Discussiones Mathematicae General Algebra and Applications 39 (2019) 113–123 doi:10.7151/dmgaa.1302

THE UP-ISOMORPHISM THEOREMS FOR UP-ALGEBRAS¹

AIYARED IAMPAN

Department of Mathematics, School of Science University of Phayao, Phayao 56000, Thailand

e-mail: aiyared.ia@up.ac.th

Abstract

In this paper, we construct the fundamental theorem of UP-homomorphisms in UP-algebras. We also give an application of the theorem to the first, second, third and fourth UP-isomorphism theorems in UP-algebras.

Keywords: UP-algebra, fundamental theorem of UP-homomorphisms, first, second, third and fourth UP-isomorphism theorems.

2010 Mathematics Subject Classification: 03G25.

1. INTRODUCTION AND PRELIMINARIES

Among many algebraic structures, algebras of logic form an important class of algebras. Examples of these are BCK-algebras [6], BCI-algebras [7], BCH-algebras [3], KU-algebras [14], SU-algebras [9] and others. They are strongly connected with logic. For example, BCI-algebras introduced by Iséki [7] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki [6, 7] in 1966 and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

The isomorphism theorems play an important role in a general logical algebra, which were studied by several researches such as: In 1998, Jun, Hong, Xin and Roh [8] proved isomorphism theorems by using Chinese Remainder Theorem

¹This work was financially supported by the University of Phayao.

in BCI-algebras. In 2001, Park, Shim and Roh [13] proved isomorphism theorems of IS-algebras. In 2004, Hao and Li [2] introduced the concept of ideals of an ideal in a BCI-algebra and some isomorphism theorems are obtained by using this concept. They obtained several isomorphism theorems of BG-algebras and related properties. In 2006, Kim [11] introduced the notion of KS-semigroups. He characterized ideals of a KS-semigroup and proved the first isomorphism theorem for KS-semigroups. In 2008, Kim and Kim [10] introduced the notion of BG-algebras which is a generalization of B-algebras. They obtained several isomorphism theorems of BG-algebras and related properties. In 2009, Paradero-Vilela and Cawi [12] characterized KS-semigroup homomorphisms and proved the isomorphism theorems for KS-semigroups. In 2011, Keawrahun and Leerawat [9] introduced the notion of SU-semigroups and proved the isomorphism theorems for SU-semigroups. In 2012, Asawasamrit [1] introduced the notion of KK-algebras and studied isomorphism theorems of KK-algebras.

Iampan [4] introduced a new algebraic structure, called a UP-algebra and a concept of UP-ideals, congruences and UP-homomorphisms in UP-algebras, and defined a congruence relation on a UP-algebra and a quotient UP-algebra. In this paper, we construct the fundamental theorem of UP-homomorphisms in UP-algebras. We also give an application of the theorem to the first, second, third and fourth UP-isomorphism theorems in UP-algebras.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.1 [4]. An algebra $A = (A, \cdot, 0)$ of type (2, 0) is called a *UP-algebra*, where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following assertions:

- (UP-1) $(\forall x, y, z \in A)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0),$
- (UP-2) $(\forall x \in A)(0 \cdot x = x),$
- **(UP-3)** $(\forall x \in A)(x \cdot 0 = 0)$, and
- (UP-4) $(\forall x, y \in A)(x \cdot y = 0, y \cdot x = 0 \Rightarrow x = y).$

From [4], we know that a UP-algebra is a generalization of the concept of a KU-algebra.

Example 1.2 [15]. Let X be a universal set and let $\Omega \in \mathcal{P}(X)$ where $\mathcal{P}(X)$ means the power set of X. Let $\mathcal{P}_{\Omega}(X) = \{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$. Define a binary operation \cdot on $\mathcal{P}_{\Omega}(X)$ by putting $A \cdot B = B \cap (A^C \cup \Omega)$ for all $A, B \in \mathcal{P}_{\Omega}(X)$ where A^C means the complement of a subset A. Then $(\mathcal{P}_{\Omega}(X), \cdot, \Omega)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 1 with respect to Ω . Let $\mathcal{P}^{\Omega}(X) = \{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation * on $\mathcal{P}^{\Omega}(X)$ by putting $A * B = B \cup (A^C \cap \Omega)$ for all $A, B \in \mathcal{P}^{\Omega}(X)$. Then $(\mathcal{P}^{\Omega}(X), *, \Omega)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 2 with respect to Ω . In particular, $(\mathcal{P}(X), \cdot, \emptyset)$ is a UP-algebra and we shall call it the power UP-algebra of type 1, and $(\mathcal{P}(X), *, X)$ is a UP-algebra and we shall call it the power UP-algebra of type 2.

Example 1.3 [4]. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

Then $(A, \cdot, 0)$ is a UP-algebra.

In a UP-algebra $A = (A, \cdot, 0)$, the following assertions are valid (see [4, 5]).

- (1.2) $(\forall x \in A)(x \cdot x = 0),$
- (1.3) $(\forall x, y, z \in A)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0),$
- (1.4) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0),$
- (1.5) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0),$
- (1.6) $(\forall x, y \in A)(x \cdot (y \cdot x) = 0),$
- (1.7) $(\forall x, y \in A)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x),$
- (1.8) $(\forall x, y \in A)(x \cdot (y \cdot y) = 0),$
- (1.9) $(\forall a, x, y, z \in A)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0),$
- (1.10) $(\forall a, x, y, z \in A)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0),$
- (1.11) $(\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot z) = 0),$
- (1.12) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0),$
- (1.13) $(\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0)$, and
- (1.14) $(\forall a, x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0).$

Definition 1.4 [4]. Let A be a UP-algebra. A nonempty subset B of A is called a *UP-ideal* of A if it satisfies the following properties:

(1) the constant 0 of A is in B, and

(2)
$$(\forall x, y, z \in A)(x \cdot (y \cdot z) \in B, y \in B \Rightarrow x \cdot z \in B).$$

Clearly, A and $\{0\}$ are UP-ideals of A.

Example 1.5 [4]. Let $A = \{0, 1, 2, 3, 4\}$ be a set with a binary operation \cdot defined by the following Cayley table:

	•	0	1	2	3	4
(1.15)	0	0	1	2	3	4
	1	0	0	2	3	4
	2	0	0	0	3	4
	3	0	0	2	0	4
	4	0	0	0	0	0

Then $(A, \cdot, 0)$ is a UP-algebra and $\{0, 1, 2\}$ and $\{0, 1, 3\}$ are UP-ideals of A.

Theorem 1.6 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the following statements hold: for any $x, a, b \in A$,

- (1) if $b \cdot x \in B$ and $b \in B$, then $x \in B$. Moreover, if $b \cdot X \subseteq B$ and $b \in B$, then $X \subseteq B$,
- (2) if $b \in B$, then $x \cdot b \in B$. Moreover, if $b \in B$, then $X \cdot b \subseteq B$, and
- (3) if $a, b \in B$, then $(b \cdot (a \cdot x)) \cdot x \in B$.

Definition 1.7 [4]. Let $A = (A, \cdot, 0)$ be a UP-algebra. A subset S of A is called a UP-subalgebra of A if the constant 0 of A is in S, and $(S, \cdot, 0)$ itself forms a UP-algebra. Clearly, A and $\{0\}$ are UP-subalgebras of A.

Proposition 1.8 [4]. A nonempty subset S of a UP-algebra $A = (A, \cdot, 0)$ is a UP-subalgebra of A if and only if S is closed under the \cdot multiplication on A.

Definition 1.9 [4]. Let A be a UP-algebra and B a UP-ideal of A. Define the binary relation \sim_B on A as follows:

(1.16)
$$(\forall x, y \in A)(x \sim_B y \Leftrightarrow x \cdot y \in B, y \cdot x \in B).$$

Definition 1.10 [4]. Let A be a UP-algebra. An equivalence relation ρ on A is called a *congruence* if

$$(\forall x, y, z \in A)(x\rho y \Rightarrow x \cdot z\rho y \cdot z, z \cdot x\rho z \cdot y).$$

Proposition 1.11 [4]. Let A be a UP-algebra and B a UP-ideal of A with a binary relation \sim_B defined by (1.16). Then \sim_B is a congruence on A.

Let A be a UP-algebra and ρ a congruence on A. If $x \in A$, then the ρ -class of x is the $(x)_{\rho}$ defined as follows:

$$(x)_{\rho} = \{ y \in A \mid y\rho x \}.$$

Then the set of all ρ -classes is called the *quotient set of* A by ρ , and is denoted by A/ρ . That is,

$$A/\rho = \{(x)_{\rho} \mid x \in A\}.$$

Theorem 1.12 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the following statements hold:

- (1) the \sim_B -class (0) \sim_B is a UP-ideal and a UP-subalgebra of A which $B = (0)_{\sim_B}$,
- (2) $a \sim_B class(x)_{\sim_B}$ is a UP-ideal of A if and only if $x \in B$,
- (3) $a \sim_B class(x)_{\sim_B}$ is a UP-subalgebra of A if and only if $x \in B$, and
- (4) $(A/\sim_B, *, (0)_{\sim_B})$ is a UP-algebra under the * multiplication defined by $(x)_{\sim_B} * (y)_{\sim_B} = (x \cdot y)_{\sim_B}$ for all $x, y \in A$, called the quotient UP-algebra of A induced by the congruence \sim_B .

Definition 1.13 [4]. Let $(A, \cdot, 0)$ and $(A', \cdot', 0')$ be UP-algebras. A mapping f from A to A' is called a *UP-homomorphism* if

$$(\forall x, y \in A)(f(x \cdot y) = f(x) \cdot' f(y)).$$

A UP-homomorphism $f: A \to A'$ is called a

- (1) UP-epimorphism if f is surjective,
- (2) UP-monomorphism if f is injective,
- (3) UP-isomorphism if f is bijective. Moreover, we say A is UP-isomorphic to A', symbolically, $A \cong A'$, if there is a UP-isomorphism from A to A'.

Let f be a mapping from A to A', and let B be a nonempty subset of A, and B' of A'. The set $\{f(x) \mid x \in B\}$ is called the *image* of B under f, denoted by f(B). In particular, f(A) is called the *image* of f, denoted by $\operatorname{Im}(f)$. Dually, the set $\{x \in A \mid f(x) \in B'\}$ is said the *inverse image* of B' under f, symbolically, $f^{-1}(B')$. Especially, we say $f^{-1}(\{0'\})$ is the *kernel* of f, written by $\operatorname{Ker}(f)$. That is,

$$\operatorname{Im}(f) = \{ f(x) \in A' \mid x \in A \}$$

and

$$Ker(f) = \{ x \in A \mid f(x) = 0' \}.$$

Theorem 1.14 [4]. Let A be a UP-algebra and B a UP-ideal of A. Then the mapping $\pi_B: A \to A/\sim_B$ defined by $\pi_B(x) = (x)_{\sim_B}$ for all $x \in A$ is a UP-epimorphism, called the natural projection from A to A/\sim_B .

On a UP-algebra $A = (A, \cdot, 0)$, we define a binary relation \leq on A as follows:

(1.17)
$$(\forall x, y \in A)(x \le y \Leftrightarrow x \cdot y = 0).$$

Theorem 1.15 [4]. Let $(A, \cdot, 0_A)$ and $(B, *, 0_B)$ be UP-algebras and let $f : A \to B$ be a UP-homomorphism. Then the following statements hold:

- (1) $f(0_A) = 0_B$,
- (2) for any $x, y \in A$, if $x \leq y$, then $f(x) \leq f(y)$,
- (3) if C is a UP-subalgebra of A, then the image f(C) is a UP-subalgebra of B. In particular, Im(f) is a UP-subalgebra of B,
- (4) if D is a UP-subalgebra of B, then the inverse image $f^{-1}(D)$ is a UP-subalgebra of A. In particular, Ker(f) is a UP-subalgebra of A,
- (5) if C is a UP-ideal of A such that $\operatorname{Ker}(f) \subseteq C$, then the image f(C) is a UP-ideal of f(A),
- (6) if D is a UP-ideal of B, then the inverse image f⁻¹(D) is a UP-ideal of A. In particular, Ker(f) is a UP-ideal of A, and
- (7) $\operatorname{Ker}(f) = \{0_A\}$ if and only if f is injective.

2. Main results

In this section, we construct the fundamental theorem of UP-homomorphisms in UP-algebras. We also give an application of the theorem to the first, second, third and fourth UP-isomorphism theorems in UP-algebras.

Theorem 2.1 (Fundamental Theorem of UP-homomorphisms). Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-homomorphism. Then there exists uniquely a UP-homomorphism φ from $A/\sim_{\operatorname{Ker}(f)}$ to B such that $f = \varphi \circ \pi_{\operatorname{Ker}(f)}$. Moreover,

- (1) $\pi_{\text{Ker}(f)}$ is a UP-epimorphism and φ a UP-monomorphism, and
- (2) f is a UP-epimorphism if and only if φ is a UP-isomorphism.

As f makes the following diagram commute,

Proof. Put K = Ker(f). By Theorem 1.15 (6), we have K is a UP-ideal of A. It follows from Theorem 1.12 (4) that $(A/\sim_K, *, (0_A)_{\sim_K})$ is a UP-algebra. Define

(2.1)
$$\varphi \colon A/\sim_K \to B, (x)_{\sim_K} \mapsto f(x).$$

Let $(x)_{\sim K}, (y)_{\sim K} \in A/\sim K$ be such that $(x)_{\sim K} = (y)_{\sim K}$. Then $x \sim y$, so $x \cdot y \in K$ and $y \cdot x \in K$. Thus

$$f(x) \bullet f(y) = f(x \cdot y) = 0_B$$
 and $f(y) \bullet f(x) = f(y \cdot x) = 0_B$

By (UP-4), we have f(x) = f(y) and so $\varphi((x)_{\sim K}) = \varphi((y)_{\sim K})$. Thus φ is a mapping. For any $x, y \in A$, we see that

$$\varphi((x)_{\sim_K} \ast (y)_{\sim_K}) = \varphi((x \cdot y)_{\sim_K}) = f(x \cdot y) = f(x) \bullet f(y) = \varphi((x)_{\sim_K}) \bullet \varphi((y)_{\sim_K}).$$

Thus φ is a UP-homomorphism. Also, since

$$(\varphi \circ \pi_K)(x) = \varphi(\pi_K(x)) = \varphi((x)_{\sim_K}) = f(x)$$
 for all $x \in A$,

we obtain $f = \varphi \circ \pi_K$. We have shown the existence. Let φ' be a mapping from A/\sim_K to B such that $f = \varphi' \circ \pi_K$. Then for any $(x)_{\sim_K} \in A/\sim_K$, we have

$$\varphi'((x)_{\sim_K}) = \varphi'(\pi_K(x)) = (\varphi' \circ \pi_K)(x) = f(x) = (\varphi \circ \pi_K)(x) = \varphi(\pi_K(x)) = \varphi((x)_{\sim_K})$$

Hence, $\varphi = \varphi'$, showing the uniqueness.

(1) By Theorem 1.14, we have π_K is a UP-epimorphism. Also, let $(x)_{\sim_K}, (y)_{\sim_K} \in A/\sim_K$ be such that $\varphi((x)_{\sim_K}) = \varphi((y)_{\sim_K})$. Then f(x) = f(y), and it follows from (1.2) that

$$f(x \cdot y) = f(x) \bullet f(y) = f(y) \bullet f(y) = 0_B,$$

that is, $x \cdot y \in K$. Similarly, $y \cdot x \in K$. Hence, $x \sim_K y$ and $(x)_{\sim_K} = (y)_{\sim_K}$. Therefore, φ a UP-monomorphism.

(2) Assume that f is a UP-epimorphism. By (1), it suffices to prove φ is surjective. Let $y \in B$. Then there exists $x \in A$ such that f(x) = y. Thus $y = f(x) = \varphi((x)_{\sim K})$, so φ is surjective. Hence, φ is a UP-isomorphism.

Conversely, assume that φ is a UP-isomorphism. Then φ is surjective. Let $y \in B$. Then there exists $(x)_{\sim_K} \in A/\sim_K$ such that $\varphi((x)_{\sim_K}) = y$. Thus $f(x) = \varphi((x)_{\sim_K}) = y$, so f is surjective. Hence, f is a UP-epimorphism.

Theorem 2.2 (First UP-isomorphism Theorem). Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-homomorphism. Then

$$A/\sim_{\operatorname{Ker}(f)}\cong \operatorname{Im}(f).$$

Proof. By Theorem 1.15 (3), we have Im(f) is a UP-subalgebra of B. Thus $f: A \to \text{Im}(f)$ is a UP-epimorphism. Applying Theorem 2.1 (2), we obtain $A/\sim_{\text{Ker}(f)} \cong \text{Im}(f)$.

Lemma 2.3. Let $(A, \cdot, 0)$ be a UP-algebra, H a UP-subalgebra of A, and K a UP-ideal of A. Denote $HK = \bigcup_{h \in H} (h)_{\sim K}$. Then HK is a UP-subalgebra of A.

Proof. Clearly, $\emptyset \neq HK \subseteq A$. Let $a, b \in HK$. Then $a \in (x)_{\sim_K}$ and $b \in (y)_{\sim_K}$ for some $x, y \in H$, so $(a)_{\sim_K} = (x)_{\sim_K}$ and $(b)_{\sim_K} = (y)_{\sim_K}$. Thus

$$(a \cdot b)_{\sim_K} = (a)_{\sim_K} * (b)_{\sim_K} = (x)_{\sim_K} * (y)_{\sim_K} = (x \cdot y)_{\sim_K},$$

so $a \cdot b \in (x \cdot y)_{\sim_K}$. Since $x, y \in H$, it follows from Proposition 1.8 that $x \cdot y \in H$. Thus $a \cdot b \in (x \cdot y)_{\sim_K} \subseteq HK$. Hence, HK is a UP-subalgebra of A.

Theorem 2.4 (Second UP-isomorphism Theorem). Let $(A, \cdot, 0)$ be a UP-algebra, H a UP-subalgebra of A, and K a UP-ideal of A. Denote $HK / \sim_K = \{(x)_{\sim_K} \mid x \in HK\}$. Then

$$H/\sim_{H\cap K}\cong HK/\sim_K$$
.

Proof. By Lemma 2.3, we have HK is a UP-subalgebra of A. Then it is easy to check that HK / \sim_K is a UP-subalgebra of A / \sim_K , thus $(HK / \sim_K, *, (0)_{\sim_K})$ itself is a UP-algebra. Also, it is obvious that $H \subseteq HK$, then

(2.2) $f: H \to HK/\sim_K, x \mapsto (x)_{\sim_K},$

is a mapping. For any $x, y \in H$, we have

$$f(x \cdot y) = (x \cdot y)_{\sim_K} = (x)_{\sim_K} * (y)_{\sim_K} = f(x) * f(y).$$

Thus f is a UP-homomorphism. We shall show that f is a UP-epimorphism with $\operatorname{Ker}(f) = H \cap K$. For any $(x)_{\sim_K} \in HK/\sim_K$, we have $x \in HK = \bigcup_{h \in H} (h)_{\sim_K}$. Then there exists $h \in H$ such that $x \in (h)_{\sim_K}$ and so $(x)_{\sim_K} = (h)_{\sim_K}$. Thus $f(h) = (h)_{\sim_K} = (x)_{\sim_K}$. Therefore, f is a UP-epimorphism. Also, for any $h \in H$, if $h \in \operatorname{Ker}(f)$, then $f(h) = (0)_{\sim_K}$. Since $f(h) = (h)_{\sim_K}$, we obtain $(h)_{\sim_K} = (0)_{\sim_K}$. By (UP-2) and (1.16), we have $h = 0 \cdot h \in K$. Thus $h \in H \cap K$, that is, $\operatorname{Ker}(f) \subseteq H \cap K$. On the other hand, if $h \in H \cap K$, by $h \in H$, f(h) is well-defined, by $h \in K$ and $0 \in K$, $h \cdot 0 \in K$ and $0 \cdot h \in K$. By (1.16), we have $h \sim_K 0$ and so $(h)_{\sim_K} = (0)_{\sim_K}$. Thus $f(h) = (h)_{\sim_K} = (0)_{\sim_K}$. So, $h \in \operatorname{Ker}(f)$, that is, $H \cap K \subseteq \operatorname{Ker}(f)$. Therefore, $\operatorname{Ker}(f) = H \cap K$. Now, Theorem 2.2 gives $H/\sim_{H \cap K} \cong HK/\sim_K$.

Theorem 2.5 (Third UP-isomorphism Theorem). Let $(A, \cdot, 0)$ be a UP-algebra, and H and K UP-ideals of A with $H \subseteq K$. Then

$$(A/\sim_H)/\sim_{(K/\sim_H)}\cong A/\sim_K$$
.

Proof. By Theorem 1.12 (4), we obtain $(A/\sim_K, *, (0)_{\sim_K})$ and $(A/\sim_H, *', (0)_{\sim_H})$ are UP-algebras. Define

(2.3)
$$f: A/\sim_H \to A/\sim_K, (x)_{\sim_H} \mapsto (x)_{\sim_K}.$$

For any $x, y \in A$, if $(x)_{\sim_H} = (y)_{\sim_H}$, then $x \cdot y, y \cdot x \in H$. Since $H \subseteq K$, we obtain $x \cdot y, y \cdot x \in K$. Thus $(x)_{\sim_K} = (y)_{\sim_K}$, so $f((x)_{\sim_H}) = f((y)_{\sim_H})$. Thus f is a mapping. Also, for any $x, y \in A$, we see that

$$f((x)_{\sim_H} *'(y)_{\sim_H}) = f((x \cdot y)_{\sim_H}) = (x \cdot y)_{\sim_K} = (x)_{\sim_K} * (y)_{\sim_K} = f((x)_{\sim_H}) * f((y)_{\sim_H}) = (x \cdot y)_{\sim_K} = (x)_{\sim_K} * (y)_{\sim_K} = (y)_{\sim_K} * (y)_$$

Thus f is a UP-homomorphism. Clearly, f is surjective. Hence, f is a UPepimorphism. We shall show that $\operatorname{Ker}(f) = K/\sim_H$. In fact,

$$\operatorname{Ker}(f) = \{(x)_{\sim_{H}} \in A/\sim_{H} | f((x)_{\sim_{H}}) = (0)_{\sim_{K}} \}$$
$$= \{(x)_{\sim_{H}} \in A/\sim_{H} | (x)_{\sim_{K}} = (0)_{\sim_{K}} \}$$
$$= \{(x)_{\sim_{H}} \in A/\sim_{H} | x = 0 \cdot x \in K \}$$
$$= K/\sim_{H} .$$

Now, Theorem 2.2 gives $(A/\sim_H)/\sim_{(K/\sim_H)}\cong A/\sim_K$.

Theorem 2.6 (Fourth UP-isomorphism Theorem). Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-epimorphism. Denote $\mathcal{A} = \{X \mid X \text{ is a } UP\text{-ideal of } A \text{ containing Ker}(f)\}$ and $\mathcal{B} = \{Y \mid Y \text{ is a UP-ideal of } B\}$. Then the following statements hold:

(1) there is an inclusion preserving bijection

(2.4)
$$\varphi \colon \mathcal{A} \to \mathcal{B}, X \mapsto f(X),$$

with inverse given by $Y \mapsto f^{-1}(Y)$, and

(2) for any $X \in \mathcal{A}$,

$$A/\sim_X \cong B/\sim_{f(X)}$$
.

Proof. (1) For any $X \in \mathcal{A}$, it follows from Theorem 1.15 (5) that f(X) is a unique UP-ideal of B such that $\varphi(X) = f(X)$. Thus φ is a mapping. For any $X_1, X_2 \in \mathcal{A}$, if $\varphi(X_1) = \varphi(X_2)$, then $f(X_1) = f(X_2)$. Since $\operatorname{Ker}(f) \subseteq X_1$, we obtain $X_1 = f^{-1}(f(X_1))$. Indeed, let $x \in f^{-1}(f(X_1))$. Then $f(x) \in f(X_1)$, so $f(x) = f(x_1)$ for some $x_1 \in X_1$. Applying (1.2), we have $f(x_1 \cdot x) = f(x_1) \bullet f(x) =$ $f(x_1) \bullet f(x_1) = 0_B$. Thus $x_1 \cdot x \in \operatorname{Ker}(f) \subseteq X_1$, it follows from Theorem 1.6 (1) that $x \in X_1$. So, $f^{-1}(f(X_1)) \subseteq X_1$. Clearly, $X_1 \subseteq f^{-1}(f(X_1))$. Similarly, since $\operatorname{Ker}(f) \subseteq X_2$, we obtain $X_2 = f^{-1}(f(X_2))$. Thus $X_1 = f^{-1}(f(X_1)) =$ $f^{-1}(f(X_2)) = X_2$. Hence, φ is injective. Also, for any $Y \in \mathcal{B}$, we obtain

 $Y = f(f^{-1}(Y))$ because f is surjective. Applying Theorem 1.15 (6), we have $f^{-1}(Y)$ is a UP-ideal of A with $\operatorname{Ker}(f) \subseteq f^{-1}(Y)$. Thus $f^{-1}(Y) \in \mathcal{A}$ is such that $\varphi(f^{-1}(Y)) = f(f^{-1}(Y)) = Y$. Hence, φ is surjective. Therefore, φ is bijective. Finally, for any $Y \in \mathcal{B}$, we get that $Y = \varphi(f^{-1}(Y))$. Hence, $\varphi^{-1}(Y) = f^{-1}(Y)$.

(2) By Theorem 1.15 (5) and Theorem 1.12 (4), we have f(X) is a UP-ideal of B and $(B/\sim_{f(X)}, *, (0_B)_{\sim_{f(X)}})$ is a UP-algebra. It follows from Theorem 1.14 that $\pi_{f(X)} \colon B \to B/\sim_{f(X)}$ is a UP-epimorphism. Thus $\pi_{f(X)} \circ f \colon A \to B/\sim_{f(X)}$ is a UP-epimorphism. We shall show that $\operatorname{Ker}(\pi_{f(X)} \circ f) = X$. In fact,

$$\operatorname{Ker}(\pi_{f(X)} \circ f) = \{a \in A \mid (\pi_{f(X)} \circ f)(a) = (0_B)_{\sim_{f(X)}}\} \\ = \{a \in A \mid \pi_{f(X)}(f(a)) = (0_B)_{\sim_{f(X)}}\} \\ = \{a \in A \mid (f(a))_{\sim_{f(X)}} = (0_B)_{\sim_{f(X)}}\} \\ = \{a \in A \mid f(a) = 0_B \bullet f(a) \in f(X)\} \\ = f^{-1}(f(X)) \\ = X.$$

Applying Theorem 2.2, we have $A / \sim_X \cong B / \sim_{f(X)}$.

Acknowledgment

The author wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

- S. Asawasamrit, *KK-isomorphism and its properties*, Int. J. Pure Appl. Math. 78 (2012) 65–73.
- [2] J. Hao and C.X. Li, On ideals of an ideal in a BCI-algebra, Sci. Math. Jpn. (in Editione Electronica) 10 (2004) 493–500.
- [3] Q.P. Hu and X. Li, On BCH-algebras, Math. Semin. Notes, Kobe Univ. 11 (1983) 313–320.
- [4] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (2017) 35–54. doi:10.22124/JART.2017.2403
- [5] A. Iampan, Introducing fully UP-semigroups, Discuss. Math., Gen. Algebra Appl. 38 (2018) 297–306. doi:10.7151/dmgaa.1290
- Y. Imai and K. Iséki, On axiom system of propositional calculi, XIV, Proc. Japan Acad. 42 (1966) 19–22. doi:10.3792/pja/1195522169

- K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26–29. doi:10.3792/pja/1195522171
- [8] Y.B. Jun, S.M. Hong, X.L. Xin and E.H. Roh, Chinese remainder theorems in BCIalgebras, Soochow J. Math. 24 (1998) 219–230.
- [9] S. Keawrahun and U. Leerawat, On isomorphisms of SU-algebras, Sci. Magna 7 (2011) 39–44.
- [10] C.B. Kim and H.S. Kim, On BG-algebras, Demonstr. Math. 41 (2008) 497–505. doi:10.1515/dema-2013-0098
- [11] K.H. Kim, On structure of KS-semigroup, Int. Math. Forum 1 (2006) 67–76.
- [12] J.S. Paradero-Vilela and M. Cawi, On KS-semigroup homomorphism, Int. Math. Forum 4 (2009) 1129–1138.
- [13] J.K. Park, W.H. Shim and E.H. Roh, On isomorphism theorems in IS-algebras, Soochow J. Math. 27 (2001) 153–160.
- [14] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna 5 (2009) 54–57.
- [15] A. Satirad, P. Mosrijai and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci. 14 (2019) 17–25.

Received 3 January 2019 Revised 12 February 2019 Accepted 14 February 2019