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Abstract

In this paper, we construct the fundamental theorem of UP-homomorphisms
in UP-algebras. We also give an application of the theorem to the first, sec-
ond, third and fourth UP-isomorphism theorems in UP-algebras.
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1. INTRODUCTION AND PRELIMINARIES

Among many algebraic structures, algebras of logic form an important class of al-
gebras. Examples of these are BCK-algebras [6], BCI-algebras [7], BCH-algebras
[3], KU-algebras [14], SU-algebras [9] and others. They are strongly connected
with logic. For example, BCI-algebras introduced by Iséki [7] in 1966 have con-
nections with BCl-logic being the BCI-system in combinatory logic which has
application in the language of functional programming. BCK and BCl-algebras
are two classes of logical algebras. They were introduced by Imai and Iséki [6, 7]
in 1966 and have been extensively investigated by many researchers. It is known
that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

The isomorphism theorems play an important role in a general logical alge-
bra, which were studied by several researches such as: In 1998, Jun, Hong, Xin
and Roh [8] proved isomorphism theorems by using Chinese Remainder Theorem
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in BCl-algebras. In 2001, Park, Shim and Roh [13] proved isomorphism theo-
rems of IS-algebras. In 2004, Hao and Li [2] introduced the concept of ideals of
an ideal in a BClI-algebra and some isomorphism theorems are obtained by using
this concept. They obtained several isomorphism theorems of BG-algebras and
related properties. In 2006, Kim [11] introduced the notion of KS-semigroups.
He characterized ideals of a KS-semigroup and proved the first isomorphism the-
orem for KS-semigroups. In 2008, Kim and Kim [10] introduced the notion
of BG-algebras which is a generalization of B-algebras. They obtained several
isomorphism theorems of BG-algebras and related properties. In 2009, Paradero-
Vilela and Cawi [12] characterized KS-semigroup homomorphisms and proved
the isomorphism theorems for KS-semigroups. In 2011, Keawrahun and Leer-
awat [9] introduced the notion of SU-semigroups and proved the isomorphism
theorems for SU-semigroups. In 2012, Asawasamrit [1] introduced the notion of
KK-algebras and studied isomorphism theorems of KK-algebras.

Tampan [4] introduced a new algebraic structure, called a UP-algebra and a
concept of UP-ideals, congruences and UP-homomorphisms in UP-algebras, and
defined a congruence relation on a UP-algebra and a quotient UP-algebra. In
this paper, we construct the fundamental theorem of UP-homomorphisms in UP-
algebras. We also give an application of the theorem to the first, second, third
and fourth UP-isomorphism theorems in UP-algebras.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.1 [4]. An algebra A = (A4, -,0) of type (2,0) is called a UP-algebra,
where A is a nonempty set, - is a binary operation on A, and 0 is a fixed element
of A (i.e., a nullary operation) if it satisfies the following assertions:

(UP-1) (Va,y,2€ A)((y-2) - ((x-y) - (v-2)) =0),
(UP-2) (Vz € A)(0-z = z),

(UP-3) (Vz € A)(z -0 = 0), and

(UP-4) (Va,y e A)(z-y=0,y-z=0=z=y).

From [4], we know that a UP-algebra is a generalization of the concept of a
KU-algebra.

Example 1.2 [15]. Let X be a universal set and let 2 € P(X) where P(X)
means the power set of X. Let Po(X) = {4 € P(X) | 2 C A}. Define a binary
operation - on P (X) by putting A-B = BN(ACUQ) for all A, B € Pq(X) where
A® means the complement of a subset A. Then (Po(X),-,Q) is a UP-algebra
and we shall call it the generalized power UP-algebra of type 1 with respect to Q.
Let P%(X) = {A € P(X) | A C Q}. Define a binary operation * on P*(X) by
putting A* B = BU (A N Q) for all A,B € P%(X). Then (P*(X),*,Q) is a
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UP-algebra and we shall call it the generalized power UP-algebra of type 2 with
respect to . In particular, (P(X),-,0) is a UP-algebra and we shall call it the
power UP-algebra of type 1, and (P(X),*,X) is a UP-algebra and we shall call
it the power UP-algebra of type 2.

Example 1.3 [4]. Let A ={0,1,2,3} be a set with a binary operation - defined
by the following Cayley table:

-0 1 2 3
0j0 123
(1.1) 10 000
2/0 10 3
3]0 120

Then (A4, -,0) is a UP-algebra.

In a UP-algebra A = (A, -,0), the following assertions are valid (see [4, 5]).

(1.2) (Ve e A)(x -z =0),

(1.3) (Vx,y,z€ A)(x-y=0,y-2=0=2x-2=0),

(1.4) (Ve,y,z € A)(z-y=0=(2-2)-(2-y) =0),

(1.5) (Ve,y,z € A)(z-y=0=(y-2)-(x-2) =0),

(16) (Va,y € A)(w - (y- o) = 0),

(1.7) Vz,ye A)((y-z) 2 =0 =y x),

(1.8) (Vo,y € A)(x - (y-y) =0),

(1.9) (Va,2,y,2 € (@ (y-2) (@ ((@-9)- @ 2))) =0),
(110)  (az,y,2 € A((((@-2) (@ y)-2) - ((-y) 2) =),
1) ey e A(((@y)-2) (- 2) =0)

(1.12) (Vz,y,z€ A)(z-y=0=z-(2-y) =0),

(1L13)  (Frye € A((@-y) 2)- (@ (y-2) =0), and

1) (Fazy e A y) ) (- (a-2) =0).

Definition 1.4 [4]. Let A be a UP-algebra. A nonempty subset B of A is called
a UP-ideal of A if it satisfies the following properties:

(1) the constant 0 of A is in B, and
(2) (Va,y,z€ A)(x-(y-2) e Bjye B=ux-z€ B).

Clearly, A and {0} are UP-ideals of A.
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Example 1.5 [4]. Let A = {0,1,2,3,4} be a set with a binary operation - defined
by the following Cayley table:

(1.15)

o O OO oo
(N eNeNelS L
OO N NN
OO W W W w
[ N S S N

=W N = Of

Then (A4,-,0) is a UP-algebra and {0,1,2} and {0, 1,3} are UP-ideals of A.

Theorem 1.6 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the
following statements hold: for any z,a,b € A,

(1) ifb-z € B and b € B, then x € B. Moreover, ifb- X C B and b € B, then
X C B,

(2) ifbe B, then x-b € B. Moreover, ifb € B, then X -b C B, and
(3) ifa,be B, then (b- (a-x)) -z € B.

Definition 1.7 [4]. Let A = (A,-,0) be a UP-algebra. A subset S of A is called
a UP-subalgebra of A if the constant 0 of A is in S, and (S,-,0) itself forms a
UP-algebra. Clearly, A and {0} are UP-subalgebras of A.

Proposition 1.8 [4]. A nonempty subset S of a UP-algebra A = (A,-,0) is a
UP-subalgebra of A if and only if S is closed under the - multiplication on A.

Definition 1.9 [4]. Let A be a UP-algebra and B a UP-ideal of A. Define the
binary relation ~p on A as follows:

(1.16) (Ve,ye A)(x ~py < x-y€ B,y-z € B).

Definition 1.10 [4]. Let A be a UP-algebra. An equivalence relation p on A is
called a congruence if

(Vx7y72 S A)(Z’py = XT-zZpY- 2,2 TPZ- y)

Proposition 1.11 [4]. Let A be a UP-algebra and B a UP-ideal of A with a
binary relation ~p defined by (1.16). Then ~p is a congruence on A.

Let A be a UP-algebra and p a congruence on A. If x € A, then the p-class
of x is the (x), defined as follows:

(), ={y € A|ypz}.
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Then the set of all p-classes is called the quotient set of A by p, and is denoted
by A/p. That is,

Alp=A{(x), |z € A},
Theorem 1.12 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the

following statements hold:

(1) the ~p-class (0)~, is a UP-ideal and a UP-subalgebra of A which B =
(O)NB7

(2) a ~p-class (x)~, is a UP-ideal of A if and only if x € B,

(3) a ~p-class (x)~, is a UP-subalgebra of A if and only if x € B, and

(4) (A ~p,*,(0)~p) is a UP-algebra under the x multiplication defined by
(@) * (W) np = (@ -Y)~p for all z,y € A, called the quotient UP-algebra of
A induced by the congruence ~p.

Definition 1.13 [4]. Let (A,-,0) and (A’,-/,0') be UP-algebras. A mapping f
from A to A’ is called a UP-homomorphism if

(Vz,y € A)(f(z-y) = f(2) ' f(y))-
A UP-homomorphism f: A — A’ is called a
(1) UP-epimorphism if f is surjective,
(2) UP-monomorphism if f is injective,

(3) UP-isomorphism if f is bijective. Moreover, we say A is UP-isomorphic to
A’, symbolically, A = A’, if there is a UP-isomorphism from A to A’.

Let f be a mapping from A to A’, and let B be a nonempty subset of A, and
B’ of A’. The set {f(x) | x € B} is called the image of B under f, denoted by
f(B). In particular, f(A) is called the image of f, denoted by Im(f). Dually,
the set {x € A | f(x) € B’} is said the inverse image of B’ under f, symbolically,
f~1(B"). Especially, we say f~1({0'}) is the kernel of f, written by Ker(f). That
is,

In(f) = {f(z) € A' | 2 € A}

and

Ker(f) = {z € A| f(z) = 0},

Theorem 1.14 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the
mapping tg: A — A/ ~p defined by mp(x) = (x)~, for all x € A is a UP-
epimorphism, called the natural projection from A to A/ ~p.
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On a UP-algebra A = (4, -,0), we define a binary relation < on A as follows:
(1.17) Ve,ye A)(zx <y<ez-y=0).

Theorem 1.15 [4]. Let (A,-,04) and (B, *,0p) be UP-algebras and let f: A — B
be a UP-homomorphism. Then the following statements hold:

(1) f(04) =0p,
(2) for any z,y € A, if x <y, then f(z) < f(y),

(3) if C is a UP-subalgebra of A, then the image f(C) is a UP-subalgebra of
B. In particular, Im(f) is a UP-subalgebra of B,

(4) if D is a UP-subalgebra of B, then the inverse image f~1(D) is a UP-
subalgebra of A. In particular, Ker(f) is a UP-subalgebra of A,

(5) if C is a UP-ideal of A such that Ker(f) C C, then the image f(C) is a
UP-ideal of f(A),

(6) if D is a UP-ideal of B, then the inverse image f~1(D) is a UP-ideal of A.
In particular, Ker(f) is a UP-ideal of A, and

(7) Ker(f) ={04} if and only if f is injective.

2. MAIN RESULTS

In this section, we construct the fundamental theorem of UP-homomorphisms in
UP-algebras. We also give an application of the theorem to the first, second,
third and fourth UP-isomorphism theorems in UP-algebras.

Theorem 2.1 (Fundamental Theorem of UP-homomorphisms). Let (A,-,04)
and (B,e,0p) be UP-algebras, and f: A — B a UP-homomorphism. Then there
exists uniquely a UP-homomorphism ¢ from A/ ~Ker(f) t0 B such that f =
¥ O TKer(f)- Moreover,

(1) TKer(f) @ @ UP-epimorphism and ¢ a UP-monomorphism, and
(2) f is a UP-epimorphism if and only if ¢ is a UP-isomorphism.

As f makes the following diagram commute,

A f

ﬂKer(f)l /

A/ ~Ker(f)

B
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Proof. Put K = Ker(f). By Theorem 1.15 (6), we have K is a UP-ideal of A. It
follows from Theorem 1.12 (4) that (A/ ~k,*,(04)~, ) is a UP-algebra. Define

(2.1) 0: A ~k— B, (2)mp — f().

Let (2)my, (Y)~y € A/ ~k be such that (z)~, = (y)~,. Then z ~g y, so
x-y€ K and y-x € K. Thus

f(x)e f(y) = f(z-y) =0p and f(y)e f(z) = f(y-x) = 0p.

By (UP-4), we have f(z) = f(y) and 50 ¢((@)~y) = @((y)uy). Thus ¢ is a
mapping. For any =,y € A, we see that

(2 * Wni) = (2 y)ni) = f@-y) = f(z) 0 f(y) = 0((2) i) @ 2((Y) i )-

Thus ¢ is a UP-homomorphism. Also, since

(pomr)(x) = o(rr(2) = ((2)~y ) = f(z) for all z € A,
we obtain f = ¢ o mg. We have shown the existence. Let ¢/ be a mapping from
A/ ~k to B such that f = ¢/ omg. Then for any ()., € A/ ~k, we have

!

¢ (@)nie) = ¢ Tk (2)) = (Pomk)(z) = f(2) = (pork)(2) = o(Tk (%)) = P((2)~yc)-
Hence, ¢ = ¢/, showing the uniqueness.

(1) By Theorem 1.14, we have 7k is a UP-epimorphism. Also, let ()., (¥)~x €
A/ ~k be such that p((2)~yx) = @((y)~y). Then f(z) = f(y), and it follows
from (1.2) that

flx-y)=f(z)e f(y)= f(y) e f(y) =0,

that is, -y € K. Similarly, y -2 € K. Hence, x ~g y and (2)~, = (Y)~y-
Therefore, ¢ a UP-monomorphism.

(2) Assume that f is a UP-epimorphism. By (1), it suffices to prove ¢ is
surjective. Let y € B. Then there exists z € A such that f(x) = y. Thus
y = f(x) = p((x)~y ), s0 ¢ is surjective. Hence, ¢ is a UP-isomorphism.

Conversely, assume that ¢ is a UP-isomorphism. Then ¢ is surjective. Let
y € B. Then there exists ()., € A/ ~k such that p(()~,) = y. Thus
f(z) = ¢((x)~yg) =y, so f is surjective. Hence, f is a UP-epimorphism. |

Theorem 2.2 (First UP-isomorphism Theorem). Let (A,-,04) and (B,e,05) be
UP-algebras, and f: A — B a UP-homomorphism. Then

A/ NKer(f)g Im(f)
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Proof. By Theorem 1.15 (3), we have Im(f) is a UP-subalgebra of B. Thus
f+ A — Im(f) is a UP-epimorphism. Applying Theorem 2.1 (2), we obtain
A/ NKer(f)g Im(f) u

Lemma 2.3. Let (A,-,0) be a UP-algebra, H a UP-subalgebra of A, and K a
UP-ideal of A. Denote HK = J,cp(h)~y . Then HK is a UP-subalgebra of A.

Proof. Clearly, ) # HK C A. Let a,b € HK. Then a € ()., and b € (y)~,
for some x,y € H, 80 (a)ny = (2)~np and (b)wy = (Y)~y- Thus

(a ’ b)NK = (a)NK * (b)NK = (w)NK * (y)NK = (1‘ : y)NK7

soa-b e (x-y)~y. Since z,y € H, it follows from Proposition 1.8 that z-y € H.
Thus a-b € (z-y)~, € HK. Hence, HK is a UP-subalgebra of A. |

Theorem 2.4 (Second UP-isomorphism Theorem). Let (A4,-,0) be a UP-algebra,
H a UP-subalgebra of A, and K a UP-ideal of A. Denote HK/ ~g= {(z)~j |
x € HK}. Then

H/ ~gnrg= HK/ ~ .

Proof. By Lemma 2.3, we have HK is a UP-subalgebra of A. Then it is easy
to check that HK/ ~f is a UP-subalgebra of A/ ~g, thus (HK/ ~g,*,(0)~, )
itself is a UP-algebra. Also, it is obvious that H C HK, then

(2.2) fiH—HK/ ~g,x+— (2)

~NKD

is a mapping. For any z,y € H, we have

f(l‘ ) y) = (.’L’ : y)NK = (‘T)NK * (y)NK = f(.’L') * f(y)

Thus f is a UP-homomorphism. We shall show that f is a UP-epimorphism with
Ker(f) = HN K. For any (z)~, € HK/ ~f, we have x € HK = ;¢ (h)~ -
Then there exists h € H such that x € (h)~, and so (z)~, = (h)~,. Thus
f(h) = (h)~p = (x)~g. Therefore, f is a UP-epimorphism. Also, for any
h € H, if h € Ker(f), then f(h) = (0)~,. Since f(h) = (h)~,, we obtain
(W)~ = (0)wy- By (UP-2) and (1.16), we have h=0-h € K. Thushe HNK,
that is, Ker(f) € H N K. On the other hand, if h € HN K, by h € H, f(h) is
well-defined, by h € K and 0 € K, h-0€ K and 0-h € K. By (1.16), we have
h ~kg 0 and so (h)~, = (0)~,. Thus f(h) = (h)~y = (0)~y. So, h € Ker(f),
that is, H N K C Ker(f). Therefore, Ker(f) = H N K. Now, Theorem 2.2 gives
H/ ~NnK S HK/ ~NE. |

Theorem 2.5 (Third UP-isomorphism Theorem). Let (A,-,0) be a UP-algebra,
and H and K UP-ideals of A with H C K. Then

(A ~u)/ ~K )= A ~K -
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Proof. By Theorem 1.12 (4), we obtain (A/ ~g,*,(0)~, ) and (A/ ~g,*",(0)~,,)
are UP-algebras. Define

(2.3) f: A/ ~NH— A/ ~EK, (.’L’)NH — (w)NK.

For any z,y € A, if (z)~,;, = (y)~y, then z-y,y -2 € H. Since H C K, we
obtain z-y,y-x € K. Thus ()~ = (Y)~gs S0 f((2)~p) = f((y)~y). Thus f is
a mapping. Also, for any x,y € A, we see that

f((x)NH*/(y)NH) = f((xy)NH) = (x'y)NK = (x)NK*(y)NK = f((x)NH)*f((y)NH)

Thus f is a UP-homomorphism. Clearly, f is surjective. Hence, f is a UP-
epimorphism. We shall show that Ker(f) = K/ ~p. In fact,

Ker(f) = {(2)~y € A/ ~u| f(2)~y) = (0)~p }
={(@)~y € A/ ~u| (@) = (0)ng }

(UP-2)) — {5y € Af ~ 5 =07 € K}
= K/ NH .
Now, Theorem 2.2 gives (A/ ~y)/ ~(k /)= Af ~K- |

Theorem 2.6 (Fourth UP-isomorphism Theorem). Let (A4,-,04) and (B,e,05)
be UP-algebras, and f: A — B a UP-epimorphism. Denote A = {X | X is a
UP-ideal of A containing Ker(f)} and B ={Y | Y is a UP-ideal of B}. Then
the following statements hold:

(1) there is an inclusion preserving bijection
(2.4) o: A= B, X — f(X),
with inverse given by Y — f=Y(Y), and

(2) for any X € A,
Af ~x= B[~ -

Proof. (1) For any X € A, it follows from Theorem 1.15 (5) that f(X) is a
unique UP-ideal of B such that ¢(X) = f(X). Thus ¢ is a mapping. For any
X1,X2 € A, if p(X1) = p(X2), then f(X1) = f(X2). Since Ker(f) C X, we
obtain X7 = f~1(f(X1)). Indeed, let z € f~1(f(X1)). Then f(z) € f(X1), so
f(z) = f(xy) for some 21 € X;. Applying (1.2), we have f(z1-2) = f(z1)ef(z) =
f(z1) ® f(x1) = 0. Thus z; -z € Ker(f) C Xy, it follows from Theorem 1.6
(1) that = € X1. So, f~1(f(X1)) € X;. Clearly, X1 C f~}(f(X1)). Similarly,
since Ker(f) C Xo, we obtain Xo = f~}(f(X2)). Thus Xj = f71(f(X1)) =
1 (f(X3)) = Xs5. Hence, ¢ is injective. Also, for any Y € B, we obtain
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Y = f(f~1(Y)) because f is surjective. Applying Theorem 1.15 (6), we have
f7HY) is a UP-ideal of A with Ker(f) C f~1(Y). Thus f~!(Y) € A is such that
o(f7H(Y)) = f(fH(Y)) = Y. Hence,  is surjective. Therefore, ¢ is bijective.
Finally, for any Y € B, we get that Y = o(f~1(Y)). Hence, o= 1(Y) = f~1(Y).

(2) By Theorem 1.15 (5) and Theorem 1.12 (4), we have f(X) is a UP-ideal
of B and (B/ ~f(x),* (0B)~;y,) is a UP-algebra. It follows from Theorem 1.14
that myx): B — B/ ~(x) is a UP-epimorphism. Thus 7px)of: A — B/ ~px)
is a UP-epimorphism. We shall show that Ker(rsxyo f) = X. In fact,

Ker(mpxyo f) ={a€ Al (msx)o f)a) = (0B)~;x }

={a€ Al 7Tf(X)(f(a)) = (OB)Nf(X)}
={acA| (f(a))Nf(X) = (OB)Nf(X)}

((UP-2)) ={a€A| f(a) =0pef(a) € f(X)}
= (X))
= X.
Applying Theorem 2.2, we have A/ ~x= B/ ~y(x). [
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