∨-epimorphism are de-
fined dually. A lattice homomorphism is both a ∧-homomorphism and a ∨-
homomorphism, a lattice isomorphism is a bijective lattice homomorphism. If
L =M , a lattice isomorphism ϕ : L −→ L is called a lattice automorphism.

Proposition 2.1 [4]. Let L and M be two lattices, and ϕ : L −→ M be a

mapping. The following statements are equivalent:

(i) ϕ is an order isomorphism;

(ii) ϕ is a lattice isomorphism.

2.2. f-derivations on a lattice

In this subsection, we recall the definition and some properties of f -derivation on
a lattice. Further information can be found in [3, 19, 21].

Definition 2.1 [19]. Let (L,6,∧,∨) be a lattice. A function d : L −→ L is
called a derivation on L if it satisfies the following condition:

d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)), for any x, y ∈ L.

Definition 2.2 [3]. Let (L,6,∧,∨) be a lattice and f : L −→ L be a function.
A function d : L −→ L is called an f -derivation on L if it satisfies the following
condition:

d(x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y)), for any x, y ∈ L.

Throughout this paper, we shortly write dx instead of d(x) and fx instead
of f(x).
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Definition 2.3 [3]. Let (L,6,∧,∨) be a lattice and d be an f -derivation on L.
d is called isotone if it satisfies the following condition:

x 6 y implies dx 6 dy, for any x, y ∈ L.

The following proposition gives some proprieties of f -derivations on a lattice.

Proposition 2.2 [3]. Let (L,6,∧,∨) be a lattice and d be an f -derivation on L.
Then the following holds.

(i) dx 6 fx, for any x ∈ L;

(ii) If (L,6,∧,∨) is distributive, f is a ∨-homomorphism and d is isotone, then

d(x ∨ y) = dx ∨ dy.

Proposition 2.3 [3]. Let (L,6,∧,∨) be a lattice, α ∈ L and f : L −→ L be

a function satisfies f(x ∧ y) = fx ∧ fy, for any x, y ∈ L. Then the function

d(α,f) : L −→ L defined by d(α,f)(x) = α ∧ fx, for any x ∈ L, is an f -derivation
on L. In addition, if f is an increasing function, then d(α,f) is an isotone f -
derivation.

The following sets are the key notions of this paper.

Notation 2.1. Let (L,6,∧,∨) be a lattice and f : L −→ L be a function. We
denote by:

(i) If (L) the set of isotone f -derivations on L;

(ii) Pf (L) := {d(α,f) | α ∈ L}.

The following result shows that the set of isotone f -derivations on a distribu-
tive lattice has also a structure of a distributive lattice.

Theorem 1 [21]. Let (L,6,∧,∨) be a distributive lattice and d1, d2 be two isotone

f -derivations on L. Define (d1⊓d2)(x) = d1x∧d2x and (d1⊔d2)(x) = d1x∨d2x,
for any x ∈ L. Then the structure (If (L),�,⊓,⊔) is a distributive lattice, where

the order relation � is defined as:

d1 � d2 if and only if d1 ⊔ d2 = d2, for any d1, d2 ∈ If (L).

3. Principal f -derivations on a lattice

In this section, we show a necessary and sufficient condition that the functions
d(α,f) on a lattice L are f -derivations (called principal f -derivations). Also, we
show that their set has a lattice structure. Furthermore, we provide a representa-
tion (resp. a characterization) theorem of any lattice (resp. distributive lattice)
in terms of its principal f -derivations.



74 L. Zedam, M. Yettou and A. Amroune

3.1. Poset structure for the set of principal f-derivations on a lattice

The following result shows a necessary and sufficient condition that the functions
d(α,f) on a lattice L being f -derivations on L.

Theorem 2. Let (L,6,∧,∨) be a lattice and f : L −→ L be a function. Then it

holds that f is a ∧-homomorphism if and only if d(α,f) is an f -derivation on L,
for any α ∈ L.

Proof. The direct implication follows from Proposition 2.3. For the converse
implication, we assume that d(α,f) is an f -derivation on L, for any α ∈ L. It
follows that

d(α,f)(x ∧ y) = α ∧ f(x ∧ y)

= (d(α,f)(x) ∧ fy) ∨ (fx ∧ d(α,f)(y))

= (α ∧ fx ∧ fy) ∨ (fx ∧ α ∧ fy)

= α ∧ fx ∧ fy, for any α, x, y ∈ L.

Hence, α ∧ f(x ∧ y) = α ∧ fx ∧ fy, for any α, x, y ∈ L. On the one hand,
setting α = f(x∧ y). Then it follows that f(x∧ y) = f(x∧ y)∧ (fx∧ fy), for any
x, y ∈ L. Hence, f(x∧ y) 6 fx∧ fy, for any x, y ∈ L. On the other hand, setting
α = fx∧ fy. Then it follows that (fx∧ fy)∧ f(x∧ y) = (fx∧ fy)∧ (fx∧ fy) =
fx ∧ fy, for any x, y ∈ L. Hence, fx ∧ fy 6 f(x ∧ y), for any x, y ∈ L. Thus,
f(x ∧ y) = fx ∧ fy, for any x, y ∈ L. Therefore, f is a ∧-homomorphism.

The following corollary expresses the relationship between Pf (L) and If (L).

Corollary 3.1. Let (L,6,∧,∨) be a lattice and f : L −→ L be a function. Then

it holds that f is a ∧-homomorphism if and only if Pf (L) is a subset of If (L).

Proof. The proof is directly from Theorem 2.

In what follows, for a given lattice L, the f -derivations d(α,f) will be called
principal f -derivations on L, and Pf (L) denotes their set. On Pf (L), we define
a binary relation 6′ as follows:

d(α,f) 6
′ d(β,f) if and only if d(α,f)(x) 6 d(β,f)(x), for any x ∈ L.

One easily verifies that 6′ is an order relation on Pf (L).

Remark 3.1. If (L,6,∧,∨, 0, 1) is a bounded lattice, then the poset (Pf (L),6
′)

is also bounded, where 0Pf (L) = d(0,f) and 1Pf (L) = d(1,f) such that d(0,f)(x) = 0
and d(1,f)(x) = fx, for any x ∈ L.



f -fixed points of isotone f -derivations on a lattice 75

3.2. Lattice structure for the poset of principal f-derivations on a

lattice

In this subsection, we show some cases in which the poset (Pf (L),6
′) of principal

f -derivations on a lattice L has a lattice structure. Also, we provide a represen-
tation of a lattice in terms of its principal f -derivations. First, we show that
(Pf (L),6

′) is a ∧-semi-lattice.

Proposition 3.1. Let (L,6,∧,∨) be a lattice and f : L −→ L be a ∧-homomor-

phism. Then the poset (Pf (L),6
′) is a ∧-semi-lattice.

Proof. Let d(α,f), d(β,f) ∈ Pf (L). It is easy to verify that d(α∧β,f) is the greatest
lower bound of d(α,f) and d(β,f). Thus, (Pf (L),6

′) is a ∧-semi-lattice.

The following theorem shows that the set of principal f -derivations on a
complete lattice is also a complete lattice.

Theorem 3. Let (L,6,∧,∨) be a complete lattice and f : L −→ L be a ∧-
homomorphism. Then the poset (Pf (L),6

′) is a complete lattice.

Proof. Proposition 3.1 guarantees that (Pf (L),6
′) is a ∧-semi-lattice. Let A

be a non-empty subset of Pf (L) and P u be the set of upper bounds of A. The
fact that (L,6,∧,∨) is a complete lattice implies that d(β,f) = d(

∧
αi,f) with

d(αi,f) ∈ P u is the least upper bound of A. Thus, (Pf (L),6
′) is a complete

lattice.

The following corollary follows from the above theorem.

Corollary 3.2. Let (L,6,∧,∨) be a finite lattice and f : L −→ L be a ∧-
homomorphism. Then (Pf (L),6

′) is a finite lattice.

The following theorem shows that the set of principal f -derivations on a
distributive lattice is also a distributive lattice.

Theorem 4. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a ∧-
homomorphism. Then the poset (Pf (L),6

′) is a distributive lattice.

Proof. Let d(α,f), d(β,f) ∈ L. The fact that (L,6,∧,∨) is distributive implies
that d(α∨β,f) is the least upper bound of d(α,f) and d(β,f). Thus, (Pf (L),6

′) is a
lattice. Moreover, its distributivity follows from that of (L,6,∧,∨).

Next, we provide a representation of a lattice L based on its principal f -
derivations. This representation gives also another case where the poset (Pf (L),
6′) is a lattice. First, we need to show the following lemma.

Lemma 5. Let (L,6,∧,∨) be a lattice and f : L −→ L be a function. If f is

surjective, then for any α, β ∈ L, the following equivalence holds:
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α 6 β if and only if d(α,f) 6
′ d(β,f).

Proof. The direct implication is immediate. For the converse implication, as-
sume that f is surjective. Let α, β ∈ L such that d(α,f) 6′ d(β,f). Then
α ∧ fx 6 β ∧ fx, for any x ∈ L. Since f is surjective, it holds that there
exists m ∈ L such that fm = α. Hence, α ∧ fm 6 β ∧ fm. Thus, α 6 β.

Now, we are able to provide a representation of a lattice in terms of its
principal f -derivations.

Theorem 6. Let (L,6,∧,∨) be a lattice and f be a ∧-homomorphism. If f is

a ∧-epimorphism, then the poset (Pf (L),6
′) is a lattice, where d(α,f) ∧

′ d(β,f) =
d(α∧β,f) and d(α,f) ∨

′ d(β,f) = d(α∨β,f), for any d(α,f), d(β,f) ∈ Pf (L). Moreover,

(L,6,∧,∨) and (Pf (L),6
′,∧′,∨′) are isomorphic.

Proof. Assume that f : L −→ L is a ∧-epimorphism. Proposition 3.1 guarantees
that (Pf (L),6

′) is a ∧-semi-lattice, where d(α,f)∧
′d(β,f) = d(α∧β,f) is the greatest

lower bound of d(α,f) and d(β,f), for any d(α,f), d(β,f) ∈ Pf (L). Now, we show that
(Pf (L),6

′) is a ∨-semi-lattice. Let d(α,f), d(β,f) ∈ Pf (L), since f is surjective,
it follows from Lemma 5 that d(α,f) ∨

′ d(β,f) = d(α∨β,f) is the least upper bound
of d(α,f) and d(β,f). Hence, (Pf (L),6

′) is a ∨-semi-lattice. Thus, the structure
(Pf (L),6

′,∧′,∨′) is a lattice.

Next, let ψ : L −→ Pf (L) be a mapping defined as ψ(α) = d(α,f), for any
α ∈ L. It is obvious to verify that ψ is surjective. Furthermore, Lemma 5
guarantees that

α 6 β if and only if ψ(α) 6′ ψ(β), for any α, β ∈ L.

Thus, ψ is an order isomorphism between L and Pf (L). Proposition 2.1 guaran-
tees that ψ is a lattice isomorphism. Therefore, (L,6,∧,∨) and (Pf (L),6

′,∧′,∨′)
are isomorphic.

In the following, we present an illustrative example of Theorem 6.

Example 3.1. Let L = D(30) be the lattice of the positive divisors of 30 given
by Hasse diagram in Figure 1, and f : D(30) −→ D(30) be a function defined by
the following table:

x 1 2 3 5 6 10 15 30

fx 1 2 5 3 10 6 15 30
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The following table presents the elements of Pf (D(30)).

x 1 2 3 5 6 10 15 30

d(1,f)(x) 1 1 1 1 1 1 1 1

d(2,f)(x) 1 2 1 1 2 2 1 2

d(3,f)(x) 1 1 1 3 1 3 3 3

d(5,f)(x) 1 1 5 1 5 1 5 5

d(6,f)(x) 1 2 1 3 2 6 3 6

d(10,f)(x) 1 2 5 1 10 2 5 10

d(15,f)(x) 1 1 5 3 5 3 15 15

d(30,f)(x) 1 2 5 3 10 6 15 30

One easily verifies that f is a lattice automorphism. Hence, Theorem 6
guarantees that (Pf (D(30)),6′,∧′,∨′) is a lattice and isomorphic to (D(30), |,
gcd, lcm).

Figure 1. The Hasse diagrams of the lattices (D(30), |, gcd, lcm) and (Pf (D(30)),6′,
∧′,∨′).

Note that the converse of the Theorem 6 does not necessarily hold, as can be
seen in the following example.

Example 3.2. Let L = D(6) be the lattice of the positive divisors of 6 given by
Hasse diagram in Figure 2, and f : D(6) −→ D(6) be a function defined by the
following table:

x 1 2 3 6

fx 1 1 6 6
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The following table presents the elements of Pf (D(6)).

d(1,f)(x) 1 1 1 1

d(2,f)(x) 1 1 2 2

d(3,f)(x) 1 1 3 3

d(6,f)(x) 1 1 6 6

One easily verifies that f is a ∧-homomorphism. Moreover, since there not
exists x ∈ D(6) such that fx = 2, it holds that f is not surjective. But, as can
be seen in Figure 2 that the poset (Pf (D(6)),6′) is a lattice and isomorphic to
(D(6), |, gcd, lcm).

Figure 2. The Hasse diagrams of the lattices (D(6), |, gcd, lcm) and (Pf (D(6)),6′,∧′,∨′).

3.3. A relationship between a distributive lattice and its lattice of

isotone f-derivations

In this subsection, we give a relationship between a distributive lattice L and its
lattice of isotone f -derivations (If (L),�,⊓,⊔). Also, we show a characterization
theorem of a distributive lattice in terms of its principal f-derivations. First, we
need to recall the following result.

Proposition 3.2 [21]. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L
be a ∧-homomorphism. Then the structure (Pf (L),�,⊓,⊔) is a sublattice of the

distributive lattice (If (L),�,⊓,⊔).

In the case of (L,6,∧,∨) is a distributive lattice, the following proposition
shows that the lattice structures (Pf (L),�,⊓,⊔) and (Pf (L),6

′,∧′,∨′) coincide.

Proposition 3.3. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a

∧-homomorphism. Then (Pf (L),�,⊓,⊔) coincides with (Pf (L),6
′,∧′,∨′).
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Proof. On the one hand, (d(α,f)⊓d(β,f))(x) = (α∧fx)∧(β∧fx) = (α∧β)∧fx =
d(α∧β,f)(x) = (d(α,f)∧

′d(β,f))(x), for any α, β, x ∈ L. Then ⊓ coincides with ∧′ on
Pf (L), for any lattice (L,6,∧,∨). On the other hand, we assume that (L,6,∧,∨)
is a distributive lattice. Let d(α,f), d(β,f) ∈ Pf (L), then (d(α,f) ⊔ d(β,f))(x) =
(α ∧ fx) ∨ (β ∧ fx) = (α ∨ β) ∧ fx = d(α∨β,f)(x) = (d(α,f) ∨

′ d(β,f))(x), for any
x ∈ L. Thus, ⊔ coincides with ∨′ on Pf (L). Therefore, the lattice structures
(Pf (L),�,⊓,⊔) and (Pf (L),6

′,∧′,∨′) coincide.

Combining Propositions 3.2 and 3.3 leads to the following corollary.

Corollary 3.3. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a

∧-homomorphism. Then (Pf (L),6
′,∧′,∨′) is a sublattice of (If (L),�,⊓,⊔).

The following theorem shows a relationship between a distributive lattice and
its lattice of isotone f -derivations.

Theorem 7. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a ∧-
epimorphism. Then (L,6,∧,∨) is isomorphic to a sublattice of (If (L),�,⊓,⊔).

Proof. Assume that (L,6,∧,∨) is a distributive lattice and f : L −→ L is a
∧-epimorphism. On the one hand, Theorem 6 guarantees that (L,6,∧,∨) is
isomorphic to (Pf (L),6

′,∧′,∨′). On the other hand, Corollary 3.3 shows that
(Pf (L),6

′,∧′,∨′) is a sublattice of (If (L),�,⊓,⊔). Consequently, (L,6,∧,∨) is
isomorphic to a sublattice of (If (L),�,⊓,⊔).

We conclude this subsection by a characterization theorem of a distributive
lattice in terms of its principal f -derivations.

Theorem 8. Let (L,6,∧,∨) be a lattice and f : L −→ L be a ∧-epimorphism.

The following statements are equivalent:

(i) (L,6,∧,∨) is distributive;

(ii) (Pf (L),�,⊓,⊔) is a distributive lattice;

(iii) ⊔ is a binary operation on Pf (L);

(iv) ⊔ coincides with ∨′ on Pf (L).

Proof. (i)⇒(ii): A straightforward application of Proposition 3.2.

(ii)⇒(iii): The proof is immediate.

(iii)⇒(iv): Let d(α,f), d(β,f) ∈ Pf (L). The fact that ⊔ is a binary operation
on Pf (L) implies that there exists d(γ,f) ∈ Pf (L) such that d(α,f)⊔d(β,f) = d(γ,f),
this equivalent to

(α ∧ fx) ∨ (β ∧ fx) = γ ∧ fx, for any x ∈ L.
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Since f is surjective, it follows that there exist a, b, c ∈ L such that fa = α,
fb = β and fc = γ. Setting x = a (resp. x = b), it holds that α = γ ∧ α
(resp. β = γ ∧ β). Moreover, setting x = c, we obtain that γ = α ∨ β. Hence,
d(α,f) ⊔ d(β,f) = d(α∨β,f) = d(α,f) ∨

′ d(β,f). Thus, ⊔ coincides with the binary
operation ∨′ on Pf (L).

(iv)⇒(i): Let α, β, γ ∈ L. Since ⊔ coincides with ∨′ on Pf (L), it holds
that (d(α,f) ⊔ d(β,f))(x) = (d(α,f) ∨

′ d(β,f))(x) = d(α∨β,f)(x) for any x ∈ L, this
equivalent to

(α ∧ fx) ∨ (β ∧ fx) = (α ∨ β) ∧ fx, for any x ∈ L.

The fact that f is surjective implies that there exists c ∈ L satisfying fc = γ.
Setting x = c, we obtain that (α ∧ γ) ∨ (β ∧ γ) = (α ∨ β) ∧ γ. Thus, (L,6,∧,∨)
is distributive.

Remark 3.2. From Theorem 8, we conclude that if (L,6,∧,∨) is not distributive
and f : L −→ L is a ∧-epimorphism, then (Pf (L),�,⊓,⊔) has not a lattice
structure. It is only a ⊓-semi-lattice, indeed, in this case ⊔ can not be a binary
operation on Pf (L).

4. Ideal structure of f -fixed points of an isotone f -derivation on

a lattice

This section is devoted to study the structure of the set of f -fixed points of an
isotone f -derivation on a lattice L. More specifically, we present some cases
that this set is an ideal of L, and we provide a characterization theorem of
principal ideals of L in terms of its principal f -derivations. Furthermore, we
show a relationship between prime ideals of L and f -derivations on L. First, we
recall the following definitions.

4.1. Definitions

A non-empty subset I of a lattice L is called an ideal, if the following two condi-
tions hold:

(i) if x ∈ L and y ∈ I such that x 6 y, then x ∈ I;

(ii) if x, y ∈ I, then x ∨ y ∈ I.

An ideal I is called prime if x ∧ y ∈ I implies that x ∈ I or y ∈ I, for any
x, y ∈ L. An ideal is called principal, if it is generated by an element x ∈ L. It is
the smallest ideal contains x and is given by the set ↓ x = {y ∈ L | y 6 x}.
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Definition 4.1 [3]. Let (L,6,∧,∨) be a lattice and d be an f -derivation on L.
The set of f -fixed points of d is given by:

Fix(d,f)(L) = {x ∈ L | dx = fx}.

Notation 4.1. Let (L,6,∧,∨) be a lattice and f : L −→ L be a function. We
denote by:

(i) Ff (L) :=
{

Fix(d,f)(L) | d ∈ If (L)
}

;

(ii) Ff (L) :=
{

Fix(d(α,f),f)(L) | d(α,f) ∈ Pf (L)
}

.

4.2. Ideal structure of the set of f-fixed points of an isotone

f-derivation on a lattice

In this subsection, we present some cases that the set of f -fixed points of an
isotone (resp. a principal) f -derivations on a lattice L is an ideal of L.

Theorem 9. Let (L,6,∧,∨) be a distributive lattice and d be an isotone f -
derivation on L. If f is a ∨-homomorphism and Fix(d,f)(L) is a non-empty set,

then Fix(d,f)(L) is an ideal of L.

Proof. Assume that f : L −→ L is a ∨-homomorphism. Let d be an isotone
f -derivation on L such that Fix(d,f)(L) is a non-empty set. On the one hand, let
x, y ∈ L such that x ∈ Fix(d,f)(L) and y 6 x. The fact that d is an f -derivation
on L implies from Proposition 2.2 that dy 6 fy. Since f is increasing, y 6 x
and x ∈ Fix(d,f)(L), it follows that fy 6 fx = dx. Hence, dy = d(x ∧ y) =
(dx ∧ fy) ∨ (fx ∧ dy) = fy ∨ dy, and this implies that fy 6 dy. Thus, dy = fy,
i.e., y ∈ Fix(d,f)(L). On the other hand, let x, y ∈ Fix(d,f)(L). This implies that
dx = fx and dy = fy. Since (L,6,∧,∨) is distributive, f is a ∨-homomorphism
and d is an isotone f -derivation on L, it follows from Proposition 2.2 that d(x ∨
y) = dx ∨ dy = fx ∨ fy = f(x ∨ y). Hence, x ∨ y ∈ Fix(d,f)(L). Finally, we
conclude that Fix(d,f)(L) is an ideal of L.

Remark 4.1. In general, the set of f -fixed points of an f -derivation on a lattice
L is a non-empty set. Indeed, if (L,6,∧,∨) is a lattice has a least element 0 ∈ L
and f0 = 0, then 0 is an f -fixed point of any f -derivation on L.

Theorem 10. Let (L,6,∧,∨) be a lattice and d(α,f) be a principal f -derivation
on L such that Fix(d(α,f),f)(L) is a non-empty set. If f is a lattice homomorphism,

then Fix(d(α,f),f)(L) is an ideal of L.

Proof. Assume that f : L −→ L is a lattice homomorphism. Let d(α,f) ∈ Pf (L)
such that Fix(d(α,f),f)(L) is a non-empty set. On the one hand, let x, y ∈ L such

that x ∈ Fix(d(α,f),f)(L) and y 6 x. The fact that x ∈ Fix(d(α,f),f)(L) implies
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that d(α,f)(x) = α ∧ fx = fx. Hence, fx 6 α. Now, since f is increasing and
y 6 x, it holds that fy 6 fx. Hence, fy 6 α. Thus, d(α,f)(y) = α ∧ fy = fy.
Therefore, y ∈ Fix(d(α,f),f)(L). On the other hand, let x, y ∈ Fix(d(α,f),f)(L).

Then d(α,f)(x) = α ∧ fx = fx and d(α,f)(y) = α ∧ fy = fy. This implies that
fx ∨ fy 6 α. The fact that f is a ∨-homomorphism and x, y ∈ Fix(d(α,f),f)(L)

imply that f(x∨y) = fx∨fy 6 α. Hence, d(α,f)(x∨y) = α∧f(x∨y) = f(x∨y).
Thus, x ∨ y ∈ Fix(d(α,f),f)(L). Therefore, Fix(d(α,f),f)(L) is an ideal of L.

4.3. Characterization of principal ideals in terms of principal

f-derivations on a lattice

In this subsection, we show a characterization theorem of principal ideals of a
lattice in terms of its principal f -derivations. First, we show the following key
results.

Proposition 4.1. Let (L,6,∧,∨) be a lattice, ↓ x be a principal ideal of L and

f : L −→ L be a ∧-monomorphism. Then there exists a principal f -derivation
d(α,f) ∈ Pf (L) such that ↓ x = Fix(d(α,f),f)(L), where α = f(x).

Proof. Let ↓ x be a principal ideal of L. Since f is a ∧-monomorphism, it follows
that

↓ x = {y ∈ L | y 6 x}

= {y ∈ L | x ∧ y = y}

= {y ∈ L | f(x ∧ y) = f(y)}

= {y ∈ L | f(x) ∧ f(y) = f(y)}

= {y ∈ L | d(f(x),f)(y) = f(y)}

= Fix(d(f(x),f),f)(L).

Thus, there exists d(α,f) ∈ Pf (L) such that ↓ x = Fix(d(α,f),f)(L), where α =

f(x).

Proposition 4.2. Let (L,6,∧,∨) be a lattice, f : L −→ L be a lattice auto-

morphism and d(α,f) be a principal f -derivation on L. Then Fix(d(α,f),f)(L) is a

principal ideal of L generated by f−1(α).

Proof. Let d(α,f) ∈ Pf (L). Since f is a lattice automorphism, it follows that

Fix(d(α,f),f)(L) = {y ∈ L | d(α,f)(y) = fy}

= {y ∈ L | α ∧ fy = fy}

= {y ∈ L | fy 6 α}

= {y ∈ L | y 6 f−1(α)}

=↓ f−1(α).
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Combining Propositions 4.1 and 4.2 leads to the following characterization
theorem of principal ideals of a lattice L in terms of its principal f -derivations.

Theorem 11. Let (L,6,∧,∨) be a lattice and f : L −→ L be a lattice auto-

morphism. Then Ff (L) = {Fix(d(α,f) ,f)(L) | d(α,f) ∈ Pf (L)} is exactly the set of

principal ideals of L.

In the following, we present an illustrative example of the above Theorem 11.

Example 4.1. Let L = D(30) be the lattice of the positive divisors of 30 given
by Hasse diagram in Figure 1, and f be the D(30)-automorphism given in Ex-
ample 3.1. Then the following holds:































































Fix(d(1,f),f)(D(30)) = {1} =↓ 1 =↓ f−1(1);

Fix(d(2,f),f)(D(30)) = {1, 2} =↓ 2 =↓ f−1(2);

Fix(d(3,f),f)(D(30)) = {1, 5} =↓ 5 =↓ f−1(3);

Fix(d(5,f),f)(D(30)) = {1, 3} =↓ 3 =↓ f−1(5);

Fix(d(6,f),f)(D(30)) = {1, 2, 5, 10} =↓ 10 =↓ f−1(6);

Fix(d(10,f) ,f)(D(30)) = {1, 2, 3, 6} =↓ 6 =↓ f−1(10);

Fix(d(15,f) ,f)(D(30)) = {1, 3, 5, 15} =↓ 15 =↓ f−1(15);

Fix(d(30,f) ,f)(D(30)) = D(30) =↓ 30 =↓ f−1(30).

Thus, Ff (D(30)) is the set of principal ideals of D(30).

4.4. A relationship between prime ideals andf-derivations on a lattice

In this subsection, we show a relationship between prime ideals of a lattice L and
f -derivations on L. This relationship is a generalization of the result of Theorem
4.13 given by Xin in [20].

Theorem 12. Let (L,6,∧,∨) be a lattice, f : L −→ L be a function and I be a

prime ideal of L. The following implications hold:

(i) if f is a ∧-homomorphism, then there exists an f -derivation d on L such

that I ⊆ Fix(d,f)(L);

(ii) if f is a ∧-monomorphism, then there exists an f -derivation d on L such

that I = Fix(d,f)(L).

Proof. Let α ∈ I and d : L −→ L be a function defined as

dx =

{

fx, if x ∈ I;

f(α ∧ x), otherwise.
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(i) The fact that f is a ∧-homomorphism and I is a prime ideal of L imply
that d(x∧ y) = (dx∧ fy)∨ (fx∧ dy), for any x, y ∈ L. Thus, d is an f -derivation
on L. The proof of I ⊆ Fix(d,f)(L) is straightforward.

(ii) Assume that f is a ∧-monomorphism. On the one hand, (i) guarantees
that d is an f -derivation on L and I ⊆ Fix(d,f)(L). On the other hand, let
x ∈ Fix(d,f)(L). Here, we distinguish two possible cases, which are x ∈ I or
x /∈ I. Now, we prove that the case of x /∈ I is an impossible case. Suppose
that x /∈ I, then dx = f(α ∧ x). The fact that x ∈ Fix(d,f)(L) implies that
dx = fx. Hence, f(α∧ x) = fx. Since f is injective, it holds that α∧ x = x, i.e.,
x 6 α. Since α ∈ I and I is an ideal, it holds that x ∈ I, which contradicts the
hypothesis that x /∈ I. Hence, necessarily x ∈ I. Thus, Fix(d,f)(L) ⊆ I. Finally,
we conclude that I = Fix(d,f)(L).

5. Structure of the set of f -fixed points sets of isotone

f -derivations on a distributive lattice

In this section, for a given distributive lattice L, we show that the set of f -fixed
points sets Ff (L) of its isotone f -derivations has also a structure of a distributive
lattice. Moreover, we prove that the set of f -fixed points sets Ff (L) of principal
f -derivations on L is a sublattice of Ff (L). Finally, we provide a representation of
any distributive lattice based on the f -fixed points of its principal f -derivations.
First, we prove the following key result.

Proposition 5.1. Let (L,6,∧,∨) be a distributive lattice. For any Fix(d1,f)(L),
F ix(d2,f)(L) ∈ Ff (L), we define:

Fix(d1,f)(L) ⊓
′ Fix(d2,f)(L) = Fix(d1⊓d2,f)(L),

and

Fix(d1,f)(L) ⊔
′ Fix(d2,f)(L) = Fix(d1⊔d2,f)(L).

Then ⊓′ and ⊔′ are idempotent, commutative and associative binary operations

on Ff (L), and they satisfy the absorption laws.

Proof. Let Fix(d1,f)(L), F ix(d2 ,f)(L) ∈ Ff (L). Then d1, d2 ∈ If (L), i.e., d1 and
d2 are two isotone f -derivations on L. Since (L,6,∧,∨) is distributive, it follows
from Theorem 1 that d1 ⊓ d2 and d1 ⊔ d2 are also isotone f -derivations on L,
i.e., d1 ⊓ d2, d1 ⊔ d2 ∈ If (L). Hence, Fix(d1,f)(L) ⊓

′ Fix(d2,f)(L), F ix(d1 ,f)(L) ⊔
′

Fix(d2,f)(L) ∈ Ff (L). Thus, ⊓′ and ⊔′ are binary operations on Ff (L). Fur-
thermore, the fact that (If (L),�,⊓,⊔) is a lattice implies that ⊓ and ⊔ are
idempotent, commutative and associative binary operations on If (L), and they
satisfy the absorption laws. These imply that ⊓′ and ⊔′ are also idempotent,
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commutative and associative binary operations on Ff (L), and they satisfy the
absorption laws.

Theorem 13. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a

function. Then the structure (Ff (L),�
′,⊓′,⊔′) is a distributive lattice, where

the order relation �′ is defined as Fix(d1,f)(L) �′ Fix(d2,f)(L) if and only if

Fix(d1,f)(L) ⊔
′ Fix(d2,f)(L) = Fix(d2,f)(L), for any Fix(d1,f)(L), F ix(d2 ,f)(L) ∈

Ff (L).

Proof. Proposition 5.1 guarantees that (Ff (L),�
′,⊓′,⊔′) is a lattice. Moreover,

from the distributivity of (If (L),�,⊓,⊔), we easily verify that (Ff (L),�
′,⊓′,⊔′)

is also distributive.

The following Proposition lists some proprieties of the sets of f -fixed points
of principal f -derivations on a lattice.

Proposition 5.2. Let (L,6,∧,∨) be a lattice, f : L −→ L be a ∧-homomorphism

and d(α,f), d(β,f) be two principal f -derivations on L. Then it holds that

(i) Fix(d(α,f),f)(L)∩Fix(d(β,f),f)(L) = Fix(d(α,f)⊓d(β,f),f)(L) = Fix(d(α∧β,f),f)(L);

(ii) Fix(d(α,f),f)(L)∪Fix(d(β,f),f)(L) ⊆ Fix(d(α,f)⊔d(β,f),f)(L) ⊆ Fix(d(α∨β,f),f)(L);

(iii) If (L,6,∧,∨) is distributive, then Fix(d(α,f)⊔d(β,f),f)(L) = Fix(d(α∨β,f),f)(L).

Proof. (i) Let d(α,f), d(β,f) ∈ Pf (L). We only prove that Fix(d(α,f),f)(L) ∩

Fix(d(β,f),f)(L) = Fix(d(α∧β,f),f)(L), as the fact that d(α,f) ⊓ d(β,f) = d(α∧β,f)
implies that Fix(d(α,f)⊓d(β,f),f)(L) = Fix(d(α∧β,f),f)(L). Then

Fix(d(α,f),f)(L) ∩ Fix(d(β,f),f)(L) = {x ∈ L | d(α,f)(x) = d(β,f)(x) = fx}

= {x ∈ L | α ∧ fx = β ∧ fx = fx}

= {x ∈ L | fx 6 α ∧ β}

= {x ∈ L | (α ∧ β) ∧ fx = fx}

= {x ∈ L | d(α∧β,f)(x) = fx}

= Fix(d(α∧β,f),f)(L).

Thus, Fix(d(α,f),f)(L)∩Fix(d(β,f),f)(L)=Fix(d(α,f)⊓d(β,f),f)(L)=Fix(d(α∧β,f),f)(L).

(ii) On the one hand, let x ∈ Fix(d(α,f),f)(L) ∪ Fix(d(β,f),f)(L). Then x ∈

Fix(d(α,f),f)(L) or x ∈ Fix(d(β,f),f)(L). Assume that x ∈ Fix(d(α,f),f)(L), it holds

that d(α,f)(x) = α∧fx = fx. Then (d(α,f)⊔d(β,f))(x) = (α∧fx)∨(β∧fx) = fx∨
(β ∧ fx) = fx. Thus, x ∈ Fix(d(α,f)⊔d(β,f),f)(L). The case of x ∈ Fix(d(β,f),f)(L)
can be proved similarly. Therefore,

Fix(d(α,f),f)(L) ∪ Fix(d(β,f),f)(L) ⊆ Fix(d(α,f)⊔d(β,f),f)(L) .
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On the other hand, let y ∈ Fix(d(α,f)⊔d(β,f),f)(L). Then (d(α,f) ⊔ d(β,f))(y) =

(α ∧ fy) ∨ (β ∧ fy) = fy. This implies that d(α∨β,f)(y) = (α ∨ β) ∧ fy =
(α∨β)∧[(α∧fy)∨(β∧fy)] = (α∧fy)∨(β∧fy) = fy. Hence, y ∈ Fix(d(α∨β,f),f)(L).
Thus,

Fix(d(α,f)⊔d(β,f),f)(L) ⊆ Fix(d(α∨β,f),f)(L).

Therefore,

Fix(d(α,f),f)(L) ∪ Fix(d(β,f),f)(L) ⊆ Fix(d(α,f)⊔d(β,f),f)(L) ⊆ Fix(d(α∨β,f),f)(L).

(iii) Since (L,6,∧,∨) is distributive, it follows from Proposition 3.3 that
d(α,f) ⊔ d(β,f) = d(α,f) ∨

′ d(β,f) = d(α∨β,f). Thus,

Fix(d(α,f)⊔d(β,f),f)(L) = Fix(d(α∨β,f),f)(L).

The following result shows that the set of f -fixed points sets Ff (L) of prin-
cipal f -derivations on L is a sublattice of Ff (L).

Theorem 14. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a ∧-
homomorphism. Then the structure (Ff (L),�

′,⊓′,⊔′) is a sublattice of (Ff (L),
�′,⊓′,⊔′).

Proof. Since (L,6,∧,∨) is a distributive lattice, it holds form Theorem 13 that
(Ff (L),�

′,⊓′,⊔′) is a distributive lattice. The fact that f is a ∧-homomorphism
implies that Ff (L) is a subset of Ff (L). Furthermore, Proposition 5.2 guarantees
that

Fix(d(α,f),f)(L) ⊓
′ Fix(d(β,f),f)(L) = Fix(d(α,f)⊓d(β,f),f)(L) = Fix(d(α∧β,f),f)(L)

and

Fix(d(α,f),f) ⊔
′ Fix(d(β,f),f)(L) = Fix(d(α,f)⊔d(β,f),f)(L) = Fix(d(α∨β,f),f)(L) ,

for any Fix(d(α,f),f)(L), F ix(d(β,f),f)(L) ∈ Ff (L). Thus, Ff (L) is closed under ⊓′

and ⊔′. Therefore, (Ff (L),�
′,⊓′,⊔′) is a sublattice of (Ff (L),�

′,⊓′,⊔′).

Combining Theorems 13 and 14 leads to the following corollary.

Corollary 5.1. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a

∧-homomorphism. Then the structure (Ff (L),�
′,⊓′,⊔′) is a distributive lattice.

Next, we provide a representation of any distributive lattice based on the
f -fixed points of its principal f -derivations.

Theorem 15. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a

lattice automorphism. Then (L,6,∧,∨) is isomorphic to (Ff (L),�
′,⊓′,⊔′).
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Proof. Assume that (L,6,∧,∨) is a distributive lattice and f : L −→ L is
a lattice automorphism. Corollary 5.1 guarantees that (Ff (L),�

′,⊓′,⊔′) is a
distributive lattice. Moreover, let ψ : L −→ Ff (L) be a mapping defined as:

ψ(α) = Fix(d(f(α),f),f)(L), for any α ∈ L.

Now, we show that ψ is surjective. Let Fix(d(β,f),f)(L) ∈ Ff (L). Since f is a

lattice automorphism, it holds that there exists α ∈ L such that f(α) = β. Then
ψ(α) = Fix(d(f(α),f),f)(L) = Fix(d(β,f),f)(L). Hence, ψ is surjective.

Next, we prove that

α 6 β if and only if ψ(α) �′ ψ(β), for any α, β ∈ L.

Since (L,6,∧,∨) is a distributive lattice and f is a lattice automorphism, it
follows from Propositions 4.1 and 5.2 that

α 6 β ⇐⇒ α ∨ β = β

⇐⇒↓ (α ∨ β) =↓ β

⇐⇒ Fix(d(f(α∨β),f),f)(L) = Fix(d(f(β),f),f)(L)

⇐⇒ Fix(d(f(α)∨f(β),f),f)(L) = Fix(d(f(β),f),f)(L)

⇐⇒ Fix(d(f(α),f)⊔d(f(β),f),f)(L) = Fix(d(f(β),f),f)(L)

⇐⇒ Fix(d(α,f),f) ⊔
′ Fix(d(β,f),f)(L) = Fix(d(f(β),f),f)(L)

⇐⇒ ψ(α) ⊔′ ψ(β) = ψ(β)

⇐⇒ ψ(α) �′ ψ(β),

for any α, β ∈ L. Hence, ψ is an order isomorphism between L and Ff (L).
Proposition 2.1 guarantees that ψ is a lattice isomorphism. Thus, the distributive
lattices (L,6,∧,∨) and (Ff (L),�

′,⊓′,⊔′) are isomorphic.

Combining Theorems 6 and 15 leads to the following corollary.

Corollary 5.2. Let (L,6,∧,∨) be a distributive lattice and f : L −→ L be a

lattice automorphism. Then the three distributive lattices (L,6,∧,∨), (Pf (L),6
′,

∧′,∨′) and (Ff (L),�
′,⊓′,⊔′) are isomorphic.

6. Conclusion

In this work, we have investigated the most important properties of isotone (resp.
principal) f -derivations on a lattice. In particular, we have focused on the lattice
(resp. ideal) structures of isotone f -derivations and their f -fixed points sets.
These properties and structures lead to some interesting results, such as the
characterizations of principal ideals and distributive lattices in terms of principal
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f -derivations. Also, a representation of a lattice (resp. a distributive lattice) in
terms of its principal f -derivations (resp. the f -fixed points sets of its principal
f -derivations).
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