Discussiones Mathematicae General Algebra and Applications 39 (2019) 69–89 doi:10.7151/dmgaa.1308

f-FIXED POINTS OF ISOTONE *f*-DERIVATIONS ON A LATTICE

LEMNAOUAR ZEDAM, MOURAD YETTOU

AND

Abdelaziz Amroune

Laboratory of Pure and Applied Mathematics Department of Mathematics Mohamed Boudiaf University Msila 28000, Algeria

e-mail: l.zedam@gmail.com yettou28mourad28@gmail.com aamrounedz@yahoo.fr

Abstract

In a recent paper, Çeven and Öztürk have generalized the notion of derivation on a lattice to f-derivation, where f is a given function of that lattice into itself. Under some conditions, they have characterized the distributive and modular lattices in terms of their isotone f-derivations. In this paper, we investigate the most important properties of isotone f-derivations on a lattice, paying particular attention to the lattice (resp. ideal) structures of isotone f-derivations and the sets of their f-fixed points. As applications, we provide characterizations of distributive lattices and principal ideals of a lattice in terms of principal f-derivations.

Keywords: lattice, isotone f-derivation, principal f-derivation, f-fixed points set.

2010 Mathematics Subject Classification: 03G10, 06B05, 06B10, 06B99.

1. INTRODUCTION

The notion of derivation appeared on the ring structures and it has many applications (see, e.g. [1]). Szász [15, 16] has extended the notion of derivation on a lattice structure L as a function d of L into itself satisfying the following two conditions:

$$d(x \wedge y) = (d(x) \wedge y) \vee (x \wedge d(y))$$
 and $d(x \vee y) = d(x) \vee d(y)$,

for any $x, y \in L$. Ferrari [5] has investigated some properties of this notion and provided some interesting examples in particular classes of lattices. Xin *et al.* [19] have ameliorated the notion of derivation on a lattice by considering only the first condition, and they have showed that the second condition is obviously holds for the isotone derivations on a distributive lattice. In the same paper, they characterized also the distributive and modular lattices in terms of their isotone derivations. Later on, Xin [20] has focused his attention to the structure of the fixed sets of derivations on a lattice and showed some relationships between lattice ideals and these fixed sets.

In the same direction, Çeven and Oztürk [3] have generalized the notion of derivation on a lattice L to f-derivation on L by using a function f of L into itself. For a given function f of L into itself, an f-derivation on a lattice L is a function d of L into itself satisfying:

$$d(x \wedge y) = (d(x) \wedge f(y)) \lor (f(x) \wedge d(y))$$
, for any $x, y \in L$.

In this context, they also characterized the distributive and modular lattices by isotone f-derivations.

This notion of f-derivation on a lattice is witnessing increased attention. It studies, among others, in semi-lattices [21], in bounded hyperlattices [17], in quantales and residuated lattices [6, 18], in distributive lattices [12], and in several kinds of algebras [7, 9, 10]. Furthermore, it used in the definition of congruences and ideals in a distributive lattice [11].

The aim of the present paper is to investigate the most important properties of isotone and principal f-derivations on a lattice. We pay particular attention to the lattice structure of isotone f-derivations on a lattice, and to the ideal structure of their f-fixed points sets. More specifically, we show some cases that the set of principal f-derivations on a lattice has a lattice structure, and we provide a representation of any lattice in terms of its principal f-derivations. We give a relationship between a distributive lattice and its lattice of isotone f-derivations, and we show a characterization theorem of a distributive lattice in terms of its principal f-derivations. Furthermore, we investigate the structure of the set of f-fixed points of an isotone f-derivation on a lattice, and we show some cases that this set is an ideal (resp. a principal ideal). As applications, we provide a representation of any lattice in terms of its principal f-derivations, and we show characterization theorems of its principal f-derivations, and we show characterization theorems of its principal f-derivations, and we show characterization theorems of distributive lattices (resp. principal ideals of a lattice) in terms of principal f-derivations.

The remainder of the paper is structured as follows. In Section 2, we recall the necessary basic concepts and properties of lattices and f-derivations on lattices. In Section 3, we provide a representation (resp. a characterization theorem) of any lattice (resp. distributive lattice) in terms of its principal f-derivations.

70

In Section 4, we study the structure of the f-fixed points set of an isotone fderivation on a lattice, and we provide a characterization theorem of principal ideals of a lattice in terms of its principal f-derivations. In Section 5, we show that the set of f-fixed points sets of isotone f-derivations on a distributive lattice has also a structure of a distributive lattice, and we provide a representation of any distributive lattice based on the f-fixed points sets of its principal f-derivations. Finally, we present some concluding remarks in Section 6.

2. Basic concepts

In this section, we recall the necessary basic concepts and properties of lattices and f-derivations on lattices.

2.1. Lattices

In this subsection, we recall some definitions and properties of lattices that will be needed throughout this paper. Further information can be found in [2, 4, 8, 13, 14].

An order relation \leq on a set X is a binary relation on X that is reflexive, antisymmetric and transitive. A set X equipped with an order relation \leq is called a partially ordered set (poset, for short), denoted (X, \leq) . Let (X, \leq) be a poset and A be a subset of X. An element $x_0 \in X$ is called a *lower bound* of A if $x_0 \leq x$, for any $x \in A$. x_0 is called the greatest lower bound (or the infimum) of A if x_0 is a lower bound and $m \leq x_0$, for any lower bound m of A. Upper bound and least upper bound (or supremum) are defined dually. Let (X, \leq_X) and (Y, \leq_Y) be two posets. A mapping $\varphi : X \longrightarrow Y$ is called an order isomorphism if it is surjective and satisfies the following condition:

 $x \leq_X y$ if and only if $\varphi(x) \leq_Y \varphi(y)$, for any $x, y \in X$.

If X = Y, an order isomorphism $\varphi : X \longrightarrow X$ is called an order automorphism.

A poset (L, \leq) is called a \wedge -semi-lattice if any two elements x and y have a greatest lower bound, denoted by $x \wedge y$ and called the meet (infimum) of x and y. Analogously, it is called a \vee -semi-lattice if any two elements x and y have a smallest upper bound, denoted by $x \vee y$ and called the join (supremum) of x and y. A poset (L, \leq) is called a lattice if it is both a \wedge -semi-lattice and a \vee -semi-lattice. A lattice can also be defined as an algebraic structure: a set L equipped with two binary operations \wedge and \vee that are idempotent, commutative and associative, and satisfy the absorption laws (i.e., $x \wedge (x \vee y) = x$ and $x \vee (x \wedge y) = x$, for any $x, y \in L$). The order relation and the meet and join operations are then related as follows: $x \leq y$ if and only if $x \wedge y = x$; $x \leq y$ if and only if $x \vee y = y$. Usually, the notation (L, \leq, \wedge, \vee) is used for a lattice. A poset (L, \leq) is called bounded

if it has a least and a greatest element, respectively denoted by 0 and 1. Often, the notation $(L, \leq, \land, \lor, 0, 1)$ is used to describe a bounded lattice. A non-empty subset M of a lattice (L, \leq, \land, \lor) is called a sublattice of L if, for any $x, y \in M$, it holds that $x \land y \in M$ and $x \lor y \in M$. A poset (L, \leq) is called a complete lattice if every subset A of L has both a greatest lower bound, denoted by $\bigwedge A$ and called the infimum of A, and a least upper bound, denoted by $\bigvee A$ and called the supremum of A, in (L, \leq) . A lattice (L, \leq, \land, \lor) is called distributive if one of the following two equivalent conditions holds:

(a) $x \land (y \lor z) = (x \land y) \lor (x \land z)$, for any $x, y, z \in L$; (a^{δ}) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$, for any $x, y, z \in L$.

Let (L, \leq , \land, \lor) and $(M, \preceq, \frown, \smile)$ be two lattices. A mapping $\varphi : L \longrightarrow M$ is called a \land -homomorphism (resp. \lor -homomorphism), if it satisfies $\varphi(x \land y) = \varphi(x) \frown \varphi(y)$ (resp. $\varphi(x \lor y) = \varphi(x) \smile \varphi(y)$), for any $x, y \in L$. A \land monomorphism is an injective \land -homomorphism. Also, a \land -epimorphism is a surjective \land -homomorphism. \lor -monomorphism and \lor -epimorphism are defined dually. A lattice homomorphism is both a \land -homomorphism and a \lor homomorphism, a lattice isomorphism is a bijective lattice homomorphism. If L = M, a lattice isomorphism $\varphi : L \longrightarrow L$ is called a lattice automorphism.

Proposition 2.1 [4]. Let L and M be two lattices, and $\varphi : L \longrightarrow M$ be a mapping. The following statements are equivalent:

- (i) φ is an order isomorphism;
- (ii) φ is a lattice isomorphism.

2.2. *f*-derivations on a lattice

In this subsection, we recall the definition and some properties of f-derivation on a lattice. Further information can be found in [3, 19, 21].

Definition 2.1 [19]. Let (L, \leq, \wedge, \vee) be a lattice. A function $d : L \longrightarrow L$ is called a *derivation* on L if it satisfies the following condition:

$$d(x \wedge y) = (d(x) \wedge y) \lor (x \wedge d(y)), \text{ for any } x, y \in L.$$

Definition 2.2 [3]. Let (L, \leq, \wedge, \vee) be a lattice and $f : L \longrightarrow L$ be a function. A function $d : L \longrightarrow L$ is called an *f*-derivation on L if it satisfies the following condition:

$$d(x \wedge y) = (d(x) \wedge f(y)) \lor (f(x) \wedge d(y)), \text{ for any } x, y \in L.$$

Throughout this paper, we shortly write dx instead of d(x) and fx instead of f(x).

Definition 2.3 [3]. Let (L, \leq, \wedge, \vee) be a lattice and d be an f-derivation on L. d is called *isotone* if it satisfies the following condition:

 $x \leq y$ implies $dx \leq dy$, for any $x, y \in L$.

The following proposition gives some proprieties of f-derivations on a lattice.

Proposition 2.2 [3]. Let (L, \leq, \wedge, \vee) be a lattice and d be an f-derivation on L. Then the following holds.

- (i) $dx \leq fx$, for any $x \in L$;
- (ii) If (L, ≤, ∧, ∨) is distributive, f is a ∨-homomorphism and d is isotone, then d(x ∨ y) = dx ∨ dy.

Proposition 2.3 [3]. Let $(L, \leq n, \vee)$ be a lattice, $\alpha \in L$ and $f : L \longrightarrow L$ be a function satisfies $f(x \wedge y) = fx \wedge fy$, for any $x, y \in L$. Then the function $d_{(\alpha,f)} : L \longrightarrow L$ defined by $d_{(\alpha,f)}(x) = \alpha \wedge fx$, for any $x \in L$, is an f-derivation on L. In addition, if f is an increasing function, then $d_{(\alpha,f)}$ is an isotone fderivation.

The following sets are the key notions of this paper.

Notation 2.1. Let (L, \leq, \land, \lor) be a lattice and $f : L \longrightarrow L$ be a function. We denote by:

- (i) $\mathfrak{I}_f(L)$ the set of isotone *f*-derivations on *L*;
- (ii) $\mathcal{P}_f(L) := \{ d_{(\alpha, f)} \mid \alpha \in L \}.$

The following result shows that the set of isotone f-derivations on a distributive lattice has also a structure of a distributive lattice.

Theorem 1 [21]. Let (L, \leq , \land, \lor) be a distributive lattice and d_1, d_2 be two isotone f-derivations on L. Define $(d_1 \sqcap d_2)(x) = d_1x \land d_2x$ and $(d_1 \sqcup d_2)(x) = d_1x \lor d_2x$, for any $x \in L$. Then the structure $(\mathfrak{I}_f(L), \preceq, \sqcap, \sqcup)$ is a distributive lattice, where the order relation \preceq is defined as:

 $d_1 \leq d_2$ if and only if $d_1 \sqcup d_2 = d_2$, for any $d_1, d_2 \in \mathfrak{I}_f(L)$.

3. Principal f-derivations on a lattice

In this section, we show a necessary and sufficient condition that the functions $d_{(\alpha,f)}$ on a lattice L are f-derivations (called principal f-derivations). Also, we show that their set has a lattice structure. Furthermore, we provide a representation (resp. a characterization) theorem of any lattice (resp. distributive lattice) in terms of its principal f-derivations.

3.1. Poset structure for the set of principal f-derivations on a lattice

The following result shows a necessary and sufficient condition that the functions $d_{(\alpha,f)}$ on a lattice L being f-derivations on L.

Theorem 2. Let (L, \leq , \land, \lor) be a lattice and $f : L \longrightarrow L$ be a function. Then it holds that f is a \land -homomorphism if and only if $d_{(\alpha,f)}$ is an f-derivation on L, for any $\alpha \in L$.

Proof. The direct implication follows from Proposition 2.3. For the converse implication, we assume that $d_{(\alpha,f)}$ is an f-derivation on L, for any $\alpha \in L$. It follows that

$$d_{(\alpha,f)}(x \wedge y) = \alpha \wedge f(x \wedge y)$$

= $(d_{(\alpha,f)}(x) \wedge fy) \vee (fx \wedge d_{(\alpha,f)}(y))$
= $(\alpha \wedge fx \wedge fy) \vee (fx \wedge \alpha \wedge fy)$
= $\alpha \wedge fx \wedge fy$, for any $\alpha, x, y \in L$.

Hence, $\alpha \wedge f(x \wedge y) = \alpha \wedge fx \wedge fy$, for any $\alpha, x, y \in L$. On the one hand, setting $\alpha = f(x \wedge y)$. Then it follows that $f(x \wedge y) = f(x \wedge y) \wedge (fx \wedge fy)$, for any $x, y \in L$. Hence, $f(x \wedge y) \leq fx \wedge fy$, for any $x, y \in L$. On the other hand, setting $\alpha = fx \wedge fy$. Then it follows that $(fx \wedge fy) \wedge f(x \wedge y) = (fx \wedge fy) \wedge (fx \wedge fy) =$ $fx \wedge fy$, for any $x, y \in L$. Hence, $fx \wedge fy \leq f(x \wedge y)$, for any $x, y \in L$. Thus, $f(x \wedge y) = fx \wedge fy$, for any $x, y \in L$. Therefore, f is a \wedge -homomorphism.

The following corollary expresses the relationship between $\mathcal{P}_f(L)$ and $\mathfrak{I}_f(L)$.

Corollary 3.1. Let (L, \leq, \wedge, \vee) be a lattice and $f : L \longrightarrow L$ be a function. Then it holds that f is a \wedge -homomorphism if and only if $\mathcal{P}_f(L)$ is a subset of $\mathfrak{I}_f(L)$.

Proof. The proof is directly from Theorem 2.

In what follows, for a given lattice L, the f-derivations $d_{(\alpha,f)}$ will be called principal f-derivations on L, and $\mathcal{P}_f(L)$ denotes their set. On $\mathcal{P}_f(L)$, we define a binary relation \leq' as follows:

 $d_{(\alpha,f)} \leq d_{(\beta,f)}$ if and only if $d_{(\alpha,f)}(x) \leq d_{(\beta,f)}(x)$, for any $x \in L$.

One easily verifies that \leq' is an order relation on $\mathcal{P}_f(L)$.

Remark 3.1. If $(L, \leq , \land, \lor, 0, 1)$ is a bounded lattice, then the poset $(\mathcal{P}_f(L), \leq')$ is also bounded, where $0_{\mathcal{P}_f(L)} = d_{(0,f)}$ and $1_{\mathcal{P}_f(L)} = d_{(1,f)}$ such that $d_{(0,f)}(x) = 0$ and $d_{(1,f)}(x) = fx$, for any $x \in L$.

3.2. Lattice structure for the poset of principal f-derivations on a lattice

In this subsection, we show some cases in which the poset $(\mathcal{P}_f(L), \leq')$ of principal f-derivations on a lattice L has a lattice structure. Also, we provide a representation of a lattice in terms of its principal f-derivations. First, we show that $(\mathcal{P}_f(L), \leq')$ is a \wedge -semi-lattice.

Proposition 3.1. Let (L, \leq, \wedge, \vee) be a lattice and $f : L \longrightarrow L$ be a \wedge -homomorphism. Then the poset $(\mathcal{P}_f(L), \leq')$ is a \wedge -semi-lattice.

Proof. Let $d_{(\alpha,f)}, d_{(\beta,f)} \in \mathcal{P}_f(L)$. It is easy to verify that $d_{(\alpha \wedge \beta,f)}$ is the greatest lower bound of $d_{(\alpha,f)}$ and $d_{(\beta,f)}$. Thus, $(\mathcal{P}_f(L), \leq')$ is a \wedge -semi-lattice.

The following theorem shows that the set of principal f-derivations on a complete lattice is also a complete lattice.

Theorem 3. Let (L, \leq, \wedge, \vee) be a complete lattice and $f : L \longrightarrow L$ be a \wedge -homomorphism. Then the poset $(\mathcal{P}_f(L), \leq')$ is a complete lattice.

Proof. Proposition 3.1 guarantees that $(\mathcal{P}_f(L), \leq')$ is a \wedge -semi-lattice. Let A be a non-empty subset of $\mathcal{P}_f(L)$ and P^u be the set of upper bounds of A. The fact that (L, \leq, \wedge, \vee) is a complete lattice implies that $d_{(\beta,f)} = d_{(\bigwedge \alpha_i, f)}$ with $d_{(\alpha_i, f)} \in P^u$ is the least upper bound of A. Thus, $(\mathcal{P}_f(L), \leq')$ is a complete lattice.

The following corollary follows from the above theorem.

Corollary 3.2. Let $(L, \leq n, \vee)$ be a finite lattice and $f : L \longrightarrow L$ be a \wedge -homomorphism. Then $(\mathcal{P}_f(L), \leq')$ is a finite lattice.

The following theorem shows that the set of principal f-derivations on a distributive lattice is also a distributive lattice.

Theorem 4. Let (L, \leq, \wedge, \vee) be a distributive lattice and $f : L \longrightarrow L$ be a \wedge -homomorphism. Then the poset $(\mathcal{P}_f(L), \leq')$ is a distributive lattice.

Proof. Let $d_{(\alpha,f)}, d_{(\beta,f)} \in L$. The fact that (L, \leq, \land, \lor) is distributive implies that $d_{(\alpha\lor\beta,f)}$ is the least upper bound of $d_{(\alpha,f)}$ and $d_{(\beta,f)}$. Thus, $(\mathcal{P}_f(L), \leq')$ is a lattice. Moreover, its distributivity follows from that of (L, \leq, \land, \lor) .

Next, we provide a representation of a lattice L based on its principal f-derivations. This representation gives also another case where the poset $(\mathcal{P}_f(L), \leq')$ is a lattice. First, we need to show the following lemma.

Lemma 5. Let (L, \leq, \wedge, \vee) be a lattice and $f : L \longrightarrow L$ be a function. If f is surjective, then for any $\alpha, \beta \in L$, the following equivalence holds:

 $\alpha \leq \beta$ if and only if $d_{(\alpha,f)} \leq d_{(\beta,f)}$.

Proof. The direct implication is immediate. For the converse implication, assume that f is surjective. Let $\alpha, \beta \in L$ such that $d_{(\alpha,f)} \leq d_{(\beta,f)}$. Then $\alpha \wedge fx \leq \beta \wedge fx$, for any $x \in L$. Since f is surjective, it holds that there exists $m \in L$ such that $fm = \alpha$. Hence, $\alpha \wedge fm \leq \beta \wedge fm$. Thus, $\alpha \leq \beta$.

Now, we are able to provide a representation of a lattice in terms of its principal f-derivations.

Theorem 6. Let (L, \leq, \wedge, \vee) be a lattice and f be a \wedge -homomorphism. If f is a \wedge -epimorphism, then the poset $(\mathcal{P}_f(L), \leq')$ is a lattice, where $d_{(\alpha,f)} \wedge' d_{(\beta,f)} = d_{(\alpha \wedge \beta,f)}$ and $d_{(\alpha,f)} \vee' d_{(\beta,f)} = d_{(\alpha \vee \beta,f)}$, for any $d_{(\alpha,f)}, d_{(\beta,f)} \in \mathcal{P}_f(L)$. Moreover, (L, \leq, \wedge, \vee) and $(\mathcal{P}_f(L), \leq', \wedge', \vee')$ are isomorphic.

Proof. Assume that $f: L \longrightarrow L$ is a \wedge -epimorphism. Proposition 3.1 guarantees that $(\mathcal{P}_f(L), \leq')$ is a \wedge -semi-lattice, where $d_{(\alpha,f)} \wedge' d_{(\beta,f)} = d_{(\alpha \wedge \beta,f)}$ is the greatest lower bound of $d_{(\alpha,f)}$ and $d_{(\beta,f)}$, for any $d_{(\alpha,f)}, d_{(\beta,f)} \in \mathcal{P}_f(L)$. Now, we show that $(\mathcal{P}_f(L), \leq')$ is a \vee -semi-lattice. Let $d_{(\alpha,f)}, d_{(\beta,f)} \in \mathcal{P}_f(L)$, since f is surjective, it follows from Lemma 5 that $d_{(\alpha,f)} \vee' d_{(\beta,f)} = d_{(\alpha \vee \beta,f)}$ is the least upper bound of $d_{(\alpha,f)}$ and $d_{(\beta,f)}$. Hence, $(\mathcal{P}_f(L), \leq')$ is a \vee -semi-lattice. Thus, the structure $(\mathcal{P}_f(L), \leq', \wedge', \vee')$ is a lattice.

Next, let $\psi : L \longrightarrow \mathcal{P}_f(L)$ be a mapping defined as $\psi(\alpha) = d_{(\alpha,f)}$, for any $\alpha \in L$. It is obvious to verify that ψ is surjective. Furthermore, Lemma 5 guarantees that

 $\alpha \leq \beta$ if and only if $\psi(\alpha) \leq \psi(\beta)$, for any $\alpha, \beta \in L$.

Thus, ψ is an order isomorphism between L and $\mathcal{P}_f(L)$. Proposition 2.1 guarantees that ψ is a lattice isomorphism. Therefore, (L, \leq, \land, \lor) and $(\mathcal{P}_f(L), \leq', \land', \lor')$ are isomorphic.

In the following, we present an illustrative example of Theorem 6.

Example 3.1. Let L = D(30) be the lattice of the positive divisors of 30 given by Hasse diagram in Figure 1, and $f: D(30) \longrightarrow D(30)$ be a function defined by the following table:

x	1	2	3	5	6	10	15	30
fx	1	2	5	3	10	6	15	30

x	1	2	3	5	6	10	15	30
$d_{(1,f)}(x)$	1	1	1	1	1	1	1	1
$d_{(2,f)}(x)$	1	2	1	1	2	2	1	2
$d_{(3,f)}(x)$	1	1	1	3	1	3	3	3
$d_{(5,f)}(x)$	1	1	5	1	5	1	5	5
$d_{(6,f)}(x)$	1	2	1	3	2	6	3	6
$d_{(10,f)}(x)$	1	2	5	1	10	2	5	10
$d_{(15,f)}(x)$	1	1	5	3	5	3	15	15
$d_{(30,f)}(x)$	1	2	5	3	10	6	15	30

The following table presents the elements of $\mathcal{P}_f(D(30))$.

One easily verifies that f is a lattice automorphism. Hence, Theorem 6 guarantees that $(\mathcal{P}_f(D(30)), \leq', \wedge', \vee')$ is a lattice and isomorphic to (D(30), |, gcd, lcm).

Figure 1. The Hasse diagrams of the lattices (D(30), |, gcd, lcm) and $(\mathcal{P}_f(D(30)), \leq', \land', \lor')$.

Note that the converse of the Theorem 6 does not necessarily hold, as can be seen in the following example.

Example 3.2. Let L = D(6) be the lattice of the positive divisors of 6 given by Hasse diagram in Figure 2, and $f : D(6) \longrightarrow D(6)$ be a function defined by the following table:

x	1	2	3	6
fx	1	1	6	6

The following table presents the elements of $\mathcal{P}_f(D(6))$.

$d_{(1,f)}(x)$	1	1	1	1
$d_{(2,f)}(x)$	1	1	2	2
$d_{(3,f)}(x)$	1	1	3	3
$d_{(6,f)}(x)$	1	1	6	6

One easily verifies that f is a \wedge -homomorphism. Moreover, since there not exists $x \in D(6)$ such that fx = 2, it holds that f is not surjective. But, as can be seen in Figure 2 that the poset $(\mathcal{P}_f(D(6)), \leq')$ is a lattice and isomorphic to (D(6), |, gcd, lcm).

Figure 2. The Hasse diagrams of the lattices (D(6), |, gcd, lcm) and $(\mathcal{P}_f(D(6)), \leq', \wedge', \vee')$.

3.3. A relationship between a distributive lattice and its lattice of isotone f-derivations

In this subsection, we give a relationship between a distributive lattice L and its lattice of isotone f-derivations $(\mathfrak{I}_f(L), \leq, \sqcap, \sqcup)$. Also, we show a characterization theorem of a distributive lattice in terms of its principal f-derivations. First, we need to recall the following result.

Proposition 3.2 [21]. Let (L, \leq, \wedge, \vee) be a distributive lattice and $f : L \longrightarrow L$ be a \wedge -homomorphism. Then the structure $(\mathcal{P}_f(L), \preceq, \sqcap, \sqcup)$ is a sublattice of the distributive lattice $(\mathfrak{I}_f(L), \preceq, \sqcap, \sqcup)$.

In the case of (L, \leq, \wedge, \vee) is a distributive lattice, the following proposition shows that the lattice structures $(\mathcal{P}_f(L), \preceq, \sqcap, \sqcup)$ and $(\mathcal{P}_f(L), \leq', \wedge', \vee')$ coincide.

Proposition 3.3. Let (L, \leq, \wedge, \vee) be a distributive lattice and $f : L \longrightarrow L$ be a \wedge -homomorphism. Then $(\mathcal{P}_f(L), \preceq, \neg, \sqcup)$ coincides with $(\mathcal{P}_f(L), \leq', \wedge', \vee')$.

Proof. On the one hand, $(d_{(\alpha,f)} \sqcap d_{(\beta,f)})(x) = (\alpha \land fx) \land (\beta \land fx) = (\alpha \land \beta) \land fx = d_{(\alpha \land \beta,f)}(x) = (d_{(\alpha,f)} \land' d_{(\beta,f)})(x)$, for any $\alpha, \beta, x \in L$. Then \sqcap coincides with \land' on $\mathcal{P}_f(L)$, for any lattice (L, \leq, \land, \lor) . On the other hand, we assume that (L, \leq, \land, \lor) is a distributive lattice. Let $d_{(\alpha,f)}, d_{(\beta,f)} \in \mathcal{P}_f(L)$, then $(d_{(\alpha,f)} \sqcup d_{(\beta,f)})(x) = (\alpha \land fx) \lor (\beta \land fx) = (\alpha \lor \beta) \land fx = d_{(\alpha \lor \beta,f)}(x) = (d_{(\alpha,f)} \lor' d_{(\beta,f)})(x)$, for any $x \in L$. Thus, \sqcup coincides with \lor' on $\mathcal{P}_f(L)$. Therefore, the lattice structures $(\mathcal{P}_f(L), \leq, \sqcap, \sqcup)$ and $(\mathcal{P}_f(L), \leq', \land', \lor')$ coincide.

Combining Propositions 3.2 and 3.3 leads to the following corollary.

Corollary 3.3. Let (L, \leq, \wedge, \vee) be a distributive lattice and $f : L \longrightarrow L$ be a \wedge -homomorphism. Then $(\mathcal{P}_f(L), \leq', \wedge', \vee')$ is a sublattice of $(\mathfrak{I}_f(L), \leq, \neg, \sqcup)$.

The following theorem shows a relationship between a distributive lattice and its lattice of isotone f-derivations.

Theorem 7. Let (L, \leq, \wedge, \vee) be a distributive lattice and $f : L \longrightarrow L$ be a \wedge -epimorphism. Then (L, \leq, \wedge, \vee) is isomorphic to a sublattice of $(\mathfrak{I}_f(L), \preceq, \neg, \sqcup)$.

Proof. Assume that (L, \leq , \land, \lor) is a distributive lattice and $f : L \longrightarrow L$ is a \land -epimorphism. On the one hand, Theorem 6 guarantees that (L, \leq, \land, \lor) is isomorphic to $(\mathcal{P}_f(L), \leq', \land', \lor')$. On the other hand, Corollary 3.3 shows that $(\mathcal{P}_f(L), \leq', \land', \lor')$ is a sublattice of $(\mathfrak{I}_f(L), \preceq, \sqcap, \sqcup)$. Consequently, (L, \leq, \land, \lor) is isomorphic to a sublattice of $(\mathfrak{I}_f(L), \preceq, \sqcap, \sqcup)$.

We conclude this subsection by a characterization theorem of a distributive lattice in terms of its principal f-derivations.

Theorem 8. Let (L, \leq, \wedge, \vee) be a lattice and $f : L \longrightarrow L$ be a \wedge -epimorphism. The following statements are equivalent:

- (i) (L, \leq, \wedge, \vee) is distributive;
- (ii) $(\mathcal{P}_f(L), \preceq, \sqcap, \sqcup)$ is a distributive lattice;
- (iii) \sqcup is a binary operation on $\mathcal{P}_f(L)$;
- (iv) \sqcup coincides with \lor' on $\mathcal{P}_f(L)$.

Proof. (i) \Rightarrow (ii): A straightforward application of Proposition 3.2.

(ii) \Rightarrow (iii): The proof is immediate.

(iii) \Rightarrow (iv): Let $d_{(\alpha,f)}, d_{(\beta,f)} \in \mathcal{P}_f(L)$. The fact that \sqcup is a binary operation on $\mathcal{P}_f(L)$ implies that there exists $d_{(\gamma,f)} \in \mathcal{P}_f(L)$ such that $d_{(\alpha,f)} \sqcup d_{(\beta,f)} = d_{(\gamma,f)}$, this equivalent to

$$(\alpha \wedge fx) \vee (\beta \wedge fx) = \gamma \wedge fx$$
, for any $x \in L$.

Since f is surjective, it follows that there exist $a, b, c \in L$ such that $fa = \alpha$, $fb = \beta$ and $fc = \gamma$. Setting x = a (resp. x = b), it holds that $\alpha = \gamma \wedge \alpha$ (resp. $\beta = \gamma \wedge \beta$). Moreover, setting x = c, we obtain that $\gamma = \alpha \vee \beta$. Hence, $d_{(\alpha,f)} \sqcup d_{(\beta,f)} = d_{(\alpha \vee \beta,f)} = d_{(\alpha,f)} \vee d_{(\beta,f)}$. Thus, \sqcup coincides with the binary operation \vee' on $\mathcal{P}_f(L)$.

(iv) \Rightarrow (i): Let $\alpha, \beta, \gamma \in L$. Since \sqcup coincides with \lor' on $\mathcal{P}_f(L)$, it holds that $(d_{(\alpha,f)} \sqcup d_{(\beta,f)})(x) = (d_{(\alpha,f)} \lor' d_{(\beta,f)})(x) = d_{(\alpha\lor\beta,f)}(x)$ for any $x \in L$, this equivalent to

$$(\alpha \wedge fx) \lor (\beta \wedge fx) = (\alpha \lor \beta) \land fx$$
, for any $x \in L$.

The fact that f is surjective implies that there exists $c \in L$ satisfying $fc = \gamma$. Setting x = c, we obtain that $(\alpha \land \gamma) \lor (\beta \land \gamma) = (\alpha \lor \beta) \land \gamma$. Thus, (L, \leq, \land, \lor) is distributive.

Remark 3.2. From Theorem 8, we conclude that if (L, \leq, \land, \lor) is not distributive and $f : L \longrightarrow L$ is a \land -epimorphism, then $(\mathcal{P}_f(L), \preceq, \sqcap, \sqcup)$ has not a lattice structure. It is only a \sqcap -semi-lattice, indeed, in this case \sqcup can not be a binary operation on $\mathcal{P}_f(L)$.

4. Ideal structure of f-fixed points of an isotone f-derivation on a lattice

This section is devoted to study the structure of the set of f-fixed points of an isotone f-derivation on a lattice L. More specifically, we present some cases that this set is an ideal of L, and we provide a characterization theorem of principal ideals of L in terms of its principal f-derivations. Furthermore, we show a relationship between prime ideals of L and f-derivations on L. First, we recall the following definitions.

4.1. Definitions

A non-empty subset I of a lattice L is called an *ideal*, if the following two conditions hold:

- (i) if $x \in L$ and $y \in I$ such that $x \leq y$, then $x \in I$;
- (ii) if $x, y \in I$, then $x \lor y \in I$.

An ideal I is called *prime* if $x \land y \in I$ implies that $x \in I$ or $y \in I$, for any $x, y \in L$. An ideal is called *principal*, if it is generated by an element $x \in L$. It is the smallest ideal contains x and is given by the set $\downarrow x = \{y \in L \mid y \leq x\}$.

Definition 4.1 [3]. Let (L, \leq, \wedge, \vee) be a lattice and d be an f-derivation on L. The set of f-fixed points of d is given by:

$$Fix_{(d,f)}(L) = \{x \in L \mid dx = fx\}.$$

Notation 4.1. Let (L, \leq, \land, \lor) be a lattice and $f : L \longrightarrow L$ be a function. We denote by:

(i) $\mathfrak{F}_f(L) := \left\{ Fix_{(d,f)}(L) \mid d \in \mathfrak{I}_f(L) \right\};$ (ii) $\mathcal{F}_f(L) := \left\{ Fix_{(d_{(\alpha,f)},f)}(L) \mid d_{(\alpha,f)} \in \mathcal{P}_f(L) \right\}.$

4.2. Ideal structure of the set of f-fixed points of an isotone f-derivation on a lattice

In this subsection, we present some cases that the set of f-fixed points of an isotone (resp. a principal) f-derivations on a lattice L is an ideal of L.

Theorem 9. Let (L, \leq, \wedge, \vee) be a distributive lattice and d be an isotone fderivation on L. If f is a \vee -homomorphism and $Fix_{(d,f)}(L)$ is a non-empty set, then $Fix_{(d,f)}(L)$ is an ideal of L.

Proof. Assume that $f: L \to L$ is a \vee -homomorphism. Let d be an isotone f-derivation on L such that $Fix_{(d,f)}(L)$ is a non-empty set. On the one hand, let $x, y \in L$ such that $x \in Fix_{(d,f)}(L)$ and $y \leq x$. The fact that d is an f-derivation on L implies from Proposition 2.2 that $dy \leq fy$. Since f is increasing, $y \leq x$ and $x \in Fix_{(d,f)}(L)$, it follows that $fy \leq fx = dx$. Hence, $dy = d(x \wedge y) = (dx \wedge fy) \vee (fx \wedge dy) = fy \vee dy$, and this implies that $fy \leq dy$. Thus, dy = fy, i.e., $y \in Fix_{(d,f)}(L)$. On the other hand, let $x, y \in Fix_{(d,f)}(L)$. This implies that dx = fx and dy = fy. Since (L, \leq, \wedge, \vee) is distributive, f is a \vee -homomorphism and d is an isotone f-derivation on L, it follows from Proposition 2.2 that $d(x \vee y) = dx \vee dy = fx \vee fy = f(x \vee y)$. Hence, $x \vee y \in Fix_{(d,f)}(L)$. Finally, we conclude that $Fix_{(d,f)}(L)$ is an ideal of L.

Remark 4.1. In general, the set of *f*-fixed points of an *f*-derivation on a lattice L is a non-empty set. Indeed, if (L, \leq, \wedge, \vee) is a lattice has a least element $0 \in L$ and f0 = 0, then 0 is an *f*-fixed point of any *f*-derivation on L.

Theorem 10. Let (L, \leq, \wedge, \vee) be a lattice and $d_{(\alpha,f)}$ be a principal f-derivation on L such that $Fix_{(d_{(\alpha,f)},f)}(L)$ is a non-empty set. If f is a lattice homomorphism, then $Fix_{(d_{(\alpha,f)},f)}(L)$ is an ideal of L.

Proof. Assume that $f: L \longrightarrow L$ is a lattice homomorphism. Let $d_{(\alpha,f)} \in \mathcal{P}_f(L)$ such that $Fix_{(d_{(\alpha,f)},f)}(L)$ is a non-empty set. On the one hand, let $x, y \in L$ such that $x \in Fix_{(d_{(\alpha,f)},f)}(L)$ and $y \leq x$. The fact that $x \in Fix_{(d_{(\alpha,f)},f)}(L)$ implies

that $d_{(\alpha,f)}(x) = \alpha \wedge fx = fx$. Hence, $fx \leq \alpha$. Now, since f is increasing and $y \leq x$, it holds that $fy \leq fx$. Hence, $fy \leq \alpha$. Thus, $d_{(\alpha,f)}(y) = \alpha \wedge fy = fy$. Therefore, $y \in Fix_{(d_{(\alpha,f)},f)}(L)$. On the other hand, let $x, y \in Fix_{(d_{(\alpha,f)},f)}(L)$. Then $d_{(\alpha,f)}(x) = \alpha \wedge fx = fx$ and $d_{(\alpha,f)}(y) = \alpha \wedge fy = fy$. This implies that $fx \vee fy \leq \alpha$. The fact that f is a \vee -homomorphism and $x, y \in Fix_{(d_{(\alpha,f)},f)}(L)$ imply that $f(x \vee y) = fx \vee fy \leq \alpha$. Hence, $d_{(\alpha,f)}(x \vee y) = \alpha \wedge f(x \vee y) = f(x \vee y)$. Thus, $x \vee y \in Fix_{(d_{(\alpha,f)},f)}(L)$. Therefore, $Fix_{(d_{(\alpha,f)},f)}(L)$ is an ideal of L.

4.3. Characterization of principal ideals in terms of principal f-derivations on a lattice

In this subsection, we show a characterization theorem of principal ideals of a lattice in terms of its principal f-derivations. First, we show the following key results.

Proposition 4.1. Let (L, \leq , \land, \lor) be a lattice, $\downarrow x$ be a principal ideal of L and $f: L \longrightarrow L$ be a \land -monomorphism. Then there exists a principal f-derivation $d_{(\alpha,f)} \in \mathcal{P}_f(L)$ such that $\downarrow x = Fix_{(d_{(\alpha,f)},f)}(L)$, where $\alpha = f(x)$.

Proof. Let $\downarrow x$ be a principal ideal of L. Since f is a \land -monomorphism, it follows that

$$\downarrow x = \{y \in L \mid y \leq x\}$$

= $\{y \in L \mid x \land y = y\}$
= $\{y \in L \mid f(x \land y) = f(y)\}$
= $\{y \in L \mid f(x) \land f(y) = f(y)\}$
= $\{y \in L \mid d_{(f(x),f)}(y) = f(y)\}$
= $Fix_{(d_{(f(x),f)},f)}(L).$

Thus, there exists $d_{(\alpha,f)} \in \mathcal{P}_f(L)$ such that $\downarrow x = Fix_{(d_{(\alpha,f)},f)}(L)$, where $\alpha = f(x)$.

Proposition 4.2. Let $(L, \leq n, \vee)$ be a lattice, $f : L \longrightarrow L$ be a lattice automorphism and $d_{(\alpha,f)}$ be a principal f-derivation on L. Then $Fix_{(d_{(\alpha,f)},f)}(L)$ is a principal ideal of L generated by $f^{-1}(\alpha)$.

Proof. Let $d_{(\alpha,f)} \in \mathcal{P}_f(L)$. Since f is a lattice automorphism, it follows that

$$Fix_{(d_{(\alpha,f)},f)}(L) = \{y \in L \mid d_{(\alpha,f)}(y) = fy\}$$

= $\{y \in L \mid \alpha \land fy = fy\}$
= $\{y \in L \mid fy \leqslant \alpha\}$
= $\{y \in L \mid y \leqslant f^{-1}(\alpha)\}$
= $\downarrow f^{-1}(\alpha).$

Combining Propositions 4.1 and 4.2 leads to the following characterization theorem of principal ideals of a lattice L in terms of its principal f-derivations.

Theorem 11. Let (L, \leq, \wedge, \vee) be a lattice and $f : L \longrightarrow L$ be a lattice automorphism. Then $\mathcal{F}_f(L) = \{ Fix_{(d_{(\alpha,f)},f)}(L) \mid d_{(\alpha,f)} \in \mathcal{P}_f(L) \}$ is exactly the set of principal ideals of L.

In the following, we present an illustrative example of the above Theorem 11.

Example 4.1. Let L = D(30) be the lattice of the positive divisors of 30 given by Hasse diagram in Figure 1, and f be the D(30)-automorphism given in Example 3.1. Then the following holds:

$$\begin{cases} Fix_{(d_{(1,f)},f)}(D(30)) = \{1\} = \downarrow 1 = \downarrow f^{-1}(1); \\ Fix_{(d_{(2,f)},f)}(D(30)) = \{1,2\} = \downarrow 2 = \downarrow f^{-1}(2); \\ Fix_{(d_{(3,f)},f)}(D(30)) = \{1,5\} = \downarrow 5 = \downarrow f^{-1}(3); \\ Fix_{(d_{(5,f)},f)}(D(30)) = \{1,3\} = \downarrow 3 = \downarrow f^{-1}(5); \\ Fix_{(d_{(6,f)},f)}(D(30)) = \{1,2,5,10\} = \downarrow 10 = \downarrow f^{-1}(6); \\ Fix_{(d_{(10,f)},f)}(D(30)) = \{1,2,3,6\} = \downarrow 6 = \downarrow f^{-1}(10); \\ Fix_{(d_{(15,f)},f)}(D(30)) = \{1,3,5,15\} = \downarrow 15 = \downarrow f^{-1}(15); \\ Fix_{(d_{(30,f)},f)}(D(30)) = D(30) = \downarrow 30 = \downarrow f^{-1}(30). \end{cases}$$

Thus, $\mathcal{F}_f(D(30))$ is the set of principal ideals of D(30).

4.4. A relationship between prime ideals and *f*-derivations on a lattice

In this subsection, we show a relationship between prime ideals of a lattice L and f-derivations on L. This relationship is a generalization of the result of Theorem 4.13 given by Xin in [20].

Theorem 12. Let (L, \leq, \wedge, \vee) be a lattice, $f : L \longrightarrow L$ be a function and I be a prime ideal of L. The following implications hold:

- (i) if f is a \wedge -homomorphism, then there exists an f-derivation d on L such that $I \subseteq Fix_{(d,f)}(L)$;
- (ii) if f is a \wedge -monomorphism, then there exists an f-derivation d on L such that $I = Fix_{(d,f)}(L)$.

Proof. Let $\alpha \in I$ and $d: L \longrightarrow L$ be a function defined as

$$dx = \begin{cases} fx, & \text{if } x \in I; \\ f(\alpha \wedge x), & \text{otherwise.} \end{cases}$$

(i) The fact that f is a \wedge -homomorphism and I is a prime ideal of L imply that $d(x \wedge y) = (dx \wedge fy) \vee (fx \wedge dy)$, for any $x, y \in L$. Thus, d is an f-derivation on L. The proof of $I \subseteq Fix_{(d,f)}(L)$ is straightforward.

(ii) Assume that f is a \wedge -monomorphism. On the one hand, (i) guarantees that d is an f-derivation on L and $I \subseteq Fix_{(d,f)}(L)$. On the other hand, let $x \in Fix_{(d,f)}(L)$. Here, we distinguish two possible cases, which are $x \in I$ or $x \notin I$. Now, we prove that the case of $x \notin I$ is an impossible case. Suppose that $x \notin I$, then $dx = f(\alpha \wedge x)$. The fact that $x \in Fix_{(d,f)}(L)$ implies that dx = fx. Hence, $f(\alpha \wedge x) = fx$. Since f is injective, it holds that $\alpha \wedge x = x$, i.e., $x \leqslant \alpha$. Since $\alpha \in I$ and I is an *ideal*, it holds that $x \in I$, which contradicts the hypothesis that $x \notin I$. Hence, necessarily $x \in I$. Thus, $Fix_{(d,f)}(L) \subseteq I$. Finally, we conclude that $I = Fix_{(d,f)}(L)$.

5. Structure of the set of f-fixed points sets of isotone f-derivations on a distributive lattice

In this section, for a given distributive lattice L, we show that the set of f-fixed points sets $\mathfrak{F}_f(L)$ of its isotone f-derivations has also a structure of a distributive lattice. Moreover, we prove that the set of f-fixed points sets $\mathcal{F}_f(L)$ of principal f-derivations on L is a sublattice of $\mathfrak{F}_f(L)$. Finally, we provide a representation of any distributive lattice based on the f-fixed points of its principal f-derivations. First, we prove the following key result.

Proposition 5.1. Let (L, \leq, \wedge, \vee) be a distributive lattice. For any $Fix_{(d_1,f)}(L)$, $Fix_{(d_2,f)}(L) \in \mathfrak{F}_f(L)$, we define:

$$Fix_{(d_1,f)}(L) \sqcap' Fix_{(d_2,f)}(L) = Fix_{(d_1 \sqcap d_2,f)}(L),$$

and

$$Fix_{(d_1,f)}(L) \sqcup' Fix_{(d_2,f)}(L) = Fix_{(d_1 \sqcup d_2,f)}(L)$$

Then \sqcap' and \sqcup' are idempotent, commutative and associative binary operations on $\mathfrak{F}_f(L)$, and they satisfy the absorption laws.

Proof. Let $Fix_{(d_1,f)}(L)$, $Fix_{(d_2,f)}(L) \in \mathfrak{F}_f(L)$. Then $d_1, d_2 \in \mathfrak{I}_f(L)$, i.e., d_1 and d_2 are two isotone f-derivations on L. Since (L, \leq, \land, \lor) is distributive, it follows from Theorem 1 that $d_1 \sqcap d_2$ and $d_1 \sqcup d_2$ are also isotone f-derivations on L, i.e., $d_1 \sqcap d_2, d_1 \sqcup d_2 \in \mathfrak{I}_f(L)$. Hence, $Fix_{(d_1,f)}(L) \sqcap' Fix_{(d_2,f)}(L), Fix_{(d_1,f)}(L) \sqcup' Fix_{(d_2,f)}(L) \in \mathfrak{F}_f(L)$. Thus, \sqcap' and \sqcup' are binary operations on $\mathfrak{F}_f(L)$. Furthermore, the fact that $(\mathfrak{I}_f(L), \preceq, \sqcap, \sqcup)$ is a lattice implies that \sqcap and \sqcup are idempotent, commutative and associative binary operations on $\mathfrak{I}_f(L)$, and they satisfy the absorption laws. These imply that \sqcap' and \sqcup' are also idempotent,

commutative and associative binary operations on $\mathfrak{F}_f(L)$, and they satisfy the absorption laws.

Theorem 13. Let (L, \leq , \land, \lor) be a distributive lattice and $f : L \longrightarrow L$ be a function. Then the structure $(\mathfrak{F}_f(L), \preceq', \sqcap', \sqcup')$ is a distributive lattice, where the order relation \preceq' is defined as $Fix_{(d_1,f)}(L) \preceq' Fix_{(d_2,f)}(L)$ if and only if $Fix_{(d_1,f)}(L) \sqcup' Fix_{(d_2,f)}(L) = Fix_{(d_2,f)}(L)$, for any $Fix_{(d_1,f)}(L)$, $Fix_{(d_2,f)}(L) \in \mathfrak{F}_f(L)$.

Proof. Proposition 5.1 guarantees that $(\mathfrak{F}_f(L), \preceq', \sqcap', \sqcup')$ is a lattice. Moreover, from the distributivity of $(\mathfrak{I}_f(L), \preceq, \sqcap, \sqcup)$, we easily verify that $(\mathfrak{F}_f(L), \preceq', \sqcap', \sqcup')$ is also distributive.

The following Proposition lists some proprieties of the sets of f-fixed points of principal f-derivations on a lattice.

Proposition 5.2. Let (L, \leq, \wedge, \vee) be a lattice, $f : L \longrightarrow L$ be a \wedge -homomorphism and $d_{(\alpha,f)}, d_{(\beta,f)}$ be two principal f-derivations on L. Then it holds that

- (i) $Fix_{(d_{(\alpha,f)},f)}(L) \cap Fix_{(d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha,f)} \sqcap d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha,\beta,f)},f)}(L);$
- (ii) $Fix_{(d_{(\alpha,f)},f)}(L) \cup Fix_{(d_{(\beta,f)},f)}(L) \subseteq Fix_{(d_{(\alpha,f)} \sqcup d_{(\beta,f)},f)}(L) \subseteq Fix_{(d_{(\alpha \lor \beta,f)},f)}(L);$
- (iii) If (L, \leq, \wedge, \vee) is distributive, then $Fix_{(d_{(\alpha, f)} \sqcup d_{(\beta, f)}, f)}(L) = Fix_{(d_{(\alpha \vee \beta, f)}, f)}(L)$.

Proof. (i) Let $d_{(\alpha,f)}, d_{(\beta,f)} \in \mathcal{P}_f(L)$. We only prove that $Fix_{(d_{(\alpha,f)},f)}(L) \cap Fix_{(d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha\wedge\beta,f)},f)}(L)$, as the fact that $d_{(\alpha,f)} \cap d_{(\beta,f)} = d_{(\alpha\wedge\beta,f)}$ implies that $Fix_{(d_{(\alpha,f)})\cap d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha\wedge\beta,f)},f)}(L)$. Then

$$\begin{aligned} Fix_{(d_{(\alpha,f)},f)}(L) \cap Fix_{(d_{(\beta,f)},f)}(L) &= \{x \in L \mid d_{(\alpha,f)}(x) = d_{(\beta,f)}(x) = fx\} \\ &= \{x \in L \mid \alpha \wedge fx = \beta \wedge fx = fx\} \\ &= \{x \in L \mid fx \leqslant \alpha \wedge \beta\} \\ &= \{x \in L \mid fx \leqslant \alpha \wedge \beta\} \\ &= \{x \in L \mid (\alpha \wedge \beta) \wedge fx = fx\} \\ &= \{x \in L \mid d_{(\alpha \wedge \beta,f)}(x) = fx\} \\ &= Fix_{(d_{(\alpha \wedge \beta,f)},f)}(L). \end{aligned}$$

 $\text{Thus, } Fix_{(d_{(\alpha,f)},f)}(L) \cap Fix_{(d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha,f)} \sqcap d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha \land \beta,f)},f)}(L).$

(ii) On the one hand, let $x \in Fix_{(d_{(\alpha,f)},f)}(L) \cup Fix_{(d_{(\beta,f)},f)}(L)$. Then $x \in Fix_{(d_{(\alpha,f)},f)}(L)$ or $x \in Fix_{(d_{(\beta,f)},f)}(L)$. Assume that $x \in Fix_{(d_{(\alpha,f)},f)}(L)$, it holds that $d_{(\alpha,f)}(x) = \alpha \wedge fx = fx$. Then $(d_{(\alpha,f)} \sqcup d_{(\beta,f)})(x) = (\alpha \wedge fx) \lor (\beta \wedge fx) = fx \lor (\beta \wedge fx) = fx$. Thus, $x \in Fix_{(d_{(\alpha,f)} \sqcup d_{(\beta,f)},f)}(L)$. The case of $x \in Fix_{(d_{(\beta,f)},f)}(L)$ can be proved similarly. Therefore,

$$Fix_{(d_{(\alpha,f)},f)}(L) \cup Fix_{(d_{(\beta,f)},f)}(L) \subseteq Fix_{(d_{(\alpha,f)} \sqcup d_{(\beta,f)},f)}(L).$$

On the other hand, let $y \in Fix_{(d_{(\alpha,f)} \sqcup d_{(\beta,f)},f)}(L)$. Then $(d_{(\alpha,f)} \sqcup d_{(\beta,f)})(y) = (\alpha \wedge fy) \vee (\beta \wedge fy) = fy$. This implies that $d_{(\alpha \vee \beta,f)}(y) = (\alpha \vee \beta) \wedge fy = (\alpha \vee \beta) \wedge [(\alpha \wedge fy) \vee (\beta \wedge fy)] = (\alpha \wedge fy) \vee (\beta \wedge fy) = fy$. Hence, $y \in Fix_{(d_{(\alpha \vee \beta,f)},f)}(L)$. Thus,

$$Fix_{(d_{(\alpha,f)}\sqcup d_{(\beta,f)},f)}(L) \subseteq Fix_{(d_{(\alpha\vee\beta,f)},f)}(L).$$

Therefore,

$$Fix_{(d_{(\alpha,f)},f)}(L) \cup Fix_{(d_{(\beta,f)},f)}(L) \subseteq Fix_{(d_{(\alpha,f)} \sqcup d_{(\beta,f)},f)}(L) \subseteq Fix_{(d_{(\alpha \lor \beta,f)},f)}(L).$$

(iii) Since (L, \leq, \wedge, \vee) is distributive, it follows from Proposition 3.3 that $d_{(\alpha,f)} \sqcup d_{(\beta,f)} = d_{(\alpha,f)} \vee' d_{(\beta,f)} = d_{(\alpha\vee\beta,f)}$. Thus,

$$Fix_{(d_{(\alpha,f)}\sqcup d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha\vee\beta,f)},f)}(L).$$

The following result shows that the set of f-fixed points sets $\mathcal{F}_f(L)$ of principal f-derivations on L is a sublattice of $\mathfrak{F}_f(L)$.

Theorem 14. Let (L, \leq , \land, \lor) be a distributive lattice and $f : L \longrightarrow L$ be a \land homomorphism. Then the structure $(\mathcal{F}_f(L), \preceq', \sqcap', \sqcup')$ is a sublattice of $(\mathfrak{F}_f(L), \preceq', \sqcap', \sqcup')$.

Proof. Since (L, \leq, \wedge, \vee) is a distributive lattice, it holds form Theorem 13 that $(\mathfrak{F}_f(L), \leq', \sqcap', \sqcup')$ is a distributive lattice. The fact that f is a \wedge -homomorphism implies that $\mathcal{F}_f(L)$ is a subset of $\mathfrak{F}_f(L)$. Furthermore, Proposition 5.2 guarantees that

$$Fix_{(d_{(\alpha,f)},f)}(L) \sqcap' Fix_{(d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha,f)} \sqcap d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha\wedge\beta,f)},f)}(L)$$

and

$$Fix_{(d_{(\alpha,f)},f)} \sqcup' Fix_{(d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha,f)} \sqcup d_{(\beta,f)},f)}(L) = Fix_{(d_{(\alpha \lor \beta,f)},f)}(L),$$

for any $Fix_{(d_{(\alpha,f)},f)}(L), Fix_{(d_{(\beta,f)},f)}(L) \in \mathcal{F}_{f}(L)$. Thus, $\mathcal{F}_{f}(L)$ is closed under \sqcap' and \sqcup' . Therefore, $(\mathcal{F}_{f}(L), \preceq', \sqcap', \sqcup')$ is a sublattice of $(\mathfrak{F}_{f}(L), \preceq', \sqcap', \sqcup')$.

Combining Theorems 13 and 14 leads to the following corollary.

Corollary 5.1. Let (L, \leq, \wedge, \vee) be a distributive lattice and $f : L \longrightarrow L$ be a \wedge -homomorphism. Then the structure $(\mathcal{F}_f(L), \preceq', \sqcap', \sqcup')$ is a distributive lattice.

Next, we provide a representation of any distributive lattice based on the f-fixed points of its principal f-derivations.

Theorem 15. Let (L, \leq, \wedge, \vee) be a distributive lattice and $f : L \longrightarrow L$ be a lattice automorphism. Then (L, \leq, \wedge, \vee) is isomorphic to $(\mathcal{F}_f(L), \preceq', \sqcap', \sqcup')$.

Proof. Assume that (L, \leq, \wedge, \vee) is a distributive lattice and $f : L \longrightarrow L$ is a lattice automorphism. Corollary 5.1 guarantees that $(\mathcal{F}_f(L), \preceq', \sqcap', \sqcup')$ is a distributive lattice. Moreover, let $\psi : L \longrightarrow \mathcal{F}_f(L)$ be a mapping defined as:

$$\psi(\alpha) = Fix_{(d_{(f(\alpha),f)},f)}(L)$$
, for any $\alpha \in L$.

Now, we show that ψ is surjective. Let $Fix_{(d_{(\beta,f)},f)}(L) \in \mathcal{F}_f(L)$. Since f is a lattice automorphism, it holds that there exists $\alpha \in L$ such that $f(\alpha) = \beta$. Then $\psi(\alpha) = Fix_{(d_{(f(\alpha),f)},f)}(L) = Fix_{(d_{(\beta,f)},f)}(L)$. Hence, ψ is surjective. Next, we prove that

$$\alpha \leq \beta$$
 if and only if $\psi(\alpha) \preceq' \psi(\beta)$, for any $\alpha, \beta \in L$.

Since $(L, \leq n, \wedge, \vee)$ is a distributive lattice and f is a lattice automorphism, it follows from Propositions 4.1 and 5.2 that

$$\begin{split} \alpha \leqslant \beta & \Longleftrightarrow \alpha \lor \beta = \beta \\ & \Longleftrightarrow \downarrow (\alpha \lor \beta) = \downarrow \beta \\ & \Leftrightarrow Fix_{(d_{(f(\alpha)\lor \beta),f)},f)}(L) = Fix_{(d_{(f(\beta),f)},f)}(L) \\ & \Leftrightarrow Fix_{(d_{(f(\alpha)\lor f(\beta),f)},f)}(L) = Fix_{(d_{(f(\beta),f)},f)}(L) \\ & \Leftrightarrow Fix_{(d_{(f(\alpha),f)}\sqcup d_{(f(\beta),f)},f)}(L) = Fix_{(d_{(f(\beta),f)},f)}(L) \\ & \Leftrightarrow Fix_{(d_{(\alpha,f)},f)}\sqcup' Fix_{(d_{(\beta,f)},f)}(L) = Fix_{(d_{(f(\beta),f)},f)}(L) \\ & \Leftrightarrow \psi(\alpha) \sqcup' \psi(\beta) = \psi(\beta) \\ & \Leftrightarrow \psi(\alpha) \preceq' \psi(\beta), \end{split}$$

for any $\alpha, \beta \in L$. Hence, ψ is an order isomorphism between L and $\mathcal{F}_f(L)$. Proposition 2.1 guarantees that ψ is a lattice isomorphism. Thus, the distributive lattices (L, \leq, \wedge, \vee) and $(\mathcal{F}_f(L), \preceq', \sqcap', \sqcup')$ are isomorphic.

Combining Theorems 6 and 15 leads to the following corollary.

Corollary 5.2. Let (L, \leq, \wedge, \vee) be a distributive lattice and $f : L \longrightarrow L$ be a lattice automorphism. Then the three distributive lattices (L, \leq, \wedge, \vee) , $(\mathcal{P}_f(L), \leq', \wedge', \vee')$ and $(\mathcal{F}_f(L), \leq', \sqcap', \sqcup')$ are isomorphic.

6. CONCLUSION

In this work, we have investigated the most important properties of isotone (resp. principal) f-derivations on a lattice. In particular, we have focused on the lattice (resp. ideal) structures of isotone f-derivations and their f-fixed points sets. These properties and structures lead to some interesting results, such as the characterizations of principal ideals and distributive lattices in terms of principal

f-derivations. Also, a representation of a lattice (resp. a distributive lattice) in terms of its principal f-derivations (resp. the f-fixed points sets of its principal f-derivations).

References

- M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applications, Aligarh Bull. Math. 25 (2006) 79–107.
- [2] G. Birkhoff, Lattice Theory, 3rd edition, Amer. Math. Soc. (Providence, RI, 1967).
- [3] Y. Çeven and M. Oztürk, On f-derivations of lattices, Bull. Korean Math. Soc. 45 (2008) 701–707.
- [4] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, 2nd edition (Cambridge University Press, 2002).
- [5] L. Ferrari, On derivations of lattices, Pure Math. and Appl. 12 (2001) 365–382.
- [6] P. He, X. Xin and J. Zhan, On derivations and their fixed point sets in residuated lattices, Fuzzy Sets and Systems 303 (2016) 97–113. doi:10.1016/j.fss.2016.01.006
- [7] K.H. Kim and B. Davvaz, On f-derivations of BE-algebras, J. Chungcheong Math. Soc. 28 (2015) 127–138. doi:10.14403/jcms.2015.28.1.127
- [8] B. Kolman, R.C. Busby and S.C. Ross, Discrete Mathematical Structures, 4th edition (Prentice Hall PTR, 2000).
- [9] S.M. Lee and K.H. Kim, A note on f-derivations of BCC-algebras, Pure Math. Sci. 1 (2012) 87–93.
- [10] Ş.A. Ozbal and A. Firat, On f-derivations of incline algebras, Int. Electronic J. Pure and Appl. Math. 3 (2011) 83–90.
- [11] M.S. Rao, Congruences and ideals in a distributive lattice with respect to a derivation, Bulletin of the Section of Logic 42 (2013) 1–10.
- [12] G.C. Rao and K.R. Babu, The theory of derivations in almost distributive lattice, Bulletin of the International Mathematical Virtual Institute 7 (2017) 203–216.
- [13] S. Roman, Lattices and Ordered Sets (Springer Science+Business Media, New York, 2008).
- [14] B.S. Schröder, Ordered Sets (Birkhauser, Boston, 2003).
- [15] G. Szász, Translationen der verbände, Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961) 53–57.
- [16] G. Szász, Derivations of lattices, Acta Sci. Math. 37 (1975) 149–154.
- [17] J. Wang, Y. Jun, X.L. Xin, T.Y. Li and Y. Zou, On derivations of bounded hyperlattices, J. Math. Res. Appl. 36 (2016) 151–161. doi:10.3770/j.issn:2095-2651.2016.02.003

- [18] Q. Xiao and W. Liu, On derivations of quantales, Open Mathematics 14 (2016) 338–346. doi:10.1515/math-2016-0030
- [19] X.L. Xin, T.Y. Li and J.H. Lu, On derivations of lattices, Information Sciences 178 (2008) 307–316. doi:10.1016/j.ins.2007.08.018
- [20] X.L. Xin, The fixed set of a derivation in lattices, Fixed Point Theory and Applications 218 (2012) 1–12. doi:10.1186/1687-1812-2012-218
- [21] Y.H. Yon and K.H. Kim, On f-derivations from semilattices to lattices, Commun. Korean Math. Soc. 29 (2014) 27–36. doi:10.4134/CKMS.2014.29.1.027

Received 11 November 2018 Revised 10 January 2019 Accepted 13 January 2019