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Abstract

A quasimodel is an algebraic axiomatisation of the hyperspace structure
based on a module. We initiated this structure in our paper [2]. It is a
generalisation of the module structure in the sense that every module can
be embedded into a quasi module and every quasi module contains a module.
The structure a quasimodel is a conglomeration of a commutative semigroup
with an external ring multiplication and a compatible partial order. In the
entire structure partial order has an intrinsic effect and plays a key role in
any development of the theory of quasi module. In the present paper we
have discussed order-morphism which is a morphism like concept. Also with
the help of the quotient structure of a quasi module by means of a suitable
compatible congruence, we have proved order-isomorphism theorem.
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1. INTRODUCTION

Quasi module is an algebraic axiomatisation of the hyperspace structure based on
a module. We proposed this structure in our paper [2], while we were studying
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the family 4’ (M) of all nonempty compact subsets of a Hausdorff topological
module M over some topological unitary ring R. This family, commonly known as
hyperspace, is closed under usual addition of two sets and the ring multiplication
of a set defined by: A+ B:={a+b:a€ Abe B} and rA :={ra:a € A}, for
any A, B € € (M) and r € R. Moreover, in the semigroup ¢ (M) singletons are
the only invertible elements, {0} acting as the identity (0 being the identity in M).
Considering these singletons as the minimal elements of ¢’(M) with respect to the
usual set-inclusion as partial order, we can identify the collection {{m} :meM }
of all minimal elements of (M) with the module M through the isomorphism
{m} — m (m € M). Again for any two r,s € R and A, B € €(M) we have
(r+s)ACrA+sAand rA C rB, whenever A C B. We have axiomatised these
properties of the hyperspace (M) and introduced the concept of quasi module
whose definition is as follows:

Definition 1.1 [2]. Let (X, <) be a partially ordered set, ‘+’ be a binary opera-
tion on X [called addition] and ‘: R x X — X be another composition [called
ring multiplication, R being a unitary ring]. If the operations and partial order
satisfy the following axioms then (X, +,-, <) is called a quasi module (in short
gmod) over R.
Aj: (X,+) is a commutative semigroup with identity 6.
As: 2 <y (ryyeX)=z+z<y+z r-z<r-y, Vze X,Vr € R.
As: @) ro(@ty)=r-atry,

(i) r-(s-x) = (rs) -z,
(iii) (r+s)-z<r-z+s-z,

(iv) 1.2z ==z, ‘I’ being the multiplicative identity of R,

(v) 0-z=0andr-0=0Vx,yc X, Vr,s € R.
Ag: o4+ (-1)-z=0ifandonly ifz € Xo:={z€ X :y £ z,Vy € X \ {z}}.
As : For each z € X,3 y € X such that y < x.

—

The elements of the set X are the minimal elements of X with respect to the
defined partial order of X. These elements of X are called ‘one order’ elements
of X. In [2] we have shown that this X, becomes a module over the same unitary
ring R. In the same paper [2] it has also been shown that every module can
be embedded into a quasi module in the following sense: “Given any module M
over some unitary ring R, there exists a quasi module X over R such that M
1s isomorphic with Xy as a module.” For this reason we call ‘quasi module’ a
generalisation of the module structure.

Example 1.2. Let Z be the ring of integers and Z* := {n € Z : n > 0}. Then
under the usual addition, Z* is a commutative semigroup with the identity 0.
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Also it is a partially ordered set with respect to the usual order (<) of integers.
If we define the ring multiplication ‘-’ : Z x ZT — Z* by (m,n) — |m|n, then
it is a routine work to verify that (Z*,+,-, <) is a quasi module over Z. Here
the set of all one order elements is given by [Z]y = {0}.

To prove some isomorphism theorem we need first some morphism-like con-
cept between two quasi modules over a common unitary ring. So we start with
the concept of ‘order-morphism’ which is capable enough to have some adequate
theory on isomorphisms. We shall also discuss with the help of suitable examples
some properties of order-morphisms.

Definition 1.3 [2]. A mapping [ : X — Y (X, Y being two quasi modules over
a unitary ring R) is called an order-morphism if

(i) flz+y)=[fl@)+ ), Yo,y X

(i) ferx)=rf(z),Vre R,Ve e X

(i) z <y (z,y € X) = f(2) < f(y)

(iv) p < q (g € f(X)) = f7Hp) S} f7(q) and f7(q) T f7(p), where
tA={reX:z>aforsomeac At and | A:={r € X : 2 <a for
some a € A} for any A C X.

A surjective (injective, bijective) order-morphism is called an order-epimorphism
(order-monomorphism, order-isomorphism respectively).

If f: X — Y is an order-morphism and 6,60’ be the identity elements of
X, Y respectively then f(6) = f(0.0) =0.f(0) =¢".

Example 1.4. Let f: Z* — Z* be defined by f(n) := 2n, Vn € Z*. Then for
any n,m € Z* we have f(n+m)=2(n+m) =2n+2m = f(n) + f(m). Also
f(r-n)= f(|r|n) = 2|r|n = |r|f(n) =7 - f(n), for any r € Z [Note that the ring
multiplication ‘-’ in Z7 is defined by r-n := |r|n, Vr € Z, Vn € ZT, see Example
1.2]. Now for n,m € ZT, n <m < 2n < 2m < f(n) < f(m). This justifies that
f is an order-monomorphism, since f~1(2n) = {n}, for all n € Z*. This is not
onto, since f~1(3) = (.

Example 1.5. Let us consider the ring of integers Z which can be thought of as
a topological module over the ring Z with respect to the discrete topology on Z.
Then the set %(Z) of all nonempty compact subsets of Z form a quasi module
over Z with respect to the operations defined as:

(i) A+ B:={a+b:a€ Abe B},

(ii) n.A:={na:a € A},
where A, B € ¢(Z), n € Z and usual set-inclusion as the partial order of ¢(Z).
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Let f:ZT — ¢(Z) be defined by f(n) :=[-n,n], Vn € N, where
[-n,n] :={-n,—n+1,...,-1,0,1,...,n—1,n}, forn € N.

and f(0) := {0}. Since [—n,n] is a finite subset of Z it follows that [—mn,n]
is compact in Z and hence [—n,n] € €(Z), Vn € N. This justifies that f is
well-defined. We now show that f is an order-morphism.

Let m,n € Z*. Then [-m,m]+[-n,n] = [-m—n,m+n| = f(m)+ f(n) =
f(m 4+ n). Here by the set [—0,0] we mean {0}. Again for any r € Z we have
f(r-n) = f(rln) = [ = |r|n, |r|n] = r[-n,n] = rf(n). Now let n < m in Z*.
Then [—n,n] C [-m,m] = f(n) C f(m).

To complete our justification that f is an order-morphism let A, B € f(Z™)
with A € B. Then 3n,m € Z* such that A = f(n) = [-n,n| and B =
fim) = [-m,m]. So we can say that n < m. Since f is injective we have
f1(A) = {n} and f~1(B) = {m}. Son < m implies f~1(A) €| f~Y(B) and
f~Y(B) €t f~Y(A). Thus f is an order-monomorphism which is not surjective.
In fact, for C = {1} € €(Z), f~1(C) = 0.

Example 1.6. Let €;(Z) := {A € ¢(Z) : 0 € A, A is symmetric about 0}. Then
¢s(Z) is a quasi module over Z with respect to the operations and partial order
as defined in above Example 1.5.

Let f:65(Z) — Z* be defined by f(A) := max A, VA € €,(Z). Since each
A € €5(Z) is compact and hence finite so max A exists. Also A being symmetric
about 0 it follows that max A € ZT. This justifies that f is well-defined. We now
show that f is not an order-morphism although it satisfies almost all the axioms
of an order-morphism.

We first show that f preserves the addition and ring multiplication on %5(Z).
For this let A, B € €5(Z). Then max(A+ B) = max A+ maxB = f(A+ B) =
f(A) + f(B). Again for any r € Z and A € €5(Z) we have

r.max A, ifr>0
max(rA) = . .
r.min A, ifr <0
_Jlr[-maxA, ifr>0
| =|r]-minA, ifr<o0
~ Jlr|. max A, ifr>0
| |- max(—A), ifr<0
= |r|.max A [ A = —A for, A is symmetric|.
The above calculation implies that f(rA) = |r|f(A) =r- f(A).
If A, B € %;(Z) such that A C B then max A < max B = f(A) < f(B).
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Before verifying the remaining axiom for f to be an order-morphism let us
observe that f is surjective. In fact, for any n € Z™ the set [—n,n] € €s(Z), where
[-n,n] :={-n,—n+1,...,-1,0,1,...,n — 1,n}, for n € N and [-0,0] = {0},
as is explained in the above Example 1.5. Then f([—n, n]) = max[—n,n] = n.

Now let n < m in ZT and A € f~'(n). Then f(A) = maxA = n. Put
B := AU {m,—m}. Then B is compact in Z and symmetric about 0 so that
B € %5(Z). Since max A = n < m it follows that f(B) = max B = m. Clearly
A C B. Thus we have f~(n) C| f~1(m).

Next let D € f~1(m). Then f(D) = max D = m.

Case 1. If n € D then put C := {x € D : |z| < n}. Then C being a finite
subset of D is compact, symmetric (by construction) and hence C' € %5(Z). Now
f(C)=maxC =nand C C D = D et f1(n).

Case II. If n € D then D cannot contain any symmetric proper subset E
such that max E = n, since max E € E. So such a D € f~1(m) cannot lie in
1 f~Y(n). Consequently, f~*(m) €t f~1(n).

Thus although f satisfies almost all the axioms of an order-morphism, it fails
to do so the last axiom.

Definition 1.7 [2]. Let f : X — Y (X,Y being two qmods over the same
unitary ring R) be an order-morphism. We define ker f := {($,y) e X x X :
f(z) = f(y)} and call it the ‘kernel of f’.

It is immediate from definition that (z,z) € ker f, Vo € X and thus if we
write A := {(ac, x):x€E X} then A C ker f, equality holds iff f is injective.

We now discuss some concepts which will be necessary for the further devel-
opment of the theory in this paper.

Definition 1.8 [2]. Let {X, : u € A} be an arbitrary family of quasi modules
over the unitary ring R. Let X := HueA X, be the Cartesian product of these
quasi modules defined as: z € X if and only if x : A — UueA X, is a map
such that z(u) € X,, Y € A. Then by the axiom of choice we know that X
is nonempty, since A is nonempty and each X, contains at least the additive
identity 6, (say).

Let us denote x,, := x(u), Vi € A. Also we write each z € X as = (z,),
where z, = p,(x), pu : X — X, being the projection map, Vu € A. Now we
define addition, ring multiplication and partial order as follows: for x = (z,),
y=(yu) € XandreR

() z+y=(zp+yu); (i) re=(rz,); (i) z<yifz, <y, Vpe A

Definition 1.9 [4]. Let E be an equivalence relation on a gqmod X over an unitary
ring R. Then FE is said to be a congruence on X if it satisfies the following;:

(i) (a,b) e E= (r+a,z+b) € E, Vx € X,
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(ii) (a,b) € E = (ra,rb) € E, VY1 € R,
(iii) z <y <2 & (z,2) € E=> (z,y) € E [and hence (y,z2) € E],
(iv) a <2 <b& (x,y) € E = Jec,d € X such that ¢ <y < d and (a,c) €
E,(b,d) € E.
Any congruence E on a qmod X (over a unitary ring R) produces the quotient
set X/E := {[z] : « € X}, where [2] denotes the equivalence class containing x

(with respect to E) i.e., [z] := {y € X : (z,y) € E}. We now make this quotient
set a quasi module by defining operations and partial order suitably.

Theorem 1.10 [4]|. For any congruence E on a qmod X over a unitary ring R,
X/E becomes a gqmod over R with respect to the following operations and partial
order.

(1) [2#]+[y]:= [z +y], V[ [yl € X/E,
(i) r[z] :=[rz], V[z] € X/E,Vr € R,
(iii) [z] <X [y] < for any &' € [z], Ty € [y] such that ' < ' and for any
y" € ly|, 32" € [z] such that 2" < y".
Proposition 1.11 2]. If ¢ : X — Y (X, Y being two gmods over an unitary

ring R) be an order-morphism then ker ¢ is a congruence on X.

We now give a quotient structure on X using the above congruence. For
this let us construct the quotient set X/ker¢ := {[z] : * € X}, where [2] is
the equivalence class containing x obtained by the congruence ker ¢. We define
addition, ring multiplication and partial order on X/ ker ¢ as follows. For z,y € X
and r € R,

(1) [#]+[y] := [z+yl; (i) rlz] := [rz]; (i) [z] < [y] if and only if ¢(z) < ¢(y).
Theorem 1.12 2]. If ¢ : X — Y (X, Y being two gmods over an unitary ring
R) be an order-morphism then X/ker ¢ is a quasi module over R.

Proposition 1.13 [2]. Let ¢ : X — Y (X,Y being two gmods over an unitary
ring R) be an order-morphism. Then the canonical map m : X — X/ker ¢
defined by m(x) := [z], YV € X is an order-epimorphism.

Lemma 1.14 [2]. Let X,Y,Z be three quasi modules over the unitary ring R,
a: X — Y be an order-epimorphism and 8 : X — Z be an order-morphism
such that ker a C ker 8. Then 3 a unique order-morphism v :Y — Z such that
yoa = pf.
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2.  SECOND ORDER-ISOMORPHISM THEOREM

In this section we shall use the concept of congruence from the above section
to prove the Second order-isomorphism theorem. For this we need three quasi
modules over a common unitary ring and two order-morphisms between them.

Let X,Y, Z be three quasi modules over an unitary ring R and ¢; : X — Y,
¢2 : X — Z be two order-morphisms such that ker g5 C ker ¢1. So if [z]; :={y €
X : (z,y) € ker ¢} and [z]2 := {y € X : (z,y) € ker ¢2} denote the equivalence
classes containing x with respect to the congruences ker ¢1 and ker ¢ respectively
then we must have

= J{ ke (.)€ ker g1 }.

Also ker ¢ being a congruence on X, X/ker ¢, is a quasi module over R (by
Theorem 1.10). It is thus natural to define a relation on X/ ker ¢ as follows:

ker ¢ / ker ¢pg := {([x]g, [y]g) € X/ker ¢y x X/ ker ¢y : (x,y) € kerqﬁl}.

Now the question is whether ker ¢ / ker ¢ is a congruence on X/ ker ¢ and if so,
whether it generates a quotient qmod from X/ ker ¢o which is order-isomorphic
to X/ ker ¢;. We shall give answers to these in affirmative.

Proposition 2.1. ker ¢/ ker ¢ is a congruence on X/ ker ¢o.

Proof. For convenience let us denote I' = ker ¢/ ker ¢2. Now ker ¢ being an
equivalence relation it follows that I' is also an equivalence relation. To show
that T' is a congruence let ([z]s,[y]2) € T and [z]s € X/ker ¢y, r € R. Then
(z,y) € ker ¢1. So ker ¢1 being a congruence we have

(i) (z+2,y+2) € ker g1 = ([w+2]2, [y+z]2) € T = ([zl2+[2]2, [y]a+[2]2) €T

(ii) (rz,ry) € ker ¢1 = ([rals, [ryl2) €T = (r[z]z,r[yl2) €T.

(iii) Now let [z]2 < [y]o < [2]2 and ([z]2,[2]2) € T. Then (z,z) € ker ¢y
and z < ¢y’ < 2/ for some y' € [ylo, 2’ € [z]2. So (7/,2) € ker ¢ C ker ¢y =
(z,7') € ker¢y = (z,y') € ker¢y [- ker¢y is a congruence] = ([z]a, [y]2) =
([]2,[y]2) €T

(iv) Next let [als < [z]o < [b]2 and ([z]2,[y]2) € T. Then (z,y) € ker ¢y
and a < 2/ <V for some z’ € [z]y, b’ € [b]2. Now (2/,z) € ker ¢y C ker ¢
= (2',y) € ker 1 = F¢,d € X such that ¢ <y < d and (a,c), (V',d) € ker ¢;
[.- ker ¢y is a congruence] = ([al2,[c]2), ([t']2,[d]2) € T. Again b’ € [b]y =
[b')y = [b]2. Thus ([b]2,[d]2) € T.

We now show that [c]a < [y]o < [d]2. For this let ¢ € [¢]2 be arbitrary. Then
ker ¢ being a congruence, ¢ <y = Jy’ € [y]o such that ¢ <y’ (by axiom (iv) in
the definition of congruence 1.9). Again by the same argument, for any y” € [y]2,
3" € [c]o such that ¢” < ¢”. This implies [c]s X [y]o. Similarly, we can show
that [y]2 < [d]2, since y < d.
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This justifies that T' is a congruence on X/ ker ¢,. [ |

Theorem 2.2 (Second Order-isomorphism Theorem). Let X,Y, Z be three quasi
modules over an unitary ring R and ¢1 : X — Y, ¢po : X — Z be two order-
morphisms such that ker ¢o C ker 1. Then the quotient gmod % 18
order-isomorphic to X/ ker ¢1.

Proof. ker ¢1/ker ¢o being a congruence on X/ker ¢ by Proposition 2.1, we

have by Theorem 1.10 that 1%—612;@22 is a quasi module over R. If
T - X—)X/ker(bl nd T © X—)X/ker(bg
x— [x] & T —> [x]9

are the canonical order-epimorphisms then kermy = {(m,y) € X xX:[z]p =
[y]z} = ker ¢ C ker ¢y = ker m1. So by Lemma 1.14, 3 a unique order-morphism
v : X/ ker ¢po — X/ ker ¢y such that vy o my = 7.

Now let 7 : X/ ker pg — _keiélk/ei?@

be the canonical order-epimorphism.
Then ker m = ker ¢/ ker ¢
= {([w]g, [y]g) € X/ker ¢y x X/ker ¢y : (z,y) € ker ¢1}
={(m2(2), m2(y)) : m(2) = ()}

={ (ma(@), m>(w)) : 7 o ma(x) = 7 0 maly) }
= ker~.

So by Lemma 1.14, 3 a unique order-morphism W : % — X/ ker ¢q

such that Wom =+. So Vomomy = yomy = m. The following commutative
diagram clarifies this.

X/ ker ¢

71— X/ ker ¢
X/ ker ¢2 ker ¢1/ ker2¢>2

v

71 being onto it follows from above diagram that ¥ is onto. To prove that W is
injective let Womromy(x) = Womomy(y) for some z,y € X. Then yoms(x) = yoma(y)
= (m2(x),m2(y)) € kery =kerm = womy(x) = womy(y). This justifies that ¥ is
injective. Consequently, ¥ is an order-isomorphism. [ |



ISOMORPHISM THEOREMS ON QUASI MODULE 99

Acknowledgement

We are thankful to the learned referee for the valuable suggestions.

REFERENCES

[1] T.S. Blyth, Module Theory: an Approach to Linear Algebra (Oxford University
Press, USA).

[2] S. Jana and S. Mazumder, An associated structure of a Module, Revista de la
Academia Canaria de Ciencias XXV (2013) 9-22.

[3] S. Mazumder and S. Jana, Ezact sequence on quasi module, South. Asian Bull.
Math. 41 (2017) 525-533.

[4] S. Jana and S. Mazumder, Quotient structure and chain conditions on quasi modules,
Buletinul Academiei De Stiinie A Republicii Moldova Mathematica 2(87) (2018)
3-16.

Received 4 December 2018
Revised 16 January 2019
Accepted 23 January 2019


http://www.tcpdf.org

