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Abstract

In this paper we define root selections and 2p-th root selections for hy-
perfields: these are multiplicative subgroups whose existence is equivalent to
the existence of a well behaved square root function and 2p-th root function,
respectively. We proceed to investigate some basic properties of such root
selections, and draw some parallels between the theory of root selections
for hyperfields and the theory of orderings and orderings of higher level in
hyperfields previously studied by the author.
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1. Introduction

Preorderings and orderings in fields constitute a part of the standard algebraic
curriculum that can be found in most modern textbooks. Historically they were
given today’s shape in a series of seminal papers [1] and [2] by Artin and Schreier
where a complete solution to the celebrated Hilbert 17th problem was settled: for
a field F a preordering is a subset T ⊆ F closed under addition and multiplication
that contains the set F 2 of all squares of F , that is T + T ⊆ T , T · T ⊆ T ,
F 2 ⊆ T , whereas an ordering is a subset P ⊆ F such that P +P ⊆ P , P ·P ⊆ P ,
P ∩ −P = {0} and P ∪ −P = F , where −P = {−a ∈ F | a ∈ P}. Clearly
every ordering is a preordering. Over the years, the notions of preorderings
and orderings have been generalized in a plentitude of directions. One of such
generalizations is the theory of preorderings and orderings of higher level, whose
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approachable exposition can be found in classical monographs [3] by Becker and
[10] by Lam: a preordering of level p is a subset T ⊆ F such that T + T ⊆ T ,
T · T ⊆ T and F 2p ⊆ T , F 2p denoting the set of 2p-th powers in F , while an
ordering of level p is a subset P ⊆ F such that P + P ⊆ P , P ∗ is a subgroup of
the multiplicative group F ∗ of F (for a subset A ⊆ F , A∗ shall always denote the
set A \ {0}), and F ∗/P ∗ is a cyclic group of order 2m with m ≤ p – if m = p, we
say P is of exact level p. Again, an ordering of level p is always a preordering of
level p.

As seen already from the above definitions, squares and, respectively, 2p-
th powers play a central role in (pre-) orderings and (pre-) orderings of higher
level. Taking into consideration the multiplicative group F ∗2 of squares of F , it
is somewhat natural to ask when it is possible to define a square root function
that behaves reasonably well, that is which is a homomorphism φ : F ∗2 → F ∗

which maps a square c2 to c multiplied by a “sign”, that is such that φ(c2) = ωc,
where ω2 = 1. This question was first addressed by Waterhouse in [12] and
it turns out that the existence of such a homomorphism is closely related to
the existence of orderings. Firstly, a homomorphism φ : F ∗2 → F ∗ such that
φ(c2) = ωc, where ω2 = 1, exists if and only if there is a subgroup R of F ∗

called root selection such that every element of F ∗ can be uniquely represented
as ωr with ω2 = 1 and r ∈ R ([12], Lemma, p. 235). Secondly, a root selection
exists if and only if −1 is not a square in F ([12], Theorem 1); since, by classical
theorems due to Artin and Schreier [1, 2], an ordering in F exists if and only if
−1 is not a sum of squares in F , it follows that root selections exist in every
ordered field (but, of course, also outside of them, the simplest example beingFq with q ≡ 3 mod 4, so that −1 = q − 1 /∈ F∗2

q ), and thus can be perceived as
generalizations of orderings. Hence a small but neat theory of fields with root
selections can be built somewhat parallel to the theory of ordered fields, where
issues such as existence of root selections (that we have just briefly outlined),
extensions of fields with root selections, and structure of maximal root selection
fields (somewhat corresponding to real closed fields) are discussed – all of this
was essentially done by Waterhouse in [12].

Most of the results of [12] generalize in an elegant way to the multiplicative
group F ∗2p of 2p-th powers of F and lead to the consideration of the existence
of a reasonably well behaved 2p-th root function. In a miniature note [4] by
the author it has been shown that, for a field F containing the 2p-th primitive
root of unity ω2p , a homomorphism φ : F ∗2p → F ∗ such that φ(c2

p

) = ωk
2pc, for

some k ∈ {1, . . . , 2p} exists if and only if there is a multiplicative subgroup R
of F ∗, called 2p-th root selection, such that every element of F ∗ can be uniquely
represented as ωk

2pr with k ∈ {1, . . . , 2p} and r ∈ R ([4], Lemma 2.1), and that
2p-th root selections exist if and only if −1 is not a 2p-th power in F ([4], Theorem
2.4). Therefore a tiny theory parallel to the one of orderings of higher level can
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be built, and, in particular, questions relevant to the existence of 2p-th root
selections, or to extensions of fields with 2p-th root selections, or to the structure
of maximal 2p-th root selection fields can be addressed.

On the other hand, the notion of orderings (and orderings of higher level)
can be carried to other than fields algebraic structures. Out of a plethora of
possibilities, we shall focus on the particular case of algebras with multivalued
addition that resemble fields and are thus called hyperfields. It is hard to say
who first considered such objects, as their definition is very natural, but most
sources point to Krasner as one of the founding fathers of the theory of hyperfields
and his work on valuations [9]. By a hyperfield we shall understand a system
(H,+, ·,−, 0, 1), where + : H×H → 2H is the multivalued addition, · : H×H →
H is the usual multiplication, − : H → H is the subtraction function, and
0, 1 ∈ H are elements such that the following axioms hold:

(i) ∀a, b, c ∈ H[a + (b + c) = (a + b) + c],

(ii) ∀a ∈ H[a + 0 = 0 + a = {a}],

(iii) ∀a, b, c ∈ H[a ∈ b + c =⇒ b ∈ a + (−c)],

(iv) ∀a, b ∈ H[a + b = b + a],

(v) (H∗, ·, 1) is a commutative group,

(vi) ∀a, b, c ∈ H[a · (b + c) = a · b + a · c],

(vii) ∀a ∈ H[a · 0 = 0].

Note that, for a, b ∈ H, a + b is always a set, so, in particular, a + (b + c) is,
in fact, equal to

⋃
{a + x | x ∈ b + c}. 0 is the neutral element of +. It is not

possible to define inverse elements with respect to addition in a classical way,
which is the reason why, instead, one introduces the subtraction function, so that
a cancellation property captured by the axiom (iii) is satisfied.

Some classical properties of addition and multiplication that can be easily
deduced from axioms of fields can not be proven in a similar way for hyperfields,
and hence have to be added as separate axioms – in particular the axiom (vii)
is not a consequence of axioms (i)–(vi). Likewise, characteristics is defined in
a tricky way: char(H) = k if k is the least integer such that 0 ∈ 1 + · · · + 1

︸ ︷︷ ︸

k

,

or 0 if no such k exists. Note that char(H) 6= 2 implies 1 6= −1. Throughout
the paper we shall only consider hyperfields of characteristics different from 2.
Since, as we will see, the theory developed in the paper is closely related to the
theory of formally real hyperfields, which are neccessarily of characteristics 0, this
additional assumption is not really restrictive.

Hyperfields find numerous applications in the theory of quadratic forms, as
they provide a convenient and natural language to axiomatize the behaviour of
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quadratic forms over fields: for a field F with charF 6= 2, F 6= F3,F5, consider the
group of square classes F ∗/F ∗2 with the usual multiplication to which we adjoin
the element 0 and, for a, b ∈ F ∗/F ∗2, define multivalued addition (that extends
to 0 in an obvious way) by a+ b = D(a, b), where D(a, b) = {as2 + bt2 | s, t ∈ F ∗}
is the value set of the quadratic form 〈a, b〉 = aX2 + bY 2. As a result we obtain
a hyperfield that shall be denoted by Q(F ) and called the quadratic hyperfield of
F (this construction can be slightly ammended to include also the case of fields
F with char(F ) = 2 or with F = F3,F5 – see Proposition 2.1 in [7]). It is,
therefore, important to define preorderings and orderings on hyperfields and ask
what part of the standard Artin-Schreier theory can be carried to the multivalued
case. This was essentially done by Marshall in [11]: just like in the field case,
for a hyperfield H a preordering is a subset T ⊆ H such that T + T ⊆ T ,
T · T ⊆ T , H2 ⊆ T , and an ordering is a subset P ⊆ H such that P + P ⊆ P ,
P · P ⊆ P , P ∩ −P = {0} and P ∪ −P = H (note, however, that here P + P
means

⋃
{a + b | a, b ∈ P}). Subsequently, preorderings and orderings of higher

level in hyperfields were defined and investigated by the author in [5] and by
Marshall and the author in [6]: again, for a hyperfield H, a preordering of level

p is a subset T ⊆ H such that T + T ⊆ T , T · T ⊆ T and H2p ⊆ T , while an
ordering of level p is a subset P ⊆ H such that P + P ⊆ P , P ∗ is a subgroup of
the multiplicative group H∗ of H, and H∗/P ∗ is a cyclic group of order 2m with
m ≤ p – if m = p, we say P is of exact level p. Again, an ordering (of level p) in
a hyperfield is always a preordering (of level p).

In this paper we add one more piece to the above described puzzle and define
root selections and 2p-th root selections over hyperfields and continue to inves-
tigate what parts of the theory for fields can be carried to the hyperfield case.
In order to make our presentation more compact, we state all of our results al-
ready for 2p-th root selections, and obtain respective definitions and theorems for
“ordinary” root selections as special cases. Basic definitions of hyperfields, their
preorderings and orderings, as well as preorderings and orderings of higher level,
that are required to proceed with the exposition, have already been mentioned
in this Introduction, but we kindly refer the reader to [11] or to [5] and [6] as
far as general background on hyperfields and their orderings is concerned. Nev-
ertheless, whenever a definition or a nontrivial argument pertinent to the realm
of multivalued algebra is needed in the course of the paper, we state it with a
proper reference.

2. Existence of 2p-th root selections

Just like in the field case, we want to define 2p-th root selections as homomor-
phisms that assign to 2p-th powers of a hyperfield H some elements of the mul-
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tiplicative group of H. A word of explanation is needed here, as we have to
clarify what we mean by homomorphisms. For two hyperfields H1 and H2 there
are at least two ways to define morphisms that lead to two distinct categories
with substantially different properties: following [8], by a strict homomorphism

we understand a function φ : H1 → H2 such that

(i) ∀a, b ∈ H1[φ(a + b) = φ(a) + φ(b)],

(ii) φ(0) = 0,

(iii) ∀a ∈ H1[φ(−a) = −φ(a)],

(iv) ∀a, b ∈ H1[φ(a · b) = φ(a) · φ(b)],

(v) φ(1) = 1,

and by homomorphism we understand a function φ : H1 → H2 that satisfies the
axioms (ii)–(v). but such that the axiom (i). is replaced with

(i’) ∀a, b ∈ H1[φ(a + b) ⊆ φ(a) + φ(b)].

Nevertheless, since the multiplication in hyperfields is just the usual, single-valued
binary operation, it follows that non-zero elements of a hyperfield form a usual
multiplicative group, and no matter which definition of a morphism of hyperfields
we consider, it always leads to the same definition of a most standard homomor-
phism of underlying multiplicative groups.

The existence of the abovementioned homomorphism that assigns to 2p-th
powers of a hyperfield H some elements of the multiplicative group of H is equiv-
alent to the existence of a certain subgroup of H∗, as shown in the following
lemma:

Lemma 1. Let H be a hyperfield and assume that H contains the 2p-th prim-

itive root of unity ω2p . A multiplicative homomorphism φ from the group H∗2p

of nonzero 2p-th powers of H to H∗ such that φ(c2
p

) = ωk
2pc, for some k ∈

{1, . . . , 2p}, exists if and only if there exists a multiplicative subgroup R of H
such that for every element a ∈ H∗ there exist a unique element r ∈ R and a

unique integer k ∈ {1, . . . , 2p} such that a = ωk
2pr.

Proof. (⇒) Assume that there exists φ as required. Let R = Imφ. Clearly R
is a subgroup of H∗. Fix an element a ∈ H∗. Thus, for some k ∈ {1, . . . , 2p},
H ∋ φ(a2

p

) = ωk
2pa, and hence H∗ = ω2pR ∪ ω2

2pR ∪ · · · ∪R. Say that, for some
r1, r2 ∈ R and some k1, k2 ∈ {1, . . . , 2p}, ωk1

2p
r1 = ωk2

2p
r2. We might as well assume

that k2 ≥ k1 and denote l = k2 − k1. Therefore ωl
2p ∈ R, say ωl

2p = φ(c2
p

), for
some c ∈ H∗. On the other hand φ(c2

p

) = ωk
2pc, for some k ∈ {1, . . . , 2p}, so

that c = ωl−k
2p

. But then c2
p

= (ω2p

2p )l−k = 1. Since 1 · 1 = 1, it follows that
φ(1) · φ(1) = φ(1), and hence φ(1) = 1. In particular, ωl

2p = 1, so that, since
l < 2p, l = 0. As a result, k2 = k1 which leads to r1 = r2 as well.
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(⇐) Conversely, assume that there exists R as claimed. Then, for a fixed c2
p

∈
H∗2p , there are uniquely defined an element r ∈ R and an integer k ∈ {1, . . . , 2p}
such that ωk

2pc = r. The assignment φ(c2
p

) := r declares a well-defined function
that satisfies the desired condition and it remains to check that it is a group
homomorphism: indeed, for if c2

p

1 , c2
p

2 ∈ H∗2p and k1, k2 ∈ {1, . . . , 2p}, r1, r2 ∈ R
are the unique integers and elements of R such that ωk1

2p
c1 = r1 and ωk2

2p
c2 = r2,

then ωk1+k2
2p

c1c2 = r1r2, which yields φ(c2
p

1 c2
p

2 ) = r1r2 = φ(c2
p

1 )φ(c2
p

2 ).

Corollary 1. Let H be a hyperfield. A multiplicative homomorphism φ from the

group H∗2 of nonzero squares of H to H∗ such that φ(c2) = ±c exists if and

only if there exists a multiplicative subgroup R of H such that for every element

a ∈ H∗ there exist a unique element r ∈ R such that a = ±r.

Root selections and 2p-th root selections can be now defined just like in the
field case.

Definition 1. Let H be a hyperfield and assume that H contains the 2p-th
primitive root of unity ω2p . A multiplicative subgroup R of H∗ such that for
every element a ∈ H∗ there exist a unique element r ∈ R and a unique integer
k ∈ {1, . . . , 2p} such that a = ωk

2pr shall be called a 2p-th root selection for H. In
case when p = 1 we shall simply call it a root selection.

The existence of 2p-th root selections is granted by the following, slightly
more general result:

Theorem 1. Let H be a hyperfield and assume that H contains the 2p-th prim-

itive root of unity ω2p. Let T ⊂ H∗ be a set of nonzero elements of H. Then

there exists a 2p-th root selection for H containing T if and only if the subgroup

H∗2p [T ] < H∗ generated by T and the group of all 2p-th powers does not contain

−1.

Proof. (⇒) Assume that there exists a 2p-th root selection R for H containing
T . Assume, a contrario, that −1 ∈ H∗2p [T ]. Note that H∗2p ⊂ R: indeed, for a
fixed c2

p

∈ H∗2p , there exist r ∈ R and k ∈ {1, . . . , 2p} such that c = ωk
2pr, hence

c2
p

= (ω2p

2p )kr2
p

= r2
p

∈ R. Thus −1 ∈ H∗2p [T ] ⊂ R. But ω2p−1

2p = −1, so that
1 = ω2p

2p · 1 and 1 = ω2p−1

2p · (−1), contrary to the uniqueness of the presentation
of 1.

(⇐) Assume that −1 /∈ H∗2p [T ]. Let S = {S | S < H∗,H∗2p [T ] ⊂ S,−1 /∈
S}. Union of any chain C of elements of S is again an element of S, so, by Zorn’s
Lemma, let R be a maximal element of S. In order to show that R is a 2p-th
root selection for H, we first claim that for a ∈ H∗ such that a2 ∈ R either a ∈ R
or −a ∈ R. Indeed, suppose that neither a ∈ R nor −a ∈ R, for some a ∈ H∗

such that a2 ∈ R. R ∪ aR is easily seen to be a group, and −1 /∈ R ∪ aR, for if
−1 = ar, for some r ∈ R, then −a = a2r ∈ R. But R ( R∪aR – a contradiction.
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Fix a ∈ H∗. Then a2
p

∈ R, so, by our claim, either a2
p−1

∈ R or −a2
p−1

∈
R. If the latter is the case, as −ω2p−1

2p = (−1) · (−1) = 1 ∈ R, consequently,
(aω2p)2

p−1

= a2
p−1

ω2p−1

2p = (−a2
p−1

) · (−ω2p−1

2p ) ∈ R. Repeating the argument,
we get that either a2

p−2

∈ R or (aωl
2p)2

p−2

∈ R, for some l ∈ {1, . . . , 2p − 1}.
By induction, we eventually show that either a ∈ R or aωk

2p ∈ R, for some
k ∈ {1, . . . , 2p − 1}.

Corollary 2. Let H be a hyperfield. Let T ⊂ H∗ be a set of nonzero elements

of H. Then there exists a root selection for H containing T if and only if the

subgroup H∗2 [T ] < H∗ generated by T and the group of nonzero squares does not

contain −1.

A necessary and sufficient condition for a 2p-th root selection to exist now
easily follows:

Theorem 2. Let H be a hyperfield and assume that H contains the 2p-th prim-

itive root of unity ω2p. A 2p-th root selection for H exists if and only if H does

not contain a 2p-th root of −1.

Proof. In Theorem 1 take T to be empty.

Corollary 3. Let H be a hyperfield. A root selection for H exists if and only if

H does not contain a square root of −1.

3. 2p-th root selections vs. orderings of level p

At this point we shall outline some similarities between 2p-th root selections and
orderings of level p. A classical result due to Artin and Schreier states that an
ordering exists in a field F if and only if −1 is not a sum of squares. A version of
the same result for orderings of higher level due to Becker [3] says that an ordering
of level p exists in F if and only if −1 is not a sum of 2p-th powers. Corresponding
theorems for hyperfields ensure that an ordering exists in a hyperfield H if and
only if H is formally real, that is if −1 is not an element of the set of sums of
squares ([11], Lemma 3.3), and that an ordering of level p exists in a hyperfield
H if and only H is formally p-real, that is if −1 is not an element of the set
of sums of 2p-th powers ([5], Theorem 1 and [6], Theorem 4.1). Therefore, by
Theorem 2, if a hyperfield H contains a 2p-th primitive root of unity and admits
an ordering of level p, then it also admits a 2p-th root selection (or, by Corollary
3, if a hyperfield admits an ordering, then it also admits a root selection). We
can, in fact, be a bit more specific; recall that a (pre-) ordering (of level p) P is
proper if −1 /∈ P , and that a proper ordering is a maximal proper preordering
([5], Remark 8 p. 19) – we then have:
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Proposition 1. Let H be a formally p-real hyperfield, let P be a proper ordering

of exact level p. Then H contains the 2p-th primitive root of unity ω2p and P ∗ is

a 2p-th root selection.

Proof. By definition P ∗ is a subgroup of the multiplicative group H∗. Say ξP ∗ is
a generator of the cyclic group H∗/P ∗ of order 2p. Since ξP ∗ is the homomorphic
image of the element ξ via the canonical group epimorphism κ : H∗ → H∗/P ∗,
the order ord(ξ) of ξ in H∗ is divisible by 2p, say ord(ξ) = 2pm. But then
(ξm)2

p

= 1, and, clearly, (ξm)k 6= 1, for k ∈ {1, . . . , 2p − 1}, so ξm is the 2p-th
primitive root of unity ω2p .

In order to show that for every element a ∈ H∗ there exist a unique element
r ∈ P ∗ and a unique integer k ∈ {1, . . . , 2p} such that a = ωk

2pr, we partially
repeat the argument of Theorem 1: firstly we claim that for a ∈ H∗ such that
a2 ∈ P ∗ either a ∈ P ∗ or −a ∈ P ∗, and this is, indeed, the case, for if neither
a ∈ P ∗ nor −a ∈ P ∗, for some a ∈ H∗ with a2 ∈ P ∗, then P ∪ aP would be
a proper preordering bigger than P : it is easily seen to be a preordering, and
−1 /∈ P ∪ aP , for if −1 = ar, for some r ∈ P , then −a = a2r ∈ P ∗.

Now fix a ∈ H∗. Then a2
p

∈ P ∗, so, by the claim, either a2
p−1

∈ P ∗ or
−a2

p−1

∈ P ∗. If the latter is the case, as −ω2p−1

2p ∈ P ∗ consequently, (aω2p)2
p−1

∈
P ∗. Repeating the argument, we get that either a2

p−2

∈ P ∗ or (aωl
2p)2

p−2

∈ P ∗,
for some l ∈ {1, . . . , 2p − 1}. Going down, we eventually show that either a ∈ P ∗

or aωk
2p ∈ P ∗, for some k ∈ {1, . . . , 2p − 1}.

It is not hard to see that there exist (2p-th) root selections that do not
come from orderings (of level p) in hyperfields: since every field can be seen as
a hyperfield with addition defined by a + b = {a + b}, examples of such root
selections (in particular examples of Section 2 in [12]) presented in earlier papers
on the theme remain valid in our setting. We shall, however, add one more
example to this catalogue and show that a root selection in a field F , charF 6= 2,
F 6= F3,F5, defines a root selection in the quadratic hyperfield Q(F ):

Example 1. Let F be a field, charF 6= 2, F 6= F3,F5, let R be a root selection.
Then R/F ∗2 is a root selection in Q(F ).

To see that this is the case, note that, since every element a ∈ F ∗ can be
uniquely presented as a = ±r for some r ∈ R, it is clear that every element aF ∗2 ∈
Q(F ) can be presented as aF ∗2 = ±rF ∗2. Suppose that, for some a ∈ F ∗, we have
two such presentations, aF ∗2 = ǫ1r1F

∗2 = ǫ2r2F
∗2, for some ǫ1, ǫ2 ∈ {+1,−1},

r1, r2 ∈ R. But then a = ǫ1r1s
2 and a = ǫ2r2t

2, for some s, t ∈ F ∗. Since s2 ∈ R
(if s = ±r, for some r ∈ R, then s2 = r2 ∈ R, as R is a group), r1s

2 ∈ R and,
similarly, r2t

2 ∈ R. Thus ǫ1 = ǫ2 and r1s
2 = r2t

2 meaning r1F
∗2 = r2F

∗2.
We urge the reader who is familiar with general quadratic hyperfields Q(F )

(without the additional assumptions charF 6= 2, F 6= F3,F5) to check that the
example remains valid in this slightly more general setting.
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Observe that, since the multiplicative group of Q(F ) is of exponent 2, it does
not make much sense to consider 2p-th root selections in quadratic hyperfields
with p > 1. At the same time Example 1 is quite nice in the sense that a
corresponding result also holds for orderings, that is an ordering of a field F
leads to an ordering of Q(F ): indeed, suppose that F has an ordering, which
is equivalent to −1 not being a sum of squares, and that Q(F ) is not formally
real. Then, by Lemma 3.3 of [11], −F ∗2 is a sum of squares in Q(F ). Since
(aF ∗2)2 = F ∗2 in Q(F ), this simply means that −F ∗2 = F ∗2 + · · ·+F ∗2 in Q(F ),
which means that −1 ∈ D(1, . . . , 1), which is equivalent to say that −1 is a sum
of squares – a contradiction.

The next analogy between (2p-th) root selections and orderings (of level p)
in hyperfields is captured by the following theorem, which describes when an
element of a hyperfield can be incorporated in a (2p-th) root selection:

Theorem 3. Let H be a hyperfield and assume that H contains the 2p-th prim-

itive root of unity ω2p. Let a ∈ H∗ and assume that H does not contain a 2p-th
root of −1. Then there exists a 2p-th root selection R such that a ∈ R if and only

if −ak /∈ H∗2p , for all k ∈ {1, . . . , 2p − 1}.

Proof. In Theorem 1 take T = {a}. Then −1 /∈ H∗2p [a] if and only if −1 6=
c2

p

ak, for some c ∈ H∗ and k ∈ {1, . . . , 2p − 1}, or, equivalently, −al /∈ H∗2p , for
some l ∈ {1, . . . , 2p − 1}.

Corollary 4. Let H be a hyperfield. Let a ∈ H∗ and assume that H does not

contain a square root of −1. Then there exists a root selection R such that a ∈ R
if and only if −a /∈ H∗2 .

Finally, as a version of the classical result by Artin and Schreier, it is known
that the intersection of all orderings (of level p) is the preordering (of level p)
consisting of all sums of squares (sums of 2p-th powers): see [11] Proposition
3.4, [5] Corollary 3 and [6] Theorem 4.2. The corresponding result for (2p-th)
root selections is the following one:

Theorem 4. Let H be a hyperfield and assume that H contains the 2p-th primi-

tive root of unity ω2p. Let a ∈ H∗ and assume that H does not contain a 2p-th root

of −1. Then a belongs to all 2p-th root selections in H if and only if a ∈ H∗2p .

Corollary 5. Let H be a hyperfield. Let a ∈ H∗ and assume that H does not

contain a root of −1. Then a belongs to all root selections in H if and only if

a ∈ H∗2.

Remark 1. For formally real fields one introduces the notion of a real closure,
which is a maximal algebraic extension of a formally real field which is still for-
mally real, and proceeds to show that such a real closed field is always uniquely
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ordered by the set of all squares. A corresponding result also holds for formally
p-real fields [3, 10]. Further, one introduces the notion of a maximal root selec-

tion field, which is a maximal algebraic extension of a field equipped with a root
selection which also admits a root selection, and it is possible to show that such
maximal root selection always exists, and its unique root selection consists of
squares ([12], Theorems 3 and 4). A corresponding result exists also for 2p-th
root selections in fields ([4], Theorems 3.4 and 4.1). Unfortunately, this part of
the theory can not be carried to the hyperfield case: the theory of hyperfield ex-
tensions does not seem to be well developed, in particular there is no satisfactory
notion of an algebraic hyperfield extension, yet alone of a usable Galois theory.
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