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Abstract

In this paper,we introduce the notion of a Γ-field as a generalization of
field, study them properties of a Γ-field and prove that M is a Γ-field if and
only if M is an integral, simple and commutative Γ-ring.
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1. Introduction

The notion of a semiring was introduced by Vandiver [19] in 1934. In 1981, Sen
[18] introduced the notion of a Γ-semigroup as a generalization of semigroup. As
a generalization of ring, the notion of a Γ-ring was introduced by Nobusawa [16]
in 1964. The notion of a ternary algebraic system was introduced by Lehmer
[3] in 1932. Dutta and Kar [1] introduced the notion of a ternary semiring.
In 1995, Murali Krishna Rao [5–8] introduced the notion of a Γ-semiring as a
generalization of Γ-ring, ring, ternary semiring and semiring. Semigroup, as the
basic algebraic structure was used in the areas of theoretical computer science
as well as in the solutions of graph theory, optimization theory and in particular
for studying automata, coding theory and formal languages. The formal study
of semigroups begin in the early 20th century. Sen, Saha, Dutta and Adhikari
[2, 17, 18] studied Γ-semigroup. Murali Krishna Rao [10–13] studied ideals of a
Γ-semiring, a semiring, a semigroup and a Γ-semigroup. Neumann [15] studied
regular rings. Murali Krishna Rao [9] introduced notion of the unity element of
a Γ-semigroup, notion of the inverse element of a Γ-semigroup and modified the
definition of a Γ-group as a generalization of group and introduced the notion of
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regular Γ-group and studied some of the properties of a Γ-group. Murali Krishna
Rao [14] studied Γ-semiring as a soft semiring. Studying Γ-algebras is nothing
but studying soft algebras, since Γ-algebras are generalization of soft algebras. In
this paper, author introduces the notion of a Γ-field as a generalization of field
and study the properties of a Γ-field.

2. Introduction

In this section, we recall some of the fundamental concepts and definitions which
are necessary for this paper.

Definition 2.1. A semigroup is an algebraic system (M, ·) consisting of a non-
empty set M together with an associative binary operation ′′ ·′′ .

Definition 2.2. An algebraic system (M, ·) consisting of a non-empty set M

together with an associative binary operation ′′·′′ is called a group if it satisfies
the following

(i) there exists e ∈ M , such that x · e = e · x = x, for all x ∈ M,

(ii) if for each x ∈ M there exists b ∈ M , such that x · b = b · x = e.

Definition 2.3. A set M together with two associative binary operations called
addition and multiplication (denoted by + and · respectively) will be called semir-
ing provided

(i) addition is a commutative operation.

(ii) x(y + z) = xy + xz, (x+ y)z = xz + yz, for all x, y, z ∈ M,

(iii) there exists 0 ∈ S such that x+ 0 = x and x · 0 = 0 · x = 0 for all x ∈ M.

Definition 2.4. LetM and Γ be non-empty sets. Then we call M a Γ-semigroup,
if there exists a mapping M×Γ×M → M (images of (x, α, y) will be denoted by
xαy, x, y ∈ M, α ∈ Γ) such that it satisfies xα(yβz) = (xαy)βz for all x, y, z ∈ M

and α, β ∈ Γ.

Definition 2.5. Let M and Γ be additive abelian semigroups with identity ele-
ments 0 and 0’ respectively. If there exists a mapping MxΓxM → M (images to
be denoted xγy, x, y ∈ M, γ ∈ Γ) satisfying for all x, y, z ∈ M, γ, µ ∈ Γ

(a) xγ(yµz) = (xγy)µz

(b) xγ(y + z) = xγy + xγz

(x+ y)γz = xγz + yγz

x(γ + µ)z = xγz + xµz

(c) xγ0 = 0γx = 0 and x0′y = 0, then M is called a Γ-semiring.
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Definition 2.6. A non-empty set M is called a Γ-ring if the following conditions
are satisfied.

(i) M and Γ are two abelian groups with identity elements 0 and 0’ re-
spectively. If there exists a mapping MxΓxM → M (images to be denoted
xγy, x, y ∈ M, γ ∈ Γ) satisfying for all x, y, z ∈ M, γ, µ ∈ Γ

(a) xγ(yµz) = (xγy)µz

(b) xγ(y + z) = xγy + xγz

(x+ y)γz = xγz + yγz

x(γ + µ)z = xγz + xµz

(c) xγ0 = 0γx = 0 and x0′y = 0, then M is called a Γ-ring.

Definition 2.7. A Γ-semigroup M is said to be commutative if aαb = bαa, for
all a, b ∈ M, for all α ∈ Γ.

Definition 2.8. Let M be a Γ-semigroup. An element a ∈ M is said to be
regular element of M if there exist x ∈ M, α, β ∈ Γ such that a = aαxβa.

Definition 2.9. Let M be a Γ-semigroup. Every element of M is a regular
element of M then M is said to be regular Γ-semigroup M.

Definition 2.10. Let M be a Γ-semigroup and α ∈ Γ. Define a binary operation
∗ on M by a∗b = aαb, for all a, b ∈ M. Then (M, ∗) is a semigroup. It is denoted
by Mα.

Definition 2.11 [17]. A Γ-semigroup M is called a Γ-group, if Mα is a group
for some (hence for all) α ∈ Γ.

3. Γ-field

In this section, we introduce the notion of Γ-field and study the properties of
Γ-field.

Definition 3.1. A Γ-semigroupM is said to be Γ-group if it satisfies the following

(i) if there exists 1 ∈ M and for each x ∈ M there exists α ∈ Γ, such that
xα1 = 1αx = x.

(ii) if for each element 0 6= a ∈ M there exist b ∈ M, α ∈ Γ such that aαb =
bαa = 1.

We now introduce the notion of a Γ-field.

Definition 3.2. A commutative Γ-ring M is said to be Γ-field if M is a Γ-group.
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Definition 3.3. Let M be a Γ-ring. An element 1 ∈ M is said to be unity if for
each x ∈ M there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 3.4. In a Γ-ring with unity 1, an element a ∈ M is said to be left
invertible (right invertible) if there exist b ∈ M, α ∈ Γ such that bαa = 1
(aαb = 1).

Definition 3.5. In a Γ-ring M, an element u ∈ M is said to be unit if there exist
a ∈ M and α ∈ Γ, such that aαu = 1 = uαa.

Definition 3.6. A Γ-ring M is said to be simple Γ-ring if it has no proper ideals
of M.

Definition 3.7. A non-zero element a in a Γ-ring M is said to be zero divisor if
there exists a non zero element b ∈ M,α ∈ Γ such that aαb = bαa = 0.

Definition 3.8. A Γ-ring M with unity 1 and zero element 0 is called an integral
Γ-ring if it has no zero divisors.

Definition 3.9. A Γ-ring M with zero element 0 is said to be hold cancellation
laws if a 6= 0, aαb = aαc, bαa = cαa, where a, b, c ∈ M, α ∈ Γ then b = c.

Definition 3.10. A Γ-ring with unity 1 and zero element 0 is called a pre -integral
Γ-ring if M satisfies cancellation laws.

Example 3.11. Let M and Γ be the set of all real numbers and the set of all
rational numbers respectively. Then M and Γ are additive abelian groups with
respect to usual addition. Define the ternary operation M × Γ × M → M by
(a, α, b) → aαb, using the usual multiplication. Then M is a Γ-field.

Theorem 3.12. Let M be a Γ-ring with unity 1. If a, b ∈ M, δ, β ∈ Γ such that

aδb is β-idempotent and a is left invertible, then b is a regular element.

Proof. Let a, b ∈ M and a be left invertible. There exist d ∈ M, δ, γ ∈ Γ such
that 1δb = b and dγa = 1

dγa = 1 ⇒ dγaδb = 1δb

⇒ dγaδb = b.

Suppose aδb is β − idempotent

⇒ aδbβaδb = aδb

⇒ dγaδbβaδb = dγaδb

⇒ bβaδb = b.

Hence b is a regular element.
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Corollary 3.13. Let M be a Γ-ring with unity 1. If a, b ∈ M, δ, β ∈ Γ such that

aδb is β-idempotent and b is right invertible, then a is regular.

Theorem 3.14. If M is a Γ-ring with unity 1 and a ∈ M is left invertible, then

a is a regular.

Proof. Let M be a Γ-ring with unity 1. Suppose a ∈ M is left invertible, there
exist b ∈ M, α ∈ Γ, such that bαa = 1. Since 1 is unity there exists δ ∈ Γ such
that aδ1 = 1δa = a.

aδ1 = a

⇒ aδ(bαa) = a.

⇒ aδbαa = a.

Hence a is a regular element.

Corollary 3.15. If M is a Γ-ring with unity 1 and a ∈ M is invertible, then a

is regular.

Theorem 3.16. If M is a Γ-field, then M is a regular.

Proof. Let M be a Γ-field. Then each non-zero element is invertible. By Corol-
lary 3.15, each element is a regular. Therefore M is a regular Γ-field.

Theorem 3.17. A Γ-field holds cancellative laws.

Proof. Let M be a Γ-field. Suppose a 6= 0 and aαb = aαc, where a, b, c ∈ M,

α ∈ Γ. There exist x ∈ M, δ ∈ Γ, such that xδa = 1.

aαb = aαc,

⇒ xδaαb = xδaαc

⇒ (xδa)αb = (xδa)αc

⇒ 1αb = 1αc

⇒ b = c.

Hence the theorem.

Theorem 3.18. If M is a Γ-field, then the equation aαx = b has a unique

solution for any non-zero elements a, b ∈ M and for α ∈ Γ.

Proof. Let M be a Γ-field and the equation aαx = b for any non-zero elements
a, b ∈ M and for α ∈ Γ. Then there exist c ∈ M, β ∈ Γ, such that 1βb = b and
aαc = 1.

Now aαc = 1

⇒ aαcβb = 1βb

⇒ aα(cβb) = b
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Suppose there exist x, y ∈ M , such that aαx = b and aαy = b. Then aαx = aαy.
Therefore by Theorem 3.17, x = y. This completes the proof.

Theorem 3.19. Any commutative finite pre-integral Γ-ring M is a Γ-field M .

Proof. Let M = {a1, a2, . . . , an} and 0 6= a ∈ M, α ∈ Γ. We consider the n

products aαa1, aαa2, . . . , aαan. These products are all distinct. Since aαai =
aαaj ⇒ ai = aj . Since 1 ∈ M, there exists ai ∈ M such that aαai = 1. Therefore
a has inverse. Hence any commutative finite pre-integral Γ-ring M is a Γ-field.

Theorem 3.20. Let M be a Γ-ring with zero element 0 and unity element. If I

is an ideal of a Γ-ring M containing a unit element then I = M.

Proof. Let I be an ideal of the Γ-ring M containing a unit element u and x ∈ M.

Then there exists α ∈ Γ such that xα1 = x and xαu ∈ I, since I is an ideal.
Since u is a unit element, there exist δ ∈ Γ, t ∈ M such that uδt = 1 ⇒ xαuδt =
xα1 = x ∈ I. Hence I = M.

Theorem 3.21. Every Γ-field is zero divisors free.

Proof. Let M be a Γ-field, a, b ∈ M and aαb = 0, α ∈ Γ and a 6= 0. Since a 6= 0
there exists β ∈ Γ such that a−1βa = 1.

aαb = 0 ⇒ a−1β(aαb) = a−1β0

⇒ (a−1βa)αb = 0

⇒ 1αb = 0 = 1α0.

Therefore b = 0. Hence M is zero divisors free.

Theorem 3.22. M is a Γ-field if and only if M is an integral, simple and

commutative Γ-ring.

Proof. Let I be a proper ideal of the Γ-field M. Every non zero element of M is a
unit. By Theorem 3.21, we have I = M. Therefore Γ-field M contains no proper
ideals. Hence Γ-field is a simple Γ-ring. By Theorem 3.22, M is an integral Γ-
ring. Conversely, suppose that M is an integral, simple and commutative Γ-ring.
Let 0 6= a ∈ M, α ∈ Γ. Consider aαM, aαM 6= {0}, since M is an integral Γ-ring.
Clearly aαM is a proper ideal of M ⇒ aαM = M, since M is a simple Γ-ring.
Therefore, there exists b ∈ M such that aαb = 1. Hence the theorem.

Theorem 3.23. Let M be a commutative Γ-ring. M satisfies the condition,for

each, 0 6= a ∈ M, α ∈ Γ and d ∈ M. Then there exist b ∈ M, β ∈ Γ such that

aαbβd = d if and only if M is a Γ-field.
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Proof. Let M be a commutative Γ-ring. Suppose M is a Γ-field, 0 6= a ∈ M

and c ∈ M. Since M is a Γ-field, there exist b ∈ M,α ∈ Γ such that aαb = 1.
Since 1 is the unity element, there exists β ∈ Γ such that 1βc = c. Therefore
aαbβc = 1βc ⇒ aαbβc = c. Hence M is a Γ-field. Conversely suppose that M is a
commutative Γ-ring satisfies the condition,for each, 0 6= a ∈ M,α ∈ Γ, then there
exist b ∈ M,β ∈ Γ such that aαbβd = d, for all d ∈ M . Let 0 6= a ∈ M,α ∈ Γ
and d ∈ M. Then there exists β ∈ Γ such that aαbβd = d. Therefore aαb = 1.
Hence every non-zero element of M has inverse. Thus M is a Γ-field.

Theorem 3.24. Let M be a Γ-ring with zero element. Then M is a Γ-field if

and only if commutative Γ-ring M is Zero divisors free and Γ-ring M \ {0} has

no proper ideals.

Proof. Suppose M is a Γ-field. By Theorem 3.21, M is Zero divisors free. Let
I be an ideal of the Γ-field M \ {0} and a ∈ I. Since 0 6= a ∈ M, there exist
α ∈ Γ, x ∈ M such that aαx = 1. Therefore 1 ∈ I. Let x ∈ M \ {0}. Then
xα1 ∈ I, for all α ∈ Γ ⇒ x ∈ I. Therefore M \ {0} = I. Thus Γ-field M \ {0}
has no proper ideals. Conversely suppose that Γ-ring M is Zero divisors free and
Γ-ring M \{0} has no proper ideals. Let 0 6= a ∈ M, α ∈ Γ. Consider aαM 6= {0}.
Then aαM = M. Therefore there exists b ∈ M such that aαb = 1. Hence M is a
Γ-field.

Theorem 3.25. M is a Γ-field if and only if Mα is a field for some α ∈ Γ, then
Mβ is a field for all β ∈ Γ.

Proof. Let M be a Γ-field. Suppose Mα is a field for some α ∈ Γ, a ∈ M \ {0}
and α ∈ Γ. Suppose b ∈ M \{0}, β ∈ Γ, Then aβb 6= 0. By Definition of the field,
we have

(aβb)αc = 1, c ∈ M

⇒ aβ(bαc) = 1.

Hence Mβ is a field. Converse is obvious.

4. Conclusion

The author introduced the notion of a Γ-field, the notion of regular Γ-field and
studied their properties. The author proved that M is a Γ-field if and only if M
is an integral, simple and commutative Γ-ring and M is a Γ-field if and only if
Mα is a field for some α ∈ Γ, then Mβ is a field for all β ∈ Γ.
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