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Abstract

A quasimodel is an algebraic axiomatisation of the hyperspace structure
based on a module. We initiated this structure in our paper [2]. It is a
generalisation of the module structure in the sense that every module can
be embedded into a quasi module and every quasi module contains a module.
The structure a quasimodel is a conglomeration of a commutative semigroup
with an external ring multiplication and a compatible partial order. In the
entire structure partial order has an intrinsic effect and plays a key role in
any development of the theory of quasi module. In the present paper we
have discussed order-morphism which is a morphism like concept. Also with
the help of the quotient structure of a quasi module by means of a suitable
compatible congruence, we have proved order-isomorphism theorem.
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1. Introduction

Quasi module is an algebraic axiomatisation of the hyperspace structure based on
a module. We proposed this structure in our paper [2], while we were studying
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the family C (M) of all nonempty compact subsets of a Hausdorff topological
moduleM over some topological unitary ringR. This family, commonly known as
hyperspace, is closed under usual addition of two sets and the ring multiplication
of a set defined by: A+B := {a + b : a ∈ A, b ∈ B} and rA := {ra : a ∈ A}, for
any A,B ∈ C (M) and r ∈ R. Moreover, in the semigroup C (M) singletons are
the only invertible elements, {θ} acting as the identity (θ being the identity inM).
Considering these singletons as the minimal elements of C (M) with respect to the
usual set-inclusion as partial order, we can identify the collection

{

{m} : m ∈ M
}

of all minimal elements of C (M) with the module M through the isomorphism
{m} 7−→ m (m ∈ M). Again for any two r, s ∈ R and A,B ∈ C (M) we have
(r + s)A ⊆ rA+ sA and rA ⊆ rB, whenever A ⊆ B. We have axiomatised these
properties of the hyperspace C (M) and introduced the concept of quasi module

whose definition is as follows:

Definition 1.1 [2]. Let (X,≤) be a partially ordered set, ‘+’ be a binary opera-
tion on X [called addition] and ‘·’: R×X −→ X be another composition [called
ring multiplication, R being a unitary ring]. If the operations and partial order
satisfy the following axioms then (X,+, ·,≤) is called a quasi module (in short
qmod) over R.

A1 : (X,+) is a commutative semigroup with identity θ.

A2 : x ≤ y (x, y ∈ X) ⇒ x+ z ≤ y + z, r · x ≤ r · y, ∀ z ∈ X,∀ r ∈ R.

A3 : (i) r · (x+ y) = r · x+ r · y,

(ii) r · (s · x) = (rs) · x,

(iii) (r + s) · x ≤ r · x+ s · x,

(iv) 1 · x = x, ‘1’ being the multiplicative identity of R,

(v) 0 · x = θ and r · θ = θ ∀x, y ∈ X, ∀ r, s ∈ R.

A4 : x+ (−1) · x = θ if and only if x ∈ X0 :=
{

z ∈ X : y � z,∀ y ∈ X r {z}
}

.

A5 : For each x ∈ X,∃ y ∈ X0 such that y ≤ x.

The elements of the set X0 are the minimal elements of X with respect to the
defined partial order of X. These elements of X0 are called ‘one order ’ elements
of X. In [2] we have shown that this X0 becomes a module over the same unitary
ring R. In the same paper [2] it has also been shown that every module can
be embedded into a quasi module in the following sense: “Given any module M
over some unitary ring R, there exists a quasi module X over R such that M
is isomorphic with X0 as a module.” For this reason we call ‘quasi module’ a
generalisation of the module structure.

Example 1.2. Let Z be the ring of integers and Z+ := {n ∈ Z : n ≥ 0}. Then
under the usual addition, Z+ is a commutative semigroup with the identity 0.
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Also it is a partially ordered set with respect to the usual order (≤) of integers.
If we define the ring multiplication ‘·’ : Z× Z+ −→ Z+ by (m,n) 7−→ |m|n, then
it is a routine work to verify that (Z+,+, ·,≤) is a quasi module over Z. Here
the set of all one order elements is given by [Z+]0 = {0}.

To prove some isomorphism theorem we need first some morphism-like con-
cept between two quasi modules over a common unitary ring. So we start with
the concept of ‘order-morphism’ which is capable enough to have some adequate
theory on isomorphisms. We shall also discuss with the help of suitable examples
some properties of order-morphisms.

Definition 1.3 [2]. A mapping f : X −→ Y (X,Y being two quasi modules over
a unitary ring R) is called an order-morphism if

(i) f(x+ y) = f(x) + f(y), ∀x, y ∈ X

(ii) f(rx) = rf(x), ∀ r ∈ R, ∀x ∈ X

(iii) x ≤ y (x, y ∈ X) ⇒ f(x) ≤ f(y)

(iv) p ≤ q
(

p, q ∈ f(X)
)

⇒ f−1(p) ⊆↓ f−1(q) and f−1(q) ⊆↑ f−1(p), where
↑ A := {x ∈ X : x ≥ a for some a ∈ A} and ↓ A := {x ∈ X : x ≤ a for
some a ∈ A} for any A ⊆ X.

A surjective (injective, bijective) order-morphism is called an order-epimorphism

(order-monomorphism, order-isomorphism respectively).

If f : X −→ Y is an order-morphism and θ, θ′ be the identity elements of
X,Y respectively then f(θ) = f(0.θ) = 0.f(θ) = θ′.

Example 1.4. Let f : Z+ −→ Z+ be defined by f(n) := 2n, ∀n ∈ Z+. Then for
any n,m ∈ Z+ we have f(n +m) = 2(n +m) = 2n + 2m = f(n) + f(m). Also
f(r · n) = f(|r|n) = 2|r|n = |r|f(n) = r · f(n), for any r ∈ Z

[

Note that the ring
multiplication ‘·’ in Z+ is defined by r ·n := |r|n, ∀ r ∈ Z, ∀n ∈ Z+, see Example
1.2

]

. Now for n,m ∈ Z+, n ≤ m ⇔ 2n ≤ 2m ⇔ f(n) ≤ f(m). This justifies that
f is an order-monomorphism, since f−1(2n) = {n}, for all n ∈ Z+. This is not
onto, since f−1(3) = ∅.

Example 1.5. Let us consider the ring of integers Z which can be thought of as
a topological module over the ring Z with respect to the discrete topology on Z.
Then the set C(Z) of all nonempty compact subsets of Z form a quasi module
over Z with respect to the operations defined as:

(i) A+B := {a+ b : a ∈ A, b ∈ B},

(ii) n.A := {na : a ∈ A},

where A,B ∈ C(Z), n ∈ Z and usual set-inclusion as the partial order of C(Z).
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Let f : Z+ −→ C(Z) be defined by f(n) := [−n, n], ∀n ∈ N, where

[−n, n] := {−n,−n+ 1, . . . ,−1, 0, 1, . . . , n − 1, n}, for n ∈ N.

and f(0) := {0}. Since [−n, n] is a finite subset of Z it follows that [−n, n]
is compact in Z and hence [−n, n] ∈ C(Z), ∀n ∈ N. This justifies that f is
well-defined. We now show that f is an order-morphism.

Let m,n ∈ Z+. Then [−m,m]+ [−n, n] = [−m−n,m+n] ⇒ f(m)+ f(n) =
f(m + n). Here by the set [−0, 0] we mean {0}. Again for any r ∈ Z we have
f(r · n) = f(|r|n) =

[

− |r|n, |r|n
]

= r[−n, n] = rf(n). Now let n ≤ m in Z+.
Then [−n, n] ⊆ [−m,m] ⇒ f(n) ⊆ f(m).

To complete our justification that f is an order-morphism let A,B ∈ f(Z+)
with A ⊆ B. Then ∃n,m ∈ Z+ such that A = f(n) = [−n, n] and B =
f(m) = [−m,m]. So we can say that n ≤ m. Since f is injective we have
f−1(A) = {n} and f−1(B) = {m}. So n ≤ m implies f−1(A) ⊆↓ f−1(B) and
f−1(B) ⊆↑ f−1(A). Thus f is an order-monomorphism which is not surjective.
In fact, for C = {1} ∈ C(Z), f−1(C) = ∅.

Example 1.6. Let Cs(Z) :=
{

A ∈ C(Z) : 0 ∈ A,A is symmetric about 0
}

. Then
Cs(Z) is a quasi module over Z with respect to the operations and partial order
as defined in above Example 1.5.

Let f : Cs(Z) −→ Z+ be defined by f(A) := maxA, ∀A ∈ Cs(Z). Since each
A ∈ Cs(Z) is compact and hence finite so maxA exists. Also A being symmetric
about 0 it follows that maxA ∈ Z+. This justifies that f is well-defined. We now
show that f is not an order-morphism although it satisfies almost all the axioms
of an order-morphism.

We first show that f preserves the addition and ring multiplication on Cs(Z).
For this let A,B ∈ Cs(Z). Then max(A+ B) = maxA+maxB ⇒ f(A+ B) =
f(A) + f(B). Again for any r ∈ Z and A ∈ Cs(Z) we have

max(rA) =

{

r.maxA, if r ≥ 0

r.minA, if r < 0

=

{

|r|.maxA, if r ≥ 0

−|r|.minA, if r < 0

=

{

|r|.maxA, if r ≥ 0

|r|.max(−A), if r < 0

= |r|.maxA [∵ A = −A for, A is symmetric].

The above calculation implies that f(rA) = |r|f(A) = r · f(A).
If A,B ∈ Cs(Z) such that A ⊆ B then maxA ≤ maxB ⇒ f(A) ≤ f(B).
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Before verifying the remaining axiom for f to be an order-morphism let us
observe that f is surjective. In fact, for any n ∈ Z+ the set [−n, n] ∈ Cs(Z), where
[−n, n] := {−n,−n + 1, . . . ,−1, 0, 1, . . . , n − 1, n}, for n ∈ N and [−0, 0] ≡ {0},
as is explained in the above Example 1.5. Then f

(

[−n, n]
)

= max[−n, n] = n.
Now let n ≤ m in Z+ and A ∈ f−1(n). Then f(A) = maxA = n. Put

B := A ∪ {m,−m}. Then B is compact in Z and symmetric about 0 so that
B ∈ Cs(Z). Since maxA = n ≤ m it follows that f(B) = maxB = m. Clearly
A ⊆ B. Thus we have f−1(n) ⊆↓ f−1(m).

Next let D ∈ f−1(m). Then f(D) = maxD = m.

Case I. If n ∈ D then put C := {x ∈ D : |x| ≤ n}. Then C being a finite
subset of D is compact, symmetric (by construction) and hence C ∈ Cs(Z). Now
f(C) = maxC = n and C ⊆ D ⇒ D ∈↑ f−1(n).

Case II. If n 6∈ D then D cannot contain any symmetric proper subset E
such that maxE = n, since maxE ∈ E. So such a D ∈ f−1(m) cannot lie in
↑ f−1(n). Consequently, f−1(m) 6⊆↑ f−1(n).

Thus although f satisfies almost all the axioms of an order-morphism, it fails
to do so the last axiom.

Definition 1.7 [2]. Let f : X −→ Y (X,Y being two qmods over the same
unitary ring R) be an order-morphism. We define ker f :=

{

(x, y) ∈ X × X :
f(x) = f(y)

}

and call it the ‘kernel of f ’.
It is immediate from definition that (x, x) ∈ ker f , ∀x ∈ X and thus if we

write ∆ :=
{

(x, x) : x ∈ X
}

then ∆ ⊆ ker f , equality holds iff f is injective.

We now discuss some concepts which will be necessary for the further devel-
opment of the theory in this paper.

Definition 1.8 [2]. Let {Xµ : µ ∈ Λ} be an arbitrary family of quasi modules
over the unitary ring R. Let X :=

∏

µ∈Λ Xµ be the Cartesian product of these
quasi modules defined as: x ∈ X if and only if x : Λ −→

⋃

µ∈ΛXµ is a map
such that x(µ) ∈ Xµ, ∀µ ∈ Λ. Then by the axiom of choice we know that X
is nonempty, since Λ is nonempty and each Xµ contains at least the additive
identity θµ (say).

Let us denote xµ := x(µ), ∀µ ∈ Λ. Also we write each x ∈ X as x = (xµ),
where xµ = pµ(x), pµ : X −→ Xµ being the projection map, ∀µ ∈ Λ. Now we
define addition, ring multiplication and partial order as follows: for x = (xµ),
y = (yµ) ∈ X and r ∈ R

(i) x+ y = (xµ + yµ); (ii) r.x = (rxµ); (iii) x ≤ y if xµ ≤ yµ, ∀µ ∈ Λ.

Definition 1.9 [4]. Let E be an equivalence relation on a qmodX over an unitary
ring R. Then E is said to be a congruence on X if it satisfies the following:

(i) (a, b) ∈ E =⇒ (x+ a, x+ b) ∈ E, ∀x ∈ X,
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(ii) (a, b) ∈ E =⇒ (ra, rb) ∈ E, ∀ r ∈ R,

(iii) x ≤ y ≤ z & (x, z) ∈ E =⇒ (x, y) ∈ E
[

and hence (y, z) ∈ E
]

,

(iv) a ≤ x ≤ b & (x, y) ∈ E =⇒ ∃ c, d ∈ X such that c ≤ y ≤ d and (a, c) ∈
E, (b, d) ∈ E.

Any congruence E on a qmodX (over a unitary ringR) produces the quotient
set X/E :=

{

[x] : x ∈ X
}

, where [x] denotes the equivalence class containing x
(with respect to E) i.e., [x] :=

{

y ∈ X : (x, y) ∈ E
}

. We now make this quotient
set a quasi module by defining operations and partial order suitably.

Theorem 1.10 [4]. For any congruence E on a qmod X over a unitary ring R,

X/E becomes a qmod over R with respect to the following operations and partial

order.

(i) [x] + [y] := [x+ y], ∀ [x], [y] ∈ X/E,

(ii) r[x] := [rx], ∀ [x] ∈ X/E,∀ r ∈ R,

(iii) [x] 4 [y] ⇐⇒ for any x′ ∈ [x], ∃ y′ ∈ [y] such that x′ ≤ y′ and for any

y′′ ∈ [y], ∃x′′ ∈ [x] such that x′′ ≤ y′′.

Proposition 1.11 [2]. If φ : X −→ Y (X,Y being two qmods over an unitary

ring R) be an order-morphism then kerφ is a congruence on X.

We now give a quotient structure on X using the above congruence. For
this let us construct the quotient set X/ ker φ :=

{

[x] : x ∈ X
}

, where [x] is
the equivalence class containing x obtained by the congruence kerφ. We define
addition, ring multiplication and partial order onX/ ker φ as follows. For x, y ∈ X
and r ∈ R,

(i) [x]+[y] := [x+y]; (ii) r[x] := [rx]; (iii) [x] ≤ [y] if and only if φ(x) ≤ φ(y).

Theorem 1.12 [2]. If φ : X −→ Y (X,Y being two qmods over an unitary ring

R) be an order-morphism then X/ ker φ is a quasi module over R.

Proposition 1.13 [2]. Let φ : X −→ Y (X,Y being two qmods over an unitary

ring R) be an order-morphism. Then the canonical map π : X −→ X/ ker φ
defined by π(x) := [x], ∀x ∈ X is an order-epimorphism.

Lemma 1.14 [2]. Let X,Y,Z be three quasi modules over the unitary ring R,

α : X −→ Y be an order-epimorphism and β : X −→ Z be an order-morphism

such that kerα ⊆ ker β. Then ∃ a unique order-morphism γ : Y −→ Z such that

γ ◦ α = β.

X Z

Y

α

β

γ
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2. Second order-isomorphism theorem

In this section we shall use the concept of congruence from the above section
to prove the Second order-isomorphism theorem. For this we need three quasi
modules over a common unitary ring and two order-morphisms between them.

Let X,Y,Z be three quasi modules over an unitary ring R and φ1 : X → Y ,
φ2 : X → Z be two order-morphisms such that kerφ2 ⊆ ker φ1. So if [x]1 := {y ∈
X : (x, y) ∈ ker φ1} and [x]2 := {y ∈ X : (x, y) ∈ kerφ2} denote the equivalence
classes containing x with respect to the congruences ker φ1 and kerφ2 respectively
then we must have

[x]1 =
⋃

{

[y]2 : (y, x) ∈ kerφ1

}

.

Also ker φ2 being a congruence on X, X/ ker φ2 is a quasi module over R (by
Theorem 1.10). It is thus natural to define a relation on X/ ker φ2 as follows:

ker φ1/ ker φ2 :=
{

(

[x]2, [y]2
)

∈ X/ ker φ2 ×X/ ker φ2 : (x, y) ∈ ker φ1

}

.

Now the question is whether ker φ1/ ker φ2 is a congruence on X/ ker φ2 and if so,
whether it generates a quotient qmod from X/ ker φ2 which is order-isomorphic
to X/ ker φ1. We shall give answers to these in affirmative.

Proposition 2.1. kerφ1/ ker φ2 is a congruence on X/ ker φ2.

Proof. For convenience let us denote Γ ≡ ker φ1/ ker φ2. Now ker φ1 being an
equivalence relation it follows that Γ is also an equivalence relation. To show
that Γ is a congruence let

(

[x]2, [y]2
)

∈ Γ and [z]2 ∈ X/ ker φ2, r ∈ R. Then
(x, y) ∈ ker φ1. So kerφ1 being a congruence we have

(i) (x+z, y+z) ∈ kerφ1 ⇒
(

[x+z]2, [y+z]2
)

∈ Γ⇒
(

[x]2+[z]2, [y]2+[z]2
)

∈ Γ.
(ii) (rx, ry) ∈ ker φ1 ⇒

(

[rx]2, [ry]2
)

∈ Γ ⇒
(

r[x]2, r[y]2
)

∈ Γ.
(iii) Now let [x]2 4 [y]2 4 [z]2 and

(

[x]2, [z]2
)

∈ Γ. Then (x, z) ∈ ker φ1

and x ≤ y′ ≤ z′ for some y′ ∈ [y]2, z
′ ∈ [z]2. So (z′, z) ∈ ker φ2 ⊆ kerφ1 ⇒

(x, z′) ∈ kerφ1 ⇒ (x, y′) ∈ ker φ1 [∵ kerφ1 is a congruence] ⇒
(

[x]2, [y]2
)

=
(

[x]2, [y
′]2
)

∈ Γ.
(iv) Next let [a]2 4 [x]2 4 [b]2 and

(

[x]2, [y]2
)

∈ Γ. Then (x, y) ∈ ker φ1

and a ≤ x′ ≤ b′ for some x′ ∈ [x]2, b
′ ∈ [b]2. Now (x′, x) ∈ ker φ2 ⊆ ker φ1

⇒ (x′, y) ∈ ker φ1 ⇒ ∃ c, d ∈ X such that c ≤ y ≤ d and (a, c), (b′, d) ∈ ker φ1

[∵ kerφ1 is a congruence] ⇒
(

[a]2, [c]2
)

,
(

[b′]2, [d]2
)

∈ Γ. Again b′ ∈ [b]2 ⇒
[b′]2 = [b]2. Thus

(

[b]2, [d]2
)

∈ Γ.

We now show that [c]2 4 [y]2 4 [d]2. For this let c
′ ∈ [c]2 be arbitrary. Then

ker φ2 being a congruence, c ≤ y ⇒ ∃ y′ ∈ [y]2 such that c′ ≤ y′ (by axiom (iv) in
the definition of congruence 1.9). Again by the same argument, for any y′′ ∈ [y]2,
∃ c′′ ∈ [c]2 such that c′′ ≤ y′′. This implies [c]2 4 [y]2. Similarly, we can show
that [y]2 4 [d]2, since y ≤ d.
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This justifies that Γ is a congruence on X/ ker φ2.

Theorem 2.2 (Second Order-isomorphism Theorem). Let X,Y,Z be three quasi

modules over an unitary ring R and φ1 : X −→ Y , φ2 : X −→ Z be two order-

morphisms such that ker φ2 ⊆ kerφ1. Then the quotient qmod
X/ kerφ2

kerφ1/ kerφ2
is

order-isomorphic to X/ ker φ1.

Proof. kerφ1/ ker φ2 being a congruence on X/ ker φ2 by Proposition 2.1, we

have by Theorem 1.10 that X/ kerφ2

kerφ1/ kerφ2
is a quasi module over R. If

π1 : X −→ X/ ker φ1

x 7−→ [x]1

}

and
π2 : X −→ X/ ker φ2

x 7−→ [x]2

}

are the canonical order-epimorphisms then ker π2 =
{

(x, y) ∈ X × X : [x]2 =
[y]2

}

= kerφ2 ⊆ ker φ1 = ker π1. So by Lemma 1.14, ∃ a unique order-morphism
γ : X/ ker φ2 −→ X/ ker φ1 such that γ ◦ π2 = π1.

Now let π : X/ ker φ2 −→
X/ kerφ2

kerφ1/ kerφ2
be the canonical order-epimorphism.

Then kerπ = kerφ1/ ker φ2

=
{

(

[x]2, [y]2
)

∈ X/ ker φ2 ×X/ ker φ2 : (x, y) ∈ ker φ1

}

=
{

(

π2(x), π2(y)
)

: π1(x) = π1(y)
}

=
{

(

π2(x), π2(y)
)

: γ ◦ π2(x) = γ ◦ π2(y)
}

= ker γ.

So by Lemma 1.14, ∃ a unique order-morphism Ψ : X/ kerφ2

kerφ1/ kerφ2

−→ X/ ker φ1

such that Ψ ◦ π = γ. So Ψ ◦ π ◦ π2 = γ ◦ π2 = π1. The following commutative
diagram clarifies this.

X X/ ker φ1

X/ ker φ2
X/ kerφ2

kerφ1/ kerφ2

π2

π1

γ

π

Ψ

π1 being onto it follows from above diagram that Ψ is onto. To prove that Ψ is
injective let Ψ◦π◦π2(x) = Ψ◦π◦π2(y) for some x, y ∈ X. Then γ◦π2(x) = γ◦π2(y)
⇒

(

π2(x), π2(y)
)

∈ ker γ = ker π ⇒ π ◦π2(x) = π ◦π2(y). This justifies that Ψ is
injective. Consequently, Ψ is an order-isomorphism.
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