ISOMORPHISM THEOREMS ON QUASI MODULE

Sandip Jana
Department of Pure Mathematics
University of Calcutta
35, Ballygaunge Circular Road, Kolkata-700019, India
e-mail: sjpm@caluniv.ac.in
AND
Supriyo Mazumder
Department of Mathematics
Adamas University
Barasat - Barrackpore Road, Jagannathpur, Kolkata, India
e-mail: supriyo88@gmail.com

Abstract

A quasimodel is an algebraic axiomatisation of the hyperspace structure based on a module. We initiated this structure in our paper [2]. It is a generalisation of the module structure in the sense that every module can be embedded into a quasi module and every quasi module contains a module. The structure a quasimodel is a conglomeration of a commutative semigroup with an external ring multiplication and a compatible partial order. In the entire structure partial order has an intrinsic effect and plays a key role in any development of the theory of quasi module. In the present paper we have discussed order-morphism which is a morphism like concept. Also with the help of the quotient structure of a quasi module by means of a suitable compatible congruence, we have proved order-isomorphism theorem.

Keywords: module, quasi module, order-morphism, congruence, quotient. 2010 Mathematics Subject Classification: 08A99, 13C99, 06F99.

1. Introduction

Quasi module is an algebraic axiomatisation of the hyperspace structure based on a module. We proposed this structure in our paper [2], while we were studying
the family $\mathscr{C}(M)$ of all nonempty compact subsets of a Hausdorff topological module M over some topological unitary ring R. This family, commonly known as hyperspace, is closed under usual addition of two sets and the ring multiplication of a set defined by: $A+B:=\{a+b: a \in A, b \in B\}$ and $r A:=\{r a: a \in A\}$, for any $A, B \in \mathscr{C}(M)$ and $r \in R$. Moreover, in the semigroup $\mathscr{C}(M)$ singletons are the only invertible elements, $\{\theta\}$ acting as the identity (θ being the identity in M). Considering these singletons as the minimal elements of $\mathscr{C}(M)$ with respect to the usual set-inclusion as partial order, we can identify the collection $\{\{m\}: m \in M\}$ of all minimal elements of $\mathscr{C}(M)$ with the module M through the isomorphism $\{m\} \longmapsto m(m \in M)$. Again for any two $r, s \in R$ and $A, B \in \mathscr{C}(M)$ we have $(r+s) A \subseteq r A+s A$ and $r A \subseteq r B$, whenever $A \subseteq B$. We have axiomatised these properties of the hyperspace $\mathscr{C}(M)$ and introduced the concept of quasi module whose definition is as follows:

Definition 1.1 [2]. Let (X, \leq) be a partially ordered set, ' + ' be a binary operation on X [called addition] and ' $': R \times X \longrightarrow X$ be another composition [called ring multiplication, R being a unitary ring]. If the operations and partial order satisfy the following axioms then $(X,+, \cdot, \leq)$ is called a quasi module (in short qmod) over R.
$A_{1}:(X,+)$ is a commutative semigroup with identity θ.
$A_{2}: x \leq y(x, y \in X) \Rightarrow x+z \leq y+z, r \cdot x \leq r \cdot y, \forall z \in X, \forall r \in R$.
$A_{3}:$ (i) $r \cdot(x+y)=r \cdot x+r \cdot y$,
(ii) $r \cdot(s \cdot x)=(r s) \cdot x$,
(iii) $(r+s) \cdot x \leq r \cdot x+s \cdot x$,
(iv) $1 \cdot x=x$, ' 1 ' being the multiplicative identity of R,
(v) $0 \cdot x=\theta$ and $r \cdot \theta=\theta \forall x, y \in X, \forall r, s \in R$.
$A_{4}: x+(-1) \cdot x=\theta$ if and only if $x \in X_{0}:=\{z \in X: y \npreceq z, \forall y \in X \backslash\{z\}\}$.
A_{5} : For each $x \in X, \exists y \in X_{0}$ such that $y \leq x$.
The elements of the set X_{0} are the minimal elements of X with respect to the defined partial order of X. These elements of X_{0} are called 'one order' elements of X. In [2] we have shown that this X_{0} becomes a module over the same unitary ring R. In the same paper [2] it has also been shown that every module can be embedded into a quasi module in the following sense: "Given any module M over some unitary ring R, there exists a quasi module X over R such that M is isomorphic with X_{0} as a module." For this reason we call 'quasi module' a generalisation of the module structure.

Example 1.2. Let \mathbb{Z} be the ring of integers and $\mathbb{Z}^{+}:=\{n \in \mathbb{Z}: n \geq 0\}$. Then under the usual addition, \mathbb{Z}^{+}is a commutative semigroup with the identity 0 .

Also it is a partially ordered set with respect to the usual order (\leq) of integers. If we define the ring multiplication ' $'$ ' $: \mathbb{Z} \times \mathbb{Z}^{+} \longrightarrow \mathbb{Z}^{+}$by $(m, n) \longmapsto|m| n$, then it is a routine work to verify that $\left(\mathbb{Z}^{+},+, \cdot, \leq\right)$ is a quasi module over \mathbb{Z}. Here the set of all one order elements is given by $\left[\mathbb{Z}^{+}\right]_{0}=\{0\}$.

To prove some isomorphism theorem we need first some morphism-like concept between two quasi modules over a common unitary ring. So we start with the concept of 'order-morphism' which is capable enough to have some adequate theory on isomorphisms. We shall also discuss with the help of suitable examples some properties of order-morphisms.

Definition 1.3 [2]. A mapping $f: X \longrightarrow Y(X, Y$ being two quasi modules over a unitary ring R) is called an order-morphism if
(i) $f(x+y)=f(x)+f(y), \forall x, y \in X$
(ii) $f(r x)=r f(x), \forall r \in R, \forall x \in X$
(iii) $x \leq y(x, y \in X) \Rightarrow f(x) \leq f(y)$
(iv) $p \leq q(p, q \in f(X)) \Rightarrow f^{-1}(p) \subseteq \downarrow f^{-1}(q)$ and $f^{-1}(q) \subseteq \uparrow f^{-1}(p)$, where $\uparrow A:=\{x \in X: x \geq a$ for some $a \in A\}$ and $\downarrow A:=\{x \in X: x \leq a$ for some $a \in A\}$ for any $A \subseteq X$.
A surjective (injective, bijective) order-morphism is called an order-epimorphism (order-monomorphism, order-isomorphism respectively).

If $f: X \longrightarrow Y$ is an order-morphism and θ, θ^{\prime} be the identity elements of X, Y respectively then $f(\theta)=f(0 . \theta)=0 . f(\theta)=\theta^{\prime}$.

Example 1.4. Let $f: \mathbb{Z}^{+} \longrightarrow \mathbb{Z}^{+}$be defined by $f(n):=2 n, \forall n \in \mathbb{Z}^{+}$. Then for any $n, m \in \mathbb{Z}^{+}$we have $f(n+m)=2(n+m)=2 n+2 m=f(n)+f(m)$. Also $f(r \cdot n)=f(|r| n)=2|r| n=|r| f(n)=r \cdot f(n)$, for any $r \in \mathbb{Z}$ [Note that the ring multiplication ' \cdot ' in \mathbb{Z}^{+}is defined by $r \cdot n:=|r| n, \forall r \in \mathbb{Z}, \forall n \in \mathbb{Z}^{+}$, see Example 1.2]. Now for $n, m \in \mathbb{Z}^{+}, n \leq m \Leftrightarrow 2 n \leq 2 m \Leftrightarrow f(n) \leq f(m)$. This justifies that f is an order-monomorphism, since $f^{-1}(2 n)=\{n\}$, for all $n \in \mathbb{Z}^{+}$. This is not onto, since $f^{-1}(3)=\emptyset$.

Example 1.5. Let us consider the ring of integers \mathbb{Z} which can be thought of as a topological module over the ring \mathbb{Z} with respect to the discrete topology on \mathbb{Z}. Then the set $\mathscr{C}(\mathbb{Z})$ of all nonempty compact subsets of \mathbb{Z} form a quasi module over \mathbb{Z} with respect to the operations defined as:
(i) $A+B:=\{a+b: a \in A, b \in B\}$,
(ii) $n \cdot A:=\{n a: a \in A\}$,
where $A, B \in \mathscr{C}(\mathbb{Z}), n \in \mathbb{Z}$ and usual set-inclusion as the partial order of $\mathscr{C}(\mathbb{Z})$.

Let $f: \mathbb{Z}^{+} \longrightarrow \mathscr{C}(\mathbb{Z})$ be defined by $f(n):=[-n, n], \forall n \in \mathbb{N}$, where

$$
[-n, n]:=\{-n,-n+1, \ldots,-1,0,1, \ldots, n-1, n\}, \text { for } n \in \mathbb{N} .
$$

and $f(0):=\{0\}$. Since $[-n, n]$ is a finite subset of \mathbb{Z} it follows that $[-n, n]$ is compact in \mathbb{Z} and hence $[-n, n] \in \mathscr{C}(\mathbb{Z}), \forall n \in \mathbb{N}$. This justifies that f is well-defined. We now show that f is an order-morphism.

Let $m, n \in \mathbb{Z}^{+}$. Then $[-m, m]+[-n, n]=[-m-n, m+n] \Rightarrow f(m)+f(n)=$ $f(m+n)$. Here by the set $[-0,0]$ we mean $\{0\}$. Again for any $r \in \mathbb{Z}$ we have $f(r \cdot n)=f(|r| n)=[-|r| n,|r| n]=r[-n, n]=r f(n)$. Now let $n \leq m$ in \mathbb{Z}^{+}. Then $[-n, n] \subseteq[-m, m] \Rightarrow f(n) \subseteq f(m)$.

To complete our justification that f is an order-morphism let $A, B \in f\left(\mathbb{Z}^{+}\right)$ with $A \subseteq B$. Then $\exists n, m \in \mathbb{Z}^{+}$such that $A=f(n)=[-n, n]$ and $B=$ $f(m)=[-m, m]$. So we can say that $n \leq m$. Since f is injective we have $f^{-1}(A)=\{n\}$ and $f^{-1}(B)=\{m\}$. So $n \leq m$ implies $f^{-1}(A) \subseteq \downarrow f^{-1}(B)$ and $f^{-1}(B) \subseteq \uparrow f^{-1}(A)$. Thus f is an order-monomorphism which is not surjective. In fact, for $C=\{1\} \in \mathscr{C}(\mathbb{Z}), f^{-1}(C)=\emptyset$.

Example 1.6. Let $\mathscr{C}_{s}(\mathbb{Z}):=\{A \in \mathscr{C}(\mathbb{Z}): 0 \in A, A$ is symmetric about 0$\}$. Then $\mathscr{C}_{s}(\mathbb{Z})$ is a quasi module over \mathbb{Z} with respect to the operations and partial order as defined in above Example 1.5.

Let $f: \mathscr{C}_{s}(\mathbb{Z}) \longrightarrow \mathbb{Z}^{+}$be defined by $f(A):=\max A, \forall A \in \mathscr{C}_{s}(\mathbb{Z})$. Since each $A \in \mathscr{C}_{s}(\mathbb{Z})$ is compact and hence finite so max A exists. Also A being symmetric about 0 it follows that $\max A \in \mathbb{Z}^{+}$. This justifies that f is well-defined. We now show that f is not an order-morphism although it satisfies almost all the axioms of an order-morphism.

We first show that f preserves the addition and ring multiplication on $\mathscr{C}_{s}(\mathbb{Z})$. For this let $A, B \in \mathscr{C}_{s}(\mathbb{Z})$. Then $\max (A+B)=\max A+\max B \Rightarrow f(A+B)=$ $f(A)+f(B)$. Again for any $r \in \mathbb{Z}$ and $A \in \mathscr{C}_{s}(\mathbb{Z})$ we have

$$
\begin{aligned}
\max (r A) & = \begin{cases}r \cdot \max A, & \text { if } r \geq 0 \\
r \cdot \min A, & \text { if } r<0\end{cases} \\
& = \begin{cases}|r| \cdot \max A, & \text { if } r \geq 0 \\
-|r| \cdot \min A, & \text { if } r<0\end{cases} \\
& = \begin{cases}|r| \cdot \max A, & \text { if } r \geq 0 \\
|r| \cdot \max (-A), & \text { if } r<0\end{cases} \\
& =|r| \cdot \max A[\because A=-A \text { for, } A \text { is symmetric }] .
\end{aligned}
$$

The above calculation implies that $f(r A)=|r| f(A)=r \cdot f(A)$.
If $A, B \in \mathscr{C}_{s}(\mathbb{Z})$ such that $A \subseteq B$ then $\max A \leq \max B \Rightarrow f(A) \leq f(B)$.

Before verifying the remaining axiom for f to be an order-morphism let us observe that f is surjective. In fact, for any $n \in \mathbb{Z}^{+}$the set $[-n, n] \in \mathscr{C}_{s}(\mathbb{Z})$, where $[-n, n]:=\{-n,-n+1, \ldots,-1,0,1, \ldots, n-1, n\}$, for $n \in \mathbb{N}$ and $[-0,0] \equiv\{0\}$, as is explained in the above Example 1.5. Then $f([-n, n])=\max [-n, n]=n$.

Now let $n \leq m$ in \mathbb{Z}^{+}and $A \in f^{-1}(n)$. Then $f(A)=\max A=n$. Put $B:=A \cup\{m,-m\}$. Then B is compact in \mathbb{Z} and symmetric about 0 so that $B \in \mathscr{C}_{s}(\mathbb{Z})$. Since $\max A=n \leq m$ it follows that $f(B)=\max B=m$. Clearly $A \subseteq B$. Thus we have $f^{-1}(n) \subseteq \downarrow f^{-1}(m)$.

Next let $D \in f^{-1}(m)$. Then $f(D)=\max D=m$.
Case I. If $n \in D$ then put $C:=\{x \in D:|x| \leq n\}$. Then C being a finite subset of D is compact, symmetric (by construction) and hence $C \in \mathscr{C}_{s}(\mathbb{Z})$. Now $f(C)=\max C=n$ and $C \subseteq D \Rightarrow D \in \uparrow f^{-1}(n)$.

Case II. If $n \notin D$ then D cannot contain any symmetric proper subset E such that $\max E=n$, since $\max E \in E$. So such a $D \in f^{-1}(m)$ cannot lie in $\uparrow f^{-1}(n)$. Consequently, $f^{-1}(m) \nsubseteq \uparrow f^{-1}(n)$.

Thus although f satisfies almost all the axioms of an order-morphism, it fails to do so the last axiom.

Definition 1.7 [2]. Let $f: X \longrightarrow Y(X, Y$ being two qmods over the same unitary ring R) be an order-morphism. We define ker $f:=\{(x, y) \in X \times X$: $f(x)=f(y)\}$ and call it the 'kernel of f '.

It is immediate from definition that $(x, x) \in \operatorname{ker} f, \forall x \in X$ and thus if we write $\Delta:=\{(x, x): x \in X\}$ then $\Delta \subseteq \operatorname{ker} f$, equality holds iff f is injective.

We now discuss some concepts which will be necessary for the further development of the theory in this paper.

Definition 1.8 [2]. Let $\left\{X_{\mu}: \mu \in \Lambda\right\}$ be an arbitrary family of quasi modules over the unitary ring R. Let $X:=\prod_{\mu \in \Lambda} X_{\mu}$ be the Cartesian product of these quasi modules defined as: $x \in X$ if and only if $x: \Lambda \longrightarrow \bigcup_{\mu \in \Lambda} X_{\mu}$ is a map such that $x(\mu) \in X_{\mu}, \forall \mu \in \Lambda$. Then by the axiom of choice we know that X is nonempty, since Λ is nonempty and each X_{μ} contains at least the additive identity θ_{μ} (say).

Let us denote $x_{\mu}:=x(\mu), \forall \mu \in \Lambda$. Also we write each $x \in X$ as $x=\left(x_{\mu}\right)$, where $x_{\mu}=p_{\mu}(x), p_{\mu}: X \longrightarrow X_{\mu}$ being the projection map, $\forall \mu \in \Lambda$. Now we define addition, ring multiplication and partial order as follows: for $x=\left(x_{\mu}\right)$, $y=\left(y_{\mu}\right) \in X$ and $r \in R$
(i) $x+y=\left(x_{\mu}+y_{\mu}\right)$;
(ii) $r \cdot x=\left(r x_{\mu}\right)$;
(iii) $x \leq y$ if $x_{\mu} \leq y_{\mu}, \forall \mu \in \Lambda$.

Definition 1.9 [4]. Let E be an equivalence relation on a qmod X over an unitary ring R. Then E is said to be a congruence on X if it satisfies the following:
(i) $(a, b) \in E \Longrightarrow(x+a, x+b) \in E, \forall x \in X$,
(ii) $(a, b) \in E \Longrightarrow(r a, r b) \in E, \forall r \in R$,
(iii) $x \leq y \leq z \&(x, z) \in E \Longrightarrow(x, y) \in E[$ and hence $(y, z) \in E]$,
(iv) $a \leq x \leq b \&(x, y) \in E \Longrightarrow \exists c, d \in X$ such that $c \leq y \leq d$ and $(a, c) \in$ $E,(b, d) \in E$.
Any congruence E on a qmod X (over a unitary ring R) produces the quotient set $X / E:=\{[x]: x \in X\}$, where $[x]$ denotes the equivalence class containing x (with respect to E) i.e., $[x]:=\{y \in X:(x, y) \in E\}$. We now make this quotient set a quasi module by defining operations and partial order suitably.
Theorem 1.10 [4]. For any congruence E on a qmod X over a unitary ring R, X / E becomes a qmod over R with respect to the following operations and partial order.
(i) $[x]+[y]:=[x+y], \forall[x],[y] \in X / E$,
(ii) $r[x]:=[r x], \forall[x] \in X / E, \forall r \in R$,
(iii) $[x] \preccurlyeq[y] \Longleftrightarrow$ for any $x^{\prime} \in[x], \exists y^{\prime} \in[y]$ such that $x^{\prime} \leq y^{\prime}$ and for any $y^{\prime \prime} \in[y], \exists x^{\prime \prime} \in[x]$ such that $x^{\prime \prime} \leq y^{\prime \prime}$.
Proposition 1.11 [2]. If $\phi: X \longrightarrow Y(X, Y$ being two qmods over an unitary ring R) be an order-morphism then $\operatorname{ker} \phi$ is a congruence on X.

We now give a quotient structure on X using the above congruence. For this let us construct the quotient set $X / \operatorname{ker} \phi:=\{[x]: x \in X\}$, where $[x]$ is the equivalence class containing x obtained by the congruence $\operatorname{ker} \phi$. We define addition, ring multiplication and partial order on $X / \operatorname{ker} \phi$ as follows. For $x, y \in X$ and $r \in R$,

$$
\text { (i) }[x]+[y]:=[x+y] \text {; (ii) } r[x]:=[r x] \text {; (iii) }[x] \leq[y] \text { if and only if } \phi(x) \leq \phi(y) \text {. }
$$

Theorem 1.12 [2]. If $\phi: X \longrightarrow Y(X, Y$ being two qmods over an unitary ring R) be an order-morphism then $X / \operatorname{ker} \phi$ is a quasi module over R.
Proposition 1.13 [2]. Let $\phi: X \longrightarrow Y(X, Y$ being two qmods over an unitary ring R) be an order-morphism. Then the canonical map $\pi: X \longrightarrow X / \operatorname{ker} \phi$ defined by $\pi(x):=[x], \forall x \in X$ is an order-epimorphism.
Lemma 1.14 [2]. Let X, Y, Z be three quasi modules over the unitary ring R, $\alpha: X \longrightarrow Y$ be an order-epimorphism and $\beta: X \longrightarrow Z$ be an order-morphism such that $\operatorname{ker} \alpha \subseteq \operatorname{ker} \beta$. Then \exists a unique order-morphism $\gamma: Y \longrightarrow Z$ such that $\gamma \circ \alpha=\beta$.

2. SECOND ORDER-ISOMORPHISM THEOREM

In this section we shall use the concept of congruence from the above section to prove the Second order-isomorphism theorem. For this we need three quasi modules over a common unitary ring and two order-morphisms between them.

Let X, Y, Z be three quasi modules over an unitary ring R and $\phi_{1}: X \rightarrow Y$, $\phi_{2}: X \rightarrow Z$ be two order-morphisms such that ker $\phi_{2} \subseteq \operatorname{ker} \phi_{1}$. So if $[x]_{1}:=\{y \in$ $\left.X:(x, y) \in \operatorname{ker} \phi_{1}\right\}$ and $[x]_{2}:=\left\{y \in X:(x, y) \in \operatorname{ker} \phi_{2}\right\}$ denote the equivalence classes containing x with respect to the congruences $\operatorname{ker} \phi_{1}$ and $\operatorname{ker} \phi_{2}$ respectively then we must have

$$
[x]_{1}=\bigcup\left\{[y]_{2}:(y, x) \in \operatorname{ker} \phi_{1}\right\} .
$$

Also ker ϕ_{2} being a congruence on $X, X / \operatorname{ker} \phi_{2}$ is a quasi module over R (by Theorem 1.10). It is thus natural to define a relation on $X / \operatorname{ker} \phi_{2}$ as follows:

$$
\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}:=\left\{\left([x]_{2},[y]_{2}\right) \in X / \operatorname{ker} \phi_{2} \times X / \operatorname{ker} \phi_{2}:(x, y) \in \operatorname{ker} \phi_{1}\right\} .
$$

Now the question is whether $\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}$ is a congruence on $X / \operatorname{ker} \phi_{2}$ and if so, whether it generates a quotient qmod from $X / \operatorname{ker} \phi_{2}$ which is order-isomorphic to $X / \operatorname{ker} \phi_{1}$. We shall give answers to these in affirmative.

Proposition 2.1. $\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}$ is a congruence on $X / \operatorname{ker} \phi_{2}$.
Proof. For convenience let us denote $\Gamma \equiv \operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}$. Now ker ϕ_{1} being an equivalence relation it follows that Γ is also an equivalence relation. To show that Γ is a congruence let $\left([x]_{2},[y]_{2}\right) \in \Gamma$ and $[z]_{2} \in X / \operatorname{ker} \phi_{2}, r \in R$. Then $(x, y) \in \operatorname{ker} \phi_{1}$. So $\operatorname{ker} \phi_{1}$ being a congruence we have
(i) $(x+z, y+z) \in \operatorname{ker} \phi_{1} \Rightarrow\left([x+z]_{2},[y+z]_{2}\right) \in \Gamma \Rightarrow\left([x]_{2}+[z]_{2},[y]_{2}+[z]_{2}\right) \in \Gamma$.
(ii) $(r x, r y) \in$ ker $\phi_{1} \Rightarrow\left([r x]_{2},[r y]_{2}\right) \in \Gamma \Rightarrow\left(r[x]_{2}, r[y]_{2}\right) \in \Gamma$.
(iii) Now let $[x]_{2} \preccurlyeq[y]_{2} \preccurlyeq[z]_{2}$ and $\left([x]_{2},[z]_{2}\right) \in \Gamma$. Then $(x, z) \in \operatorname{ker} \phi_{1}$ and $x \leq y^{\prime} \leq z^{\prime}$ for some $y^{\prime} \in[y]_{2}, z^{\prime} \in[z]_{2}$. So $\left(z^{\prime}, z\right) \in \operatorname{ker} \phi_{2} \subseteq \operatorname{ker} \phi_{1} \Rightarrow$ $\left(x, z^{\prime}\right) \in \operatorname{ker} \phi_{1} \Rightarrow\left(x, y^{\prime}\right) \in \operatorname{ker} \phi_{1}\left[\because \operatorname{ker} \phi_{1}\right.$ is a congruence $] \Rightarrow\left([x]_{2},[y]_{2}\right)=$ $\left([x]_{2},\left[y^{\prime}\right]_{2}\right) \in \Gamma$.
(iv) Next let $[a]_{2} \preccurlyeq[x]_{2} \preccurlyeq[b]_{2}$ and $\left([x]_{2},[y]_{2}\right) \in \Gamma$. Then $(x, y) \in \operatorname{ker} \phi_{1}$ and $a \leq x^{\prime} \leq b^{\prime}$ for some $x^{\prime} \in[x]_{2}, b^{\prime} \in[b]_{2}$. Now $\left(x^{\prime}, x\right) \in \operatorname{ker} \phi_{2} \subseteq \operatorname{ker} \phi_{1}$ $\Rightarrow\left(x^{\prime}, y\right) \in \operatorname{ker} \phi_{1} \Rightarrow \exists c, d \in X$ such that $c \leq y \leq d$ and $(a, c),\left(b^{\prime}, d\right) \in \operatorname{ker} \phi_{1}$ $\left[\because \operatorname{ker} \phi_{1}\right.$ is a congruence $] \Rightarrow\left([a]_{2},[c]_{2}\right),\left(\left[b^{\prime}\right]_{2},[d]_{2}\right) \in \Gamma$. Again $b^{\prime} \in[b]_{2} \Rightarrow$ $\left[b^{\prime}\right]_{2}=[b]_{2}$. Thus $\left([b]_{2},[d]_{2}\right) \in \Gamma$.

We now show that $[c]_{2} \preccurlyeq[y]_{2} \preccurlyeq[d]_{2}$. For this let $c^{\prime} \in[c]_{2}$ be arbitrary. Then ker ϕ_{2} being a congruence, $c \leq y \Rightarrow \exists y^{\prime} \in[y]_{2}$ such that $c^{\prime} \leq y^{\prime}$ (by axiom (iv) in the definition of congruence 1.9). Again by the same argument, for any $y^{\prime \prime} \in[y]_{2}$, $\exists c^{\prime \prime} \in[c]_{2}$ such that $c^{\prime \prime} \leq y^{\prime \prime}$. This implies $[c]_{2} \preccurlyeq[y]_{2}$. Similarly, we can show that $[y]_{2} \preccurlyeq[d]_{2}$, since $y \leq d$.

This justifies that Γ is a congruence on $X / \operatorname{ker} \phi_{2}$.
Theorem 2.2 (Second Order-isomorphism Theorem). Let X, Y, Z be three quasi modules over an unitary ring R and $\phi_{1}: X \longrightarrow Y, \phi_{2}: X \longrightarrow Z$ be two ordermorphisms such that $\operatorname{ker} \phi_{2} \subseteq \operatorname{ker} \phi_{1}$. Then the quotient qmod $\frac{X / \operatorname{ker} \phi_{2}}{\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}}$ is order-isomorphic to $X / \operatorname{ker} \phi_{1}$.

Proof. $\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}$ being a congruence on $X / \operatorname{ker} \phi_{2}$ by Proposition 2.1, we have by Theorem 1.10 that $\frac{X / \operatorname{ker} \phi_{2}}{\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}}$ is a quasi module over R. If

$$
\left.\left.\begin{array}{rl}
\pi_{1}: & X \longrightarrow X / \text { ker } \phi_{1} \\
& x \longmapsto[x]_{1}
\end{array}\right\} \text { and } \begin{array}{rl}
\pi_{2}: & X \longrightarrow X / \operatorname{ker} \phi_{2} \\
& x \longmapsto[x]_{2}
\end{array}\right\}
$$

are the canonical order-epimorphisms then $\operatorname{ker} \pi_{2}=\left\{(x, y) \in X \times X:[x]_{2}=\right.$ $\left.[y]_{2}\right\}=\operatorname{ker} \phi_{2} \subseteq \operatorname{ker} \phi_{1}=\operatorname{ker} \pi_{1}$. So by Lemma 1.14, \exists a unique order-morphism $\gamma: X / \operatorname{ker} \phi_{2} \longrightarrow X / \operatorname{ker} \phi_{1}$ such that $\gamma \circ \pi_{2}=\pi_{1}$.

Now let $\pi: X / \operatorname{ker} \phi_{2} \longrightarrow \frac{X / \operatorname{ker} \phi_{2}}{\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}}$ be the canonical order-epimorphism.
Then $\operatorname{ker} \pi=\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}$

$$
\begin{aligned}
& =\left\{\left([x]_{2},[y]_{2}\right) \in X / \operatorname{ker} \phi_{2} \times X / \operatorname{ker} \phi_{2}:(x, y) \in \operatorname{ker} \phi_{1}\right\} \\
& =\left\{\left(\pi_{2}(x), \pi_{2}(y)\right): \pi_{1}(x)=\pi_{1}(y)\right\} \\
& =\left\{\left(\pi_{2}(x), \pi_{2}(y)\right): \gamma \circ \pi_{2}(x)=\gamma \circ \pi_{2}(y)\right\} \\
& =\operatorname{ker} \gamma .
\end{aligned}
$$

So by Lemma 1.14, \exists a unique order-morphism $\Psi: \frac{X / \operatorname{ker} \phi_{2}}{\operatorname{ker} \phi_{1} / \operatorname{ker} \phi_{2}} \longrightarrow X / \operatorname{ker} \phi_{1}$ such that $\Psi \circ \pi=\gamma$. So $\Psi \circ \pi \circ \pi_{2}=\gamma \circ \pi_{2}=\pi_{1}$. The following commutative diagram clarifies this.

π_{1} being onto it follows from above diagram that Ψ is onto. To prove that Ψ is injective let $\Psi \circ \pi \circ \pi_{2}(x)=\Psi \circ \pi \circ \pi_{2}(y)$ for some $x, y \in X$. Then $\gamma \circ \pi_{2}(x)=\gamma \circ \pi_{2}(y)$ $\Rightarrow\left(\pi_{2}(x), \pi_{2}(y)\right) \in \operatorname{ker} \gamma=\operatorname{ker} \pi \Rightarrow \pi \circ \pi_{2}(x)=\pi \circ \pi_{2}(y)$. This justifies that Ψ is injective. Consequently, Ψ is an order-isomorphism.

Acknowledgement

We are thankful to the learned referee for the valuable suggestions.

References

[1] T.S. Blyth, Module Theory: an Approach to Linear Algebra (Oxford University Press, USA).
[2] S. Jana and S. Mazumder, An associated structure of a Module, Revista de la Academia Canaria de Ciencias XXV (2013) 9-22.
[3] S. Mazumder and S. Jana, Exact sequence on quasi module, South. Asian Bull. Math. 41 (2017) 525-533.
[4] S. Jana and S. Mazumder, Quotient structure and chain conditions on quasi modules, Buletinul Academiei De Stiinie A Republicii Moldova Mathematica 2(87) (2018) 3-16.

