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Abstract

In this paper, we construct the fundamental theorem of UP-homomorphisms
in UP-algebras. We also give an application of the theorem to the first, sec-
ond, third and fourth UP-isomorphism theorems in UP-algebras.
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1. Introduction and Preliminaries

Among many algebraic structures, algebras of logic form an important class of al-
gebras. Examples of these are BCK-algebras [6], BCI-algebras [7], BCH-algebras
[3], KU-algebras [14], SU-algebras [9] and others. They are strongly connected
with logic. For example, BCI-algebras introduced by Iséki [7] in 1966 have con-
nections with BCI-logic being the BCI-system in combinatory logic which has
application in the language of functional programming. BCK and BCI-algebras
are two classes of logical algebras. They were introduced by Imai and Iséki [6, 7]
in 1966 and have been extensively investigated by many researchers. It is known
that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

The isomorphism theorems play an important role in a general logical alge-
bra, which were studied by several researches such as: In 1998, Jun, Hong, Xin
and Roh [8] proved isomorphism theorems by using Chinese Remainder Theorem
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in BCI-algebras. In 2001, Park, Shim and Roh [13] proved isomorphism theo-
rems of IS-algebras. In 2004, Hao and Li [2] introduced the concept of ideals of
an ideal in a BCI-algebra and some isomorphism theorems are obtained by using
this concept. They obtained several isomorphism theorems of BG-algebras and
related properties. In 2006, Kim [11] introduced the notion of KS-semigroups.
He characterized ideals of a KS-semigroup and proved the first isomorphism the-
orem for KS-semigroups. In 2008, Kim and Kim [10] introduced the notion
of BG-algebras which is a generalization of B-algebras. They obtained several
isomorphism theorems of BG-algebras and related properties. In 2009, Paradero-
Vilela and Cawi [12] characterized KS-semigroup homomorphisms and proved
the isomorphism theorems for KS-semigroups. In 2011, Keawrahun and Leer-
awat [9] introduced the notion of SU-semigroups and proved the isomorphism
theorems for SU-semigroups. In 2012, Asawasamrit [1] introduced the notion of
KK-algebras and studied isomorphism theorems of KK-algebras.

Iampan [4] introduced a new algebraic structure, called a UP-algebra and a
concept of UP-ideals, congruences and UP-homomorphisms in UP-algebras, and
defined a congruence relation on a UP-algebra and a quotient UP-algebra. In
this paper, we construct the fundamental theorem of UP-homomorphisms in UP-
algebras. We also give an application of the theorem to the first, second, third
and fourth UP-isomorphism theorems in UP-algebras.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.1 [4]. An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra,
where A is a nonempty set, · is a binary operation on A, and 0 is a fixed element
of A (i.e., a nullary operation) if it satisfies the following assertions:

(UP-1) (∀x, y, z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),

(UP-2) (∀x ∈ A)(0 · x = x),

(UP-3) (∀x ∈ A)(x · 0 = 0), and

(UP-4) (∀x, y ∈ A)(x · y = 0, y · x = 0 ⇒ x = y).

From [4], we know that a UP-algebra is a generalization of the concept of a
KU-algebra.

Example 1.2 [15]. Let X be a universal set and let Ω ∈ P(X) where P(X)
means the power set of X. Let PΩ(X) = {A ∈ P(X) | Ω ⊆ A}. Define a binary
operation · on PΩ(X) by putting A·B = B∩(AC∪Ω) for all A,B ∈ PΩ(X) where
AC means the complement of a subset A. Then (PΩ(X), ·,Ω) is a UP-algebra
and we shall call it the generalized power UP-algebra of type 1 with respect to Ω.
Let PΩ(X) = {A ∈ P(X) | A ⊆ Ω}. Define a binary operation ∗ on PΩ(X) by
putting A ∗ B = B ∪ (AC ∩ Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is a
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UP-algebra and we shall call it the generalized power UP-algebra of type 2 with

respect to Ω. In particular, (P(X), ·, ∅) is a UP-algebra and we shall call it the
power UP-algebra of type 1, and (P(X), ∗,X) is a UP-algebra and we shall call
it the power UP-algebra of type 2.

Example 1.3 [4]. Let A = {0, 1, 2, 3} be a set with a binary operation · defined
by the following Cayley table:

(1.1)

· 0 1 2 3

0 0 1 2 3
1 0 0 0 0
2 0 1 0 3
3 0 1 2 0

Then (A, ·, 0) is a UP-algebra.

In a UP-algebra A = (A, ·, 0), the following assertions are valid (see [4, 5]).

(∀x ∈ A)(x · x = 0),(1.2)

(∀x, y, z ∈ A)(x · y = 0, y · z = 0 ⇒ x · z = 0),(1.3)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (z · x) · (z · y) = 0),(1.4)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (y · z) · (x · z) = 0),(1.5)

(∀x, y ∈ A)(x · (y · x) = 0),(1.6)

(∀x, y ∈ A)((y · x) · x = 0 ⇔ x = y · x),(1.7)

(∀x, y ∈ A)(x · (y · y) = 0),(1.8)

(∀a, x, y, z ∈ A)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0),(1.9)

(∀a, x, y, z ∈ A)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0),(1.10)

(∀x, y, z ∈ A)(((x · y) · z) · (y · z) = 0),(1.11)

(∀x, y, z ∈ A)(x · y = 0 ⇒ x · (z · y) = 0),(1.12)

(∀x, y, z ∈ A)(((x · y) · z) · (x · (y · z)) = 0), and(1.13)

(∀a, x, y, z ∈ A)(((x · y) · z) · (y · (a · z)) = 0).(1.14)

Definition 1.4 [4]. Let A be a UP-algebra. A nonempty subset B of A is called
a UP-ideal of A if it satisfies the following properties:

(1) the constant 0 of A is in B, and

(2) (∀x, y, z ∈ A)(x · (y · z) ∈ B, y ∈ B ⇒ x · z ∈ B).

Clearly, A and {0} are UP-ideals of A.
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Example 1.5 [4]. Let A = {0, 1, 2, 3, 4} be a set with a binary operation · defined
by the following Cayley table:

(1.15)

· 0 1 2 3 4

0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 4
3 0 0 2 0 4
4 0 0 0 0 0

Then (A, ·, 0) is a UP-algebra and {0, 1, 2} and {0, 1, 3} are UP-ideals of A.

Theorem 1.6 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the

following statements hold: for any x, a, b ∈ A,

(1) if b · x ∈ B and b ∈ B, then x ∈ B. Moreover, if b ·X ⊆ B and b ∈ B, then

X ⊆ B,

(2) if b ∈ B, then x · b ∈ B. Moreover, if b ∈ B, then X · b ⊆ B, and

(3) if a, b ∈ B, then (b · (a · x)) · x ∈ B.

Definition 1.7 [4]. Let A = (A, ·, 0) be a UP-algebra. A subset S of A is called
a UP-subalgebra of A if the constant 0 of A is in S, and (S, ·, 0) itself forms a
UP-algebra. Clearly, A and {0} are UP-subalgebras of A.

Proposition 1.8 [4]. A nonempty subset S of a UP-algebra A = (A, ·, 0) is a

UP-subalgebra of A if and only if S is closed under the · multiplication on A.

Definition 1.9 [4]. Let A be a UP-algebra and B a UP-ideal of A. Define the
binary relation ∼B on A as follows:

(1.16) (∀x, y ∈ A)(x ∼B y ⇔ x · y ∈ B, y · x ∈ B).

Definition 1.10 [4]. Let A be a UP-algebra. An equivalence relation ρ on A is
called a congruence if

(∀x, y, z ∈ A)(xρy ⇒ x · zρy · z, z · xρz · y).

Proposition 1.11 [4]. Let A be a UP-algebra and B a UP-ideal of A with a

binary relation ∼B defined by (1.16). Then ∼B is a congruence on A.

Let A be a UP-algebra and ρ a congruence on A. If x ∈ A, then the ρ-class
of x is the (x)ρ defined as follows:

(x)ρ = {y ∈ A | yρx}.
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Then the set of all ρ-classes is called the quotient set of A by ρ, and is denoted
by A/ρ. That is,

A/ρ = {(x)ρ | x ∈ A}.

Theorem 1.12 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the

following statements hold:

(1) the ∼B-class (0)∼B
is a UP-ideal and a UP-subalgebra of A which B =

(0)∼B
,

(2) a ∼B-class (x)∼B
is a UP-ideal of A if and only if x ∈ B,

(3) a ∼B-class (x)∼B
is a UP-subalgebra of A if and only if x ∈ B, and

(4) (A/ ∼B , ∗, (0)∼B
) is a UP-algebra under the ∗ multiplication defined by

(x)∼B
∗ (y)∼B

= (x · y)∼B
for all x, y ∈ A, called the quotient UP-algebra of

A induced by the congruence ∼B.

Definition 1.13 [4]. Let (A, ·, 0) and (A′, ·′, 0′) be UP-algebras. A mapping f
from A to A′ is called a UP-homomorphism if

(∀x, y ∈ A)(f(x · y) = f(x) ·′ f(y)).

A UP-homomorphism f : A → A′ is called a

(1) UP-epimorphism if f is surjective,

(2) UP-monomorphism if f is injective,

(3) UP-isomorphism if f is bijective. Moreover, we say A is UP-isomorphic to
A′, symbolically, A ∼= A′, if there is a UP-isomorphism from A to A′.

Let f be a mapping from A to A′, and let B be a nonempty subset of A, and
B′ of A′. The set {f(x) | x ∈ B} is called the image of B under f , denoted by
f(B). In particular, f(A) is called the image of f , denoted by Im(f). Dually,
the set {x ∈ A | f(x) ∈ B′} is said the inverse image of B′ under f , symbolically,
f−1(B′). Especially, we say f−1({0′}) is the kernel of f , written by Ker(f). That
is,

Im(f) = {f(x) ∈ A′ | x ∈ A}

and

Ker(f) = {x ∈ A | f(x) = 0′}.

Theorem 1.14 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the

mapping πB : A → A/ ∼B defined by πB(x) = (x)∼B
for all x ∈ A is a UP-

epimorphism, called the natural projection from A to A/ ∼B.
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On a UP-algebra A = (A, ·, 0), we define a binary relation ≤ on A as follows:

(1.17) (∀x, y ∈ A)(x ≤ y ⇔ x · y = 0).

Theorem 1.15 [4]. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras and let f : A → B
be a UP-homomorphism. Then the following statements hold:

(1) f(0A) = 0B ,

(2) for any x, y ∈ A, if x ≤ y, then f(x) ≤ f(y),

(3) if C is a UP-subalgebra of A, then the image f(C) is a UP-subalgebra of

B. In particular, Im(f) is a UP-subalgebra of B,

(4) if D is a UP-subalgebra of B, then the inverse image f−1(D) is a UP-

subalgebra of A. In particular, Ker(f) is a UP-subalgebra of A,

(5) if C is a UP-ideal of A such that Ker(f) ⊆ C, then the image f(C) is a

UP-ideal of f(A),

(6) if D is a UP-ideal of B, then the inverse image f−1(D) is a UP-ideal of A.
In particular, Ker(f) is a UP-ideal of A, and

(7) Ker(f) = {0A} if and only if f is injective.

2. Main results

In this section, we construct the fundamental theorem of UP-homomorphisms in
UP-algebras. We also give an application of the theorem to the first, second,
third and fourth UP-isomorphism theorems in UP-algebras.

Theorem 2.1 (Fundamental Theorem of UP-homomorphisms). Let (A, ·, 0A)
and (B, •, 0B) be UP-algebras, and f : A → B a UP-homomorphism. Then there

exists uniquely a UP-homomorphism ϕ from A/ ∼Ker(f) to B such that f =
ϕ ◦ πKer(f). Moreover,

(1) πKer(f) is a UP-epimorphism and ϕ a UP-monomorphism, and

(2) f is a UP-epimorphism if and only if ϕ is a UP-isomorphism.

As f makes the following diagram commute,

A
f

//

πKer(f)

��

B

A/ ∼Ker(f)

ϕ

::
t
t
t
t
t
t
t
t
t
t
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Proof. Put K = Ker(f). By Theorem 1.15 (6), we have K is a UP-ideal of A. It
follows from Theorem 1.12 (4) that (A/ ∼K , ∗, (0A)∼K

) is a UP-algebra. Define

(2.1) ϕ : A/ ∼K→ B, (x)∼K
7→ f(x).

Let (x)∼K
, (y)∼K

∈ A/ ∼K be such that (x)∼K
= (y)∼K

. Then x ∼K y, so
x · y ∈ K and y · x ∈ K. Thus

f(x) • f(y) = f(x · y) = 0B and f(y) • f(x) = f(y · x) = 0B .

By (UP-4), we have f(x) = f(y) and so ϕ((x)∼K
) = ϕ((y)∼K

). Thus ϕ is a
mapping. For any x, y ∈ A, we see that

ϕ((x)∼K
∗ (y)∼K

) = ϕ((x · y)∼K
) = f(x · y) = f(x) • f(y) = ϕ((x)∼K

) •ϕ((y)∼K
).

Thus ϕ is a UP-homomorphism. Also, since

(ϕ ◦ πK)(x) = ϕ(πK(x)) = ϕ((x)∼K
) = f(x) for all x ∈ A,

we obtain f = ϕ ◦ πK . We have shown the existence. Let ϕ′ be a mapping from
A/ ∼K to B such that f = ϕ′ ◦ πK . Then for any (x)∼K

∈ A/ ∼K , we have

ϕ′((x)∼K
) = ϕ′(πK(x)) = (ϕ′◦πK)(x) = f(x) = (ϕ◦πK)(x) = ϕ(πK(x)) = ϕ((x)∼K

).

Hence, ϕ = ϕ′, showing the uniqueness.

(1) By Theorem 1.14, we have πK is a UP-epimorphism. Also, let (x)∼K
, (y)∼K

∈
A/ ∼K be such that ϕ((x)∼K

) = ϕ((y)∼K
). Then f(x) = f(y), and it follows

from (1.2) that

f(x · y) = f(x) • f(y) = f(y) • f(y) = 0B ,

that is, x · y ∈ K. Similarly, y · x ∈ K. Hence, x ∼K y and (x)∼K
= (y)∼K

.
Therefore, ϕ a UP-monomorphism.

(2) Assume that f is a UP-epimorphism. By (1), it suffices to prove ϕ is
surjective. Let y ∈ B. Then there exists x ∈ A such that f(x) = y. Thus
y = f(x) = ϕ((x)∼K

), so ϕ is surjective. Hence, ϕ is a UP-isomorphism.

Conversely, assume that ϕ is a UP-isomorphism. Then ϕ is surjective. Let
y ∈ B. Then there exists (x)∼K

∈ A/ ∼K such that ϕ((x)∼K
) = y. Thus

f(x) = ϕ((x)∼K
) = y, so f is surjective. Hence, f is a UP-epimorphism.

Theorem 2.2 (First UP-isomorphism Theorem). Let (A, ·, 0A) and (B, •, 0B) be
UP-algebras, and f : A → B a UP-homomorphism. Then

A/ ∼Ker(f)
∼= Im(f).



120 A. Iampan

Proof. By Theorem 1.15 (3), we have Im(f) is a UP-subalgebra of B. Thus
f : A → Im(f) is a UP-epimorphism. Applying Theorem 2.1 (2), we obtain
A/ ∼Ker(f)

∼= Im(f).

Lemma 2.3. Let (A, ·, 0) be a UP-algebra, H a UP-subalgebra of A, and K a

UP-ideal of A. Denote HK =
⋃

h∈H(h)∼K
. Then HK is a UP-subalgebra of A.

Proof. Clearly, ∅ 6= HK ⊆ A. Let a, b ∈ HK. Then a ∈ (x)∼K
and b ∈ (y)∼K

for some x, y ∈ H, so (a)∼K
= (x)∼K

and (b)∼K
= (y)∼K

. Thus

(a · b)∼K
= (a)∼K

∗ (b)∼K
= (x)∼K

∗ (y)∼K
= (x · y)∼K

,

so a · b ∈ (x · y)∼K
. Since x, y ∈ H, it follows from Proposition 1.8 that x · y ∈ H.

Thus a · b ∈ (x · y)∼K
⊆ HK. Hence, HK is a UP-subalgebra of A.

Theorem 2.4 (Second UP-isomorphism Theorem). Let (A, ·, 0) be a UP-algebra,

H a UP-subalgebra of A, and K a UP-ideal of A. Denote HK/ ∼K= {(x)∼K
|

x ∈ HK}. Then

H/ ∼H∩K
∼= HK/ ∼K .

Proof. By Lemma 2.3, we have HK is a UP-subalgebra of A. Then it is easy
to check that HK/ ∼K is a UP-subalgebra of A/ ∼K , thus (HK/ ∼K , ∗, (0)∼K

)
itself is a UP-algebra. Also, it is obvious that H ⊆ HK, then

(2.2) f : H → HK/ ∼K , x 7→ (x)∼K
,

is a mapping. For any x, y ∈ H, we have

f(x · y) = (x · y)∼K
= (x)∼K

∗ (y)∼K
= f(x) ∗ f(y).

Thus f is a UP-homomorphism. We shall show that f is a UP-epimorphism with
Ker(f) = H ∩K. For any (x)∼K

∈ HK/ ∼K , we have x ∈ HK =
⋃

h∈H(h)∼K
.

Then there exists h ∈ H such that x ∈ (h)∼K
and so (x)∼K

= (h)∼K
. Thus

f(h) = (h)∼K
= (x)∼K

. Therefore, f is a UP-epimorphism. Also, for any
h ∈ H, if h ∈ Ker(f), then f(h) = (0)∼K

. Since f(h) = (h)∼K
, we obtain

(h)∼K
= (0)∼K

. By (UP-2) and (1.16), we have h = 0 · h ∈ K. Thus h ∈ H ∩K,
that is, Ker(f) ⊆ H ∩K. On the other hand, if h ∈ H ∩K, by h ∈ H, f(h) is
well-defined, by h ∈ K and 0 ∈ K, h · 0 ∈ K and 0 · h ∈ K. By (1.16), we have
h ∼K 0 and so (h)∼K

= (0)∼K
. Thus f(h) = (h)∼K

= (0)∼K
. So, h ∈ Ker(f),

that is, H ∩K ⊆ Ker(f). Therefore, Ker(f) = H ∩K. Now, Theorem 2.2 gives
H/ ∼H∩K

∼= HK/ ∼K .

Theorem 2.5 (Third UP-isomorphism Theorem). Let (A, ·, 0) be a UP-algebra,

and H and K UP-ideals of A with H ⊆ K. Then

(A/ ∼H)/ ∼(K/∼H)
∼= A/ ∼K .
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Proof. By Theorem 1.12 (4), we obtain (A/ ∼K , ∗, (0)∼K
) and (A/ ∼H , ∗′, (0)∼H

)
are UP-algebras. Define

(2.3) f : A/ ∼H→ A/ ∼K , (x)∼H
7→ (x)∼K

.

For any x, y ∈ A, if (x)∼H
= (y)∼H

, then x · y, y · x ∈ H. Since H ⊆ K, we
obtain x · y, y · x ∈ K. Thus (x)∼K

= (y)∼K
, so f((x)∼H

) = f((y)∼H
). Thus f is

a mapping. Also, for any x, y ∈ A, we see that

f((x)∼H
∗′(y)∼H

) = f((x·y)∼H
) = (x·y)∼K

= (x)∼K
∗(y)∼K

= f((x)∼H
)∗f((y)∼H

).

Thus f is a UP-homomorphism. Clearly, f is surjective. Hence, f is a UP-
epimorphism. We shall show that Ker(f) = K/ ∼H . In fact,

Ker(f) = {(x)∼H
∈ A/ ∼H | f((x)∼H

) = (0)∼K
}

= {(x)∼H
∈ A/ ∼H | (x)∼K

= (0)∼K
}

= {(x)∼H
∈ A/ ∼H | x = 0 · x ∈ K}((UP-2))

= K/ ∼H .

Now, Theorem 2.2 gives (A/ ∼H)/ ∼(K/∼H )
∼= A/ ∼K .

Theorem 2.6 (Fourth UP-isomorphism Theorem). Let (A, ·, 0A) and (B, •, 0B)
be UP-algebras, and f : A → B a UP-epimorphism. Denote A = {X | X is a

UP-ideal of A containing Ker(f)} and B = {Y | Y is a UP-ideal of B}. Then

the following statements hold:

(1) there is an inclusion preserving bijection

(2.4) ϕ : A → B,X 7→ f(X),

with inverse given by Y 7→ f−1(Y ), and

(2) for any X ∈ A,

A/ ∼X
∼= B/ ∼f(X) .

Proof. (1) For any X ∈ A, it follows from Theorem 1.15 (5) that f(X) is a
unique UP-ideal of B such that ϕ(X) = f(X). Thus ϕ is a mapping. For any
X1,X2 ∈ A, if ϕ(X1) = ϕ(X2), then f(X1) = f(X2). Since Ker(f) ⊆ X1, we
obtain X1 = f−1(f(X1)). Indeed, let x ∈ f−1(f(X1)). Then f(x) ∈ f(X1), so
f(x) = f(x1) for some x1 ∈ X1. Applying (1.2), we have f(x1 ·x) = f(x1)•f(x) =
f(x1) • f(x1) = 0B . Thus x1 · x ∈ Ker(f) ⊆ X1, it follows from Theorem 1.6
(1) that x ∈ X1. So, f−1(f(X1)) ⊆ X1. Clearly, X1 ⊆ f−1(f(X1)). Similarly,
since Ker(f) ⊆ X2, we obtain X2 = f−1(f(X2)). Thus X1 = f−1(f(X1)) =
f−1(f(X2)) = X2. Hence, ϕ is injective. Also, for any Y ∈ B, we obtain
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Y = f(f−1(Y )) because f is surjective. Applying Theorem 1.15 (6), we have
f−1(Y ) is a UP-ideal of A with Ker(f) ⊆ f−1(Y ). Thus f−1(Y ) ∈ A is such that
ϕ(f−1(Y )) = f(f−1(Y )) = Y . Hence, ϕ is surjective. Therefore, ϕ is bijective.
Finally, for any Y ∈ B, we get that Y = ϕ(f−1(Y )). Hence, ϕ−1(Y ) = f−1(Y ).

(2) By Theorem 1.15 (5) and Theorem 1.12 (4), we have f(X) is a UP-ideal
of B and (B/ ∼f(X), ∗, (0B)∼f(X)

) is a UP-algebra. It follows from Theorem 1.14
that πf(X) : B → B/ ∼f(X) is a UP-epimorphism. Thus πf(X)◦f : A → B/ ∼f(X)

is a UP-epimorphism. We shall show that Ker(πf(X) ◦ f) = X. In fact,

Ker(πf(X) ◦ f) = {a ∈ A | (πf(X) ◦ f)(a) = (0B)∼f(X)
}

= {a ∈ A | πf(X)(f(a)) = (0B)∼f(X)
}

= {a ∈ A | (f(a))∼f(X)
= (0B)∼f(X)

}

= {a ∈ A | f(a) = 0B • f(a) ∈ f(X)}((UP-2))

= f−1(f(X))

= X.

Applying Theorem 2.2, we have A/ ∼X
∼= B/ ∼f(X).
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