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Abstract

A variety of semirings is said to be solid if each of its identities is satisfied
as hyperidentity. There are precisely four solid varieties of semirings. Each of
them contains every derived algebra, where the both fundamental operations
are replaced by arbitrary binary term operations. If a variety contains all
linear derived algebras, where the fundamental operations are replaced by
term operations induced by linear terms, it is called linear-solid. We prove
that a variety of semirings is solid if and only if it is linear-solid.
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1. Introduction

Varieties are classes of algebras of the same type which are definable by equations.
The classes of all groups, of all rings, of all semigroups, or of all semirings are
varieties. Not only these varieties, but also their subvarieties are intensively
studied and for the most algebraic structures not fully described. In [3] the
theory of hyperidentities and M -solid varieties (see [11] or [5]) is used to get
more insight into the lattice of all varieties of semirings. In this paper we will
show that the concepts of linear term and linear hypersubstitution will bring a
new point of view in our old considerations and will simplify former results.
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Semirings are algebras of type τ = (2, 2), i.e., two binary operation symbols,
let say F and G, are needed to set up the language of semirings. Let Xn =
{x1, . . . , xn}, n ≥ 1, be an n-element alphabet of variables. N -ary terms of type
τ = (2, 2) are defined as follows:

(i) x1, . . . , xn are n-ary terms of type τ = (2, 2).

(ii) If t1, t2 are n-ary terms of type τ = (2, 2), then F (t1, t2) and G(t1, t2) are
n-ary terms of type (2, 2).

Let W(2,2)(Xn) be the countably infinite set of n-ary terms of type (2, 2). If each
variable which occurs in a term t occurs there only once, t is said to be linear.
Linear terms generalize linear polynomials over vector spaces. Linear terms and
linear equations, i.e., pairs of linear terms, play an important role in several
branches of Mathematics. Let W lin

(2,2)(Xn) ⊆ W(2,2)(Xn) be the set of all n-ary

linear terms of type (2, 2). As an example we list up all binary linear terms of
type (2, 2):

W lin
(2,2)(X2) = {x1, x2, F (x1, x2), F (x2, x1), G(x1, x2), G(x2, x1)}.

Let A = (A;FA, GA), A 6= ∅, be an algebra with two binary fundamental oper-
ations FA, GA : A2 → A, for instance, the natural numbers with addition and
multiplication. Each n-ary term t induces on A an n-ary term operation tA which
we obtain if we replace the operation symbols F and G in t by the corresponding
fundamental operations FA and GA, respectively, and if we replace the variables
in t by any elements from A. The term operations induced by the terms x1, x2
are the binary projections e

2,A
1 and e

2,A
2 on the first and on the second input,

respectively. Let t1, t2 be two binary terms of type (2, 2). The algebra (A; tA1 , t
A
2 )

is said to be derived from (A;FA, GA).
A class K of algebras of type (2, 2) is said to be solid, if K contains all derived

algebras. For a variety V this is equivalent to the property that every identity
in V is satisfied even as hyperidentity. That means, s ≈ t is also valid in every
A ∈ V , if the operation symbols F and G in t are replaced by arbitrary binary
terms t1, t2. Such varieties are called solid.

The natural numbers N = (N ; +, ·) with addition and multiplication form an
example of a semiring, which means that both operations are associative and that
the distributive laws x1 ·(x2+x3) ≈ x1 ·x2+x1 ·x3 and (x1+x2)·x3 ≈ x1 ·x2+x1 ·x3
are satisfied.

All solid varieties of semirings were determined in [10]. The aim of this paper
is to determine all linear-solid varieties of semirings, i.e., we replace the binary
operation symbols F and G only by linear binary terms of type (2, 2). Instead
of infinitely many binary terms we consider only the six linear binary terms.
Surprisingly, the result is the same: A variety of semirings is solid if and only if
it is linear-solid.
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2. Basic concepts

The concept of a hypersubstitution was introduced by Graczyńska and Schweigert
in [8] with the aim to formalize the procedure of replacing operation symbols by
terms of the same arity. We will consider here only type (2, 2), but all definitions
and results can be generalized to arbitrary types.

A hypersubstitution σt1,t2 of type (2, 2) is a mapping which assigns the both
binary operation symbols F and G to binary terms of the same type: F 7→ t1,

G 7→ t2. Hypersubstitutions can be extended to mappings σ̂t1,t2 : W(2,2)(X2) →
W(2,2)(X2) in the following way:

(i) σ̂t1,t2 [xi] := xi, i = 1, 2,

(ii) σ̂t1,t2 [F (t1, t2)] := σt1,t2(F )(σ̂t1,t2 [t1], σ̂t1,t2 [t2]) and in the same way for
G(t1, t2).

Let Hyp(2, 2) be the set of all hypersubstitutions of type (2, 2). With

σt1,t2 ◦h σs1,s2 := σ̂t1,t2 ◦ σs1,s2 ,

where ◦ is the composition of functions and with σid : F → F (x1, x2), G →
G(x1, x2) one obtains the monoid (Hyp(2, 2); ◦h, σid) of all hypersubstitutions of
type (2, 2). If t1, t2 ∈ W lin

(2,2)(X2), then σt1,t2 is said to be a linear hypersubstitu-

tion. Let Hyplin(2, 2) be the set of all linear hypersubstitutions. In [1] was proved
that Hyplin(2, 2) forms a submonoid of the monoid of all hypersubstitutions of
type (2, 2).

If for any linear hypersubstitution σt1,t2 and for any identity s ≈ t in a
variety V of the same type σ̂t1,t2 [s] ≈ σ̂t1,t2 [t] is an identity in V , then V is said
to be linear-solid. V is linear-solid if and only if for any algebra A in V and any
σt1,t2 ∈ Hyplin(2, 2), the derived algebra σt1,t2(A) := (A;σt1,t2(F )A, σt1,t2(G)A)
belongs also to V .

For any monoid M of hypersubstitutions the collection SM (2, 2) of all M -
solid varieties forms a complete sublattice of the lattice of all varieties of type
(2, 2). If M1 ⊆ M2, then SM2

(2, 2) is a complete sublattice of SM1
(2, 2). For

more information on M -solid varieties see [11]. For basic concepts on semirings
see [9] and for universal-algebraic concepts see e.g. [13] or [6].

3. The greatest and the minimal linear-solid varieties of

semirings

In this section, we will prove first that every linear-solid variety of semirings has
to be medial, idempotent and distributive. Let IdS be the set of all identities
valid in semiring S. We recall the following definitions:
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Definition 3.1. 1. A semiring (S; +, ·) is said to be

(a) medial if
x1 + x2 + x3 + x4 ≈ x1 + x3 + x2 + x4 ∈ IdS and

x1x2x3x4 ≈ x1x3x2x4 ∈ IdS.

(b) idempotent if
x1 + x1 ≈ x1 ≈ x1x1 ∈ IdS.

(c) distributive if

x1x2 + x3 ≈ (x1 + x3)(x2 + x3) ∈ IdS and

x1 + x2x3 ≈ (x1 + x2)(x1 + x3) ∈ IdS.

2. A variety V of semirings is medial if all algebras in V are medial. Similarly,
one can define a variety of distributive semirings and of idempotent semirings,
respectively.

For abbreviation we call idempotent and distributive semirings ID-semirings (see
e.g. [12]) and the variety of all medial ID-semirings will be denoted by VMID. In
[2], it was proved that VMID is the greatest solid variety of semirings. From now
on, associativity will be used in our calculations but for simplicity we will not
refer to its use on each occasion. For every term s, let shd be the term arising from
s by exchanging the operation symbols F and G, i.e., shd is the result of applying
the linear hypersubstitution σG(x1,x2),F (x1,x2) to s: shd = σ̂G(x1,x2),F (x1,x2)[s].

Definition 3.2.

1. Let Σ ⊆ Wτ (X)2 be a set of equations of type (2, 2). Then Σ is said to
be hyperdualizable if for every identity s ≈ t ∈ Σ, the equation shd ≈ thd

belongs also to Σ.

2. A variety V of type τ = (2, 2) satisfies the duality principle if the set IdV is
hyperdualizable.

Lemma 3.3 [2]. Let V be a variety of type (2, 2) such that V = ModΣ, i.e.,

V consists of all algebras of type (2, 2) which satisfy each equation from Σ as

identity, and Σ is hyperdualizable. Then V satisfies the duality principle.

As σG(x1,x2),F (x1,x2) is a linear hypersubstitution, every linear-solid variety of
semirings satisfies the four distributive laws. In addition, we have

Proposition 3.4. If V is a linear-solid variety of semirings, then V is a variety

of medial ID-semirings; that is, V ⊆ VMID.

Proof. We show that all defining identities of VMID are satisfied in V . We
mentioned already that the four distributive laws are satisfied in V .
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The linear hypersubstitution σ = σF (x1,x2),x1
applied to the distributive identity

G(x1, F (x2, x3)) ≈ F (G(x1, x2), G(x1, x3)) ∈ IdV

gives in V the following identities:

σ̂[G(x1, F (x2, x3))] ≈ σ̂[F (G(x1, x2), G(x1, x3))]

σ(G)(x1, σ(F )(x2, x3)) ≈ σ(F )(σ(G)(x1 , x2), σ(G)(x1, x3))

x1 ≈ F (x1, x1).

By the duality principle, we obtain also x1 ≈ G(x1, x1) ∈ IdV , i.e., both idempo-
tent identities are satisfied. Applying the linear hypersubstitutions
σG(x1,x2),G(x1,x2) and σG(x2,x1),G(x2,x1) to the distributive identity

G(x1, F (x2, x3)) ≈ F (G(x1, x2), G(x1, x3)) ∈ IdV

gives in V the identities

G(x1, G(x2, x3)) ≈ G(G(x1, x2), G(x1, x3))

and

G(G(x3, x2), x1)) ≈ G(G(x3, x1), G(x2, x1)),

i.e.,

x1x2x3 ≈ x1x2x1x3 and x3x2x1 ≈ x3x1x2x1.

Using the previous identities we get in V :

x1x2x3x4 ≈ x1x3x2x3x4 ≈ x1x3x2x3x2x4 ≈ x1x3x2x4.

The duality principle gives the second medial identity.

As every solid variety is linear-solid, Proposition 3.4 gives

Theorem 3.5. The variety VMID of all medial ID-semirings is the greatest

linear-solid variety of semirings.

The next point deals with the minimal (least non-trivial) linear-solid variety
of semirings.

The trivial variety of type (2, 2) (consisting only of one-element algebras) is
the least variety of semirings. It is solid and therefore the least linear-solid variety
of semirings. We will now show that there is a unique minimal linear-solid variety
of semirings. The following property of identities and varieties is needed.
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Definition 3.6. An equation s ≈ t is called regular if both terms s and t contain
the same variables. A variety V is called regular if all identities satisfied in V are
regular.

The set of all regular identities of a given type τ is an equational theory and
a variety V of type τ is regular iff a generating system of its identities is regular
(see [7]).

We consider the following variety of type (2, 2): RA(2,2) := Mod{(x1 + x2) +
x3 ≈ x1 + (x2 + x3) ≈ x1 + x3, (x1x2)x3 ≈ x1(x2x3) ≈ x1x3, x1x1 ≈ x1 + x1 ≈
x1, (x1 + x2)(x3 + x4) ≈ x1x3 + x2x4}.

The equation (x1 + x2)(x3 + x4) ≈ x1x3 + x2x4 is called entropic law.

We recall the following results:

Theorem 3.7 [2]. Let K(τ) be the set of all projection hypersubstitutions and let

M ⊆ Hyp(τ) be a submonoid containing K(τ). Then the variety RAτ generated

by all projection algebras of type τ is the least non-trivial M -solid variety of

type τ .

Now, we can prove

Theorem 3.8. The variety RA(2,2) is the least non-trivial linear-solid variety of

semirings, and every non-trivial linear-solid variety of semirings different from

RA(2,2) is regular.

Proof. The equations (obtained by using the idempotent and the entropic laws)

x1(x2 + x3) ≈ (x1 + x1)(x2 + x3) ≈ x1x2 + x1x3,

(x1 + x2)x3 ≈ (x1 + x2)(x3 + x3) ≈ x1x3 + x2x3

show that RA(2,2) is a variety of semirings. Moreover, K(2, 2) ⊂ Hyplin(2, 2).
Therefore, RA(2,2) is the uniquely determined minimal linear-solid variety of
semirings. (Theorem 3.7).

Let V be a non-trivial linear-solid variety of semirings. Assume that V is not
regular.

Then there exists a non-regular identity s ≈ t in V . Applying the linear-
hypersubstitution σG(x1,x2),G(x1,x2) to the identity s ≈ t ∈ IdV , we obtain in
V an identity of the form xi1xi2 · · · xil ≈ xj1xj2 · · · xjm with {i1, i2, . . . , il} ∪
{j1, j2, . . . , jm} ⊆ {1, . . . , n} if t and s are n-ary terms. The application of σx1,x1

and σx2,x2
to the previous identity shows that xi1 = xj1 and xil = xjm otherwise

V would be the trivial variety. Since s ≈ t is not regular, there exists a variable
xir which occurs on one side, but not on the other side. Substituting x1 for all
variables which are different from xir and using the idempotent and the medial
laws, since V is a linear-solid variety of semirings, one has x1xirx1 ≈ x1 ∈ IdV .
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This gives (x1x2)x3 ≈ (x1x2x1)x3 ≈ x1x3 ∈ IdV , using the idempotent and the
medial laws. Using the linear hypersubbstitution σF (x1,x2),F (x1,x2) we obtain

(1) (x1 + x2) + x3 ≈ x1 + x3 ∈ IdV.

The variety V satisfies also the entropic identity since:

(x1 + x2) · (x3 + x4) ≈ x1 · x3 + x1 · x4 + x2 · x3 + x2 · x4

(by using the distributive identities which are

valid in V ⊆ VMID)

≈ x1 · x3 + x2 · x4 (by using (1))

Therefore, V satisfies all defining i dentities of RA(2,2) and thus IdV ⊇ IdRA(2,2)

i.e., V ⊆ RA(2,2). Altogether, V = RA(2,2) since RA(2,2) is the minimal linear-
solid variety of semirings.

Considering the last part of the previous proof, we have

Remark 3.9. Let V be a linear-solid variety of semirings in which the identity
x1x2x1 ≈ x1 or x1 + x2 + x1 ≈ x1 holds. Then V ⊆ RA2,2.

Having determined the minimal and the greatest linear-solid varieties of
semirings, it is natural to ask wether there are more non-trivial linear-solid vari-
eties of semirings.

4. The Lattice of all linear-solid Varieties of Semirings

From now on, if s ≈ t is an equation and V0 a variety then by V0(s ≈ t), we
denote the subvariety of V0 generated by s ≈ t; that is, if V0 = ModΣ0, then
V0(s ≈ t) = Mod(Σ0 ∪ {s ≈ t}). The equation s ≈ t will be called the defining
equation of VMID(s ≈ t). By V (K) we denote the subvariety of VMID generated
by the algebra K.

Let VBE := VMID((x1 + x2)(x2 + x1) ≈ x1x2 + x2x1) and T be the trivial
variety of type (2, 2).

In [2], it was proved

Theorem 4.1 [2]. The lattice of all solid varieties of semirings is the four-

element chain represented by

T ⊂ RA(2,2) ⊂ VBE ⊂ VMID.

Every solid and every linear-solid varieties of semirings are subvarieties of
the variety VMID of all medial idempotent and distributive semirings. Moreover,
the subvariety lattice of VMID is fully described by Pastijn in [12] as follows.
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Let us consider the two-element algebras (using the same notations as in [12]).

A = ({0, 1}; e2
1
, e2

1
), e2

1
is the binary projection {0, 1}2 → {0, 1} on the first input;

A◦ = ({0, 1}; e2
2
, e2

2
), e2

2
is the binary projection {0, 1}2 → {0, 1} on the second input;

B = ({0, 1}; e2
1
,∧), where ∧ denotes the conjunction;

B◦ = ({0, 1}; e2
2
,∧);

B• = ({0, 1};∧, e2
1
);

B•◦= ({0, 1};∧, e2
2
);

F = ({0, 1}; e2
1
, e2

2
);

F◦ = ({0, 1}; e2
2
, e2

1
);

J = ({0, 1};∧,∨), where ∨ denotes the disjunction;

L = ({0, 1};∧,∧).

The algebra J generates the varietyDL of all distributive lattices and L generates
the variety SL of bi-semilattices. Then we have

Lemma 4.2 [12]. The subvariety lattice of the variety VMID of all medial idem-

potent and distributive semirings is a Boolean lattice with 10 atoms and 10 dual

atoms, i.e., with 210 elements. The atoms are exactly the varieties V (A), V (A◦),
V (B), V (B◦), V (B•), V (B•◦), V (F), V (F◦),DL and SL, where V (K) is the vari-

ety generated by a given algebra K of type (2, 2).

Hence, each subvariety of VMID is a join of some of these 10 atoms.

Moreover, Pastijn provided a list of identities each of them determines one of
the dual atoms in the lattice of all subvarieties of VMID. Each of these identities
is satisfied by all except one of the ten atoms in the lattice of all subvarieties of
VMID as follows

1. x1x2 + x2x1 ≈ x2x1x2 + x1x2 + x2x1 is not satisfied in V (A),

2. x1x2 + x2x1 ≈ x1x2 + x2x1 + x2x1x2 is not satisfied in V (A◦),

3. x1 + x1x2 ≈ x1x2x1 + x1 + x1x2 is not satisfied in V (B),

4. x1x2 + x1 ≈ x1x2 + x1 + x1x2x1 is not satisfied in V (B◦),

5. x1x2 + x1x2x1 ≈ x1x2 + x2x1 + x1x2x1 is not satisfied in V (B•),

6. x1x2 + x2x1x2 ≈ x1x2 + x2x1 + x2x1x2 is not satisfied in V (B•◦),

7. x1x2 + x2x1 ≈ x1x2x1 + x1x2 + x2x1 is not satisfied in V (F),

8. x2x1 + x1x2 ≈ x2x1 + x1x2 + x2x1x2 is not satisfied in V (F◦),

9. x1x2 + x1 + x1x2 ≈ x1x2 + x1x2x1 + x1x2 is not satisfied in DL,

10. x1 + x1x2x1 + x1 ≈ x1 is not satisfied in SL.
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Since the variety RA(2,2) is the least non-trivial linear-solid variety of semir-
ings (Theorem 3.8), our strategy is to examine all intervals between RA(2,2) and
each of the dual atoms, Vi, i = 1, . . . , 10, of the subvariety lattice of VMID (see
the picture where Vi, i = 1, . . . , 10, is the subvariety of VMID generated by the
identity (i.) in the previous list of identities). While determining the lattice of
all solid varieties of semirings the same method was used. It is important to
mention that the picture is not a representation of the algebraic structure of the
subvariety lattice of VMID.
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V
V V V(B  ) V V V V(F )
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(2,2)

Figure 1. Subvariety lattice of VMID.

Lemma 4.3. The variety RA(2,2) is the only non-trivial linear-solid subvariety

of the variety V10 := VMID(x1 + x1x2x1 + x1 ≈ x1).

Proof. Obviouly, RA(2,2) ⊆ V10 since RA(2,2) satisfies the equations x1+x2+x1 ≈
x1. If there was a linear-solid variety V with RA(2,2) ⊂ V ⊆ V10, then V would
satisfy the identity x1 + x1x2x1 + x1 ≈ x1 which is not regular. This is in
contradiction to Theorem 3.8

Lemma 4.4. Let us define:

V8 := VMID(x2x1 + x1x2 ≈ x2x1 + x1x2 + x2x1x2),

V7 := VMID(x1x2 + x2x1 ≈ x1x2x1 + x1x2 + x2x1),

V1 := VMID(x1x2 + x2x1 ≈ x2x1x2 + x1x2 + x2x1) and

V2 := VMID(x1x2 + x2x1 ≈ x1x2 + x2x1 + x2x1x2).

Then each Vi, i = 1, 2, 7, 8, has no non-trivial linear-solid subvariety.
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Proof. Assume that Vi, i = 1, 2, 7, 8 contains a linear-solid variety V . Then V

has to satisfy the defining equation of Vi as a linear hyperidentity. Applying the
linear hypersubstitutions

σx2,x1
, σx1,x2

, σx1,x1
, and σx2,x2

,

respectively to the defining identities, we obtain the identity x1 ≈ x2 which holds
only in the trivial variety.

Lemma 4.5. Let us define:

V3 := VMID(x1 + x1x2 ≈ x1x2x1 + x1 + x1x2),

V4 := VMID(x1x2 + x1 ≈ x1x2 + x1 + x1x2x1),

V6 := VMID(x1x2 + x2x1x2 ≈ x1x2 + x2x1 + x2x1x2) and

V5 := VMID(x1x2 + x1x2x1 ≈ x1x2 + x2x1 + x1x2x1).

Then RA(2,2) is the only non-trivial linear-solid subvariety of Vi, i = 3, . . . , 6.

Proof. By using the identities x1x2x3 ≈ x1x3 ∈ IdRA(2,2) and x1+x2+x3 ≈ x1+
x3 ∈ IdRA(2,2), it is obvious that RA(2,2) is contained in each of these varieties.
Assume that there is a non-trivial linear-solid subvariety V of Vi, i = 3, . . . , 6.

If we apply the linear hypersubstitutions σx1,G(x1,x2) and σx2,G(x1,x2) to the
defining equation of V3 and V4 respectivly, we get x1 ≈ x1x2x1 ∈ IdV . Therefore,
V = RA(2,2) (Remark 3.9).

In the third case, using that V is a linear-solid variety of semirings and
satisfies the duality principle, one gets: (x1 + x2)(x2 + x1 + x2) ≈ (x1 + x2)(x2 +
x1)(x2 +x1+x2) ∈ IdV and then by the idempotent and the distributive law we
have (x1 + x2)(x2 + x1 + x2) ≈ (x1 + x2)x2 + x1 + x2 ≈ x1x2 + x2 + x1 + x2 and
(x1+x2)(x2+x1)(x2+x1+x2) ≈ x1x2+x1x2x1+x1x2+x1+x1x2+x2+x2x1+
x2 + x2x1x2 + x2x1 + x2x1x2 and then x1x2 + x2 + x1 + x2 ≈ x1x2 + x1x2x1 +
x1x2 + x1 + x1x2 + x2 + x2x1 + x2 + x2x1x2 + x2x1 + x2x1x2 ∈ IdV . Since V is
linear-solid, this equation is satisfied as a linear hyperidentity in V and using the
linear hypersubstitution σx2,G(x1,x2), we have x2 ≈ x2x1x2 ∈ IdV and therefore
V = RA(2,2).

For V5 we conclude in a similar way.

It remains to check the interval between RA(2,2) and V9 := VMID(x1x2 +
x1x2x1 + x1x2 ≈ x1x2 + x1 + x1x2). In [2], it is proved that V9 = VBE =
RA(2,2) ∨ SL ∨ V (B) ∨ V (B◦) ∨ V (B•) ∨ V (B•◦).

Now, we prove

Lemma 4.6. Let V be a linear-solid variety of semirings. If RA(2,2) ⊆ V ⊆ VBE ,

then V = RA(2,2) or V = VBE .
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Proof. Clearly, RA(2,2) ⊆ VBE . Let V be a linear-solid variety such that RA(2,2)

⊂ V ⊆ VBE .
If SL is not contained in V , then the non-regular identity x1+x1x2x1+x1 ≈

x1 will be satisfied in V . This contradicts Theorem 3.8. So SL is contained in V

and RA(2,2) ∨ SL ⊆ V since RA(2,2) ⊂ V .
Let’s consider the following linear hypersubstitutions

σ1: F 7→ F (y, x) σ2: F 7→ G(x, y) σ3: F 7→ G(x, y) σ4 : F 7→ G(y, x)

G 7→ G(x, y) G 7→ F (x, y) G 7→ F (y, x) G 7→ F (x, y).

Then B◦ = σ1(B), B = σ1(B
◦), B• = σ2(B), B = σ2(B

•), B•◦ = σ3(B) and B =
σ4(B

•◦). Since a linear-solid variety has to contain all its derived algebras by using
linear hypersubstitutions, all of the varieties V (B), V (B◦), V (B•) and V (B•◦) are
contained in the variety V if it contains one of them. Therefore V = RA(2,2)∨SL

or V = RA(2,2) ∨ SL ∨ V (B) ∨ V (B◦) ∨ V (B•) ∨ V (B•◦) = VBE .
Assume that V= RA(2,2) ∨ SL. Then IdV = IdRA(2,2) ∩ IdSL and IdV is

the set of all rectangular and regular equations of type (2, 2). It is clear that
x1 + x1x2 ≈ x1x2x1 + x1x2 ∈ IdV . Moreover, x1 ≈ x1x2x1 ∈ IdV using the
linear-hypersubstitution σx1,G(x1,x2). This contradicts V 6= RA(2,2). Altogether,
V = VBE .

Now, we have all the tools in hand to present the main result.

Theorem 4.7. The lattice of all linear-solid varieties of semirings is the 4-
element chain represented by T ⊂ RA(2,2) ⊂ VBE ⊂ VMID.

Proof. Let V be a linear-solid variety of semirings. Then V is either trivial
or V is linear-solid and RA(2,2) ⊆ V ⊆ VMID. Additionally, using the previous
results we come to the conclusion that V is either trivial or is one of the vari-
eties RA(2,2), VBE and VMID. Therefore, the lattice of all linear-solid varieties of
semirings is the 4-element chain represented by T ⊂ RA(2,2) ⊂ VBE ⊂ VMID.

Consequently, we have

Corollary 4.8. A variety of semirings is solid if and only if it is linear-solid.

Moreover, we have the following general result: Let τ be an arbitrary type.
Let M1 and M2 be monoids of hypersubstitutions of type τ such that M1 ⊂ M2.
Then for the lattices SM1

(τ), SM2
(τ) of M1-solid and M2-solid varieties of type

τ , we have SM2
(τ) ⊆ SM1

(τ), but in general not SM2
(τ) ⊂ SM1

(τ).
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