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Abstract

Since the reduct of every residuated lattice is a semiring, we can ask
under what condition a semiring can be converted into a residuated lattice.
It turns out that this is possible if the semiring in question is commutative,
idempotent, G-simple and equipped with an antitone involution. Then the
resulting residuated lattice even satisfies the double negation law. Moreover,
if the mentioned semiring is finite then it can be converted into a residuated
lattice or join-semilattice also without asking an antitone involution on it.
To a residuated lattice L which does not satisfy the double negation law
there can be assigned a so-called augmented semiring. This can be used
for reconstruction of the so-called core C(L) of L. Conditions under which
C(L) constitutes a subuniverse of L are provided.
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1. Introduction

Because Boolean rings as well as MV-semirings are commutative semirings and
because we use the definition from [8] (where only commutative semirings are
introduced), we will deal only with commutative semirings and this fact will not
be specified in the following. The most essential part of our study is Section 3,
where only the commutative case is studied. We will work only with commutative
residuated lattices and semilattices. Residuated lattices have their origin in [6]
and [12]. We use as source the monograph [8]. Residuated lattices and residuated
structures serve as an algebraic axiomatization of substructural logics, see [10]
and [13].

There are various definitions of a semiring in the literature. For our reasons,
we use the following one which is taken from the well-known book by J. Golan
(cf. [8]). A semiring is an algebra S = (S,+, ·, 0, 1) of type (2, 2, 0, 0) such that

(i) (S,+, 0) is a commutative monoid,

(ii) (S, ·, 1) is a monoid,

(iii) (x+ y)z ≈ xz + yz and x(y + z) ≈ xy + xz,

(iv) x0 ≈ 0x ≈ 0.

The semiring S is called commutative if it satisfies the identity xy ≈ yx,
idempotent if it satisfies the identity x+x ≈ x and G-simple (cf. [8]) if it satisfies
the identity x+ 1 ≈ 1.

It is evident that if S is idempotent then its reduct (S,+) is a semilattice. In
this case it is considered as a join-semilattice. Then, by (i), 0 is the least element
of S with respect to the induced order which will be denoted by ≤. If, moreover,
S is G-simple then 1 is the greatest element of (S,≤).

For our purposes, we will enrich semirings by so-called involutions as follows.

Definition 1.1. Let P be a set and ′ : P → P . The mapping ′ is called an
involution if x′′ = x for all x ∈ P . If (P,≤) is a poset then ′ is called antitone if
x ≤ y implies y′ ≤ x′ (x, y ∈ P ). A semiring with antitone involution is an algebra
S = (S,+, ·,′ , 0, 1) of type (2, 2, 1, 0, 0) such that (S,+, ·, 0, 1) is an idempotent
semiring and ′ is an antitone involution on the poset (S,≤) induced by (S,+).
For S we introduce the following condition:

(1) x ≤ y if and only if xy′ = 0.

2. Commutative semirings, commutative residuated lattices and

commutative residuated join-semilattices

It is well known that any finite (or more generally complete) join-semilattice with
bottom element is a lattice. The existence of residuals in complete lattice-ordered
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monoids is due to Dilworth (cf. [6], footnote on p. 428), also stated in [3]. Specific
to idempotent semirings, the following results are stated more generally without
assuming integrality or commutativity in [9] (p. 294).

Another concept which will be used in the following is that of a residuated
lattice. We use the definition from [2]. For other investigations concerning the
topic of this section see also [4].

A residuated lattice is an algebra L = (L,∨,∧,⊗,→, 0, 1) of type (2, 2, 2, 2, 0, 0)
such that

(i) (L,∨,∧, 0, 1) is a bounded lattice,

(ii) (L,⊗, 1) is a commutative monoid,

(iii) x ≤ y → z if and only if x⊗ y ≤ z (x, y, z ∈ L).

Here ≤ denotes the induced order of (L,∨,∧). The residuated lattice L is
called commutative if it satisfies the identity x⊗y ≈ y⊗x. Condition (iii) is called
the adjointness property. Having a residuated lattice L = (L,∨,∧,⊗,→, 0, 1) we
define a unary term operation ¬ by ¬x := x → 0 for all x ∈ L and call it negation.
The residuated lattice L is said to satisfy the double negation law if it satisfies the
identity ¬¬x ≈ x, it is called prelinear if it satisfies the identity (x → y) ∨ (y →
x) ≈ 1 and it is called divisible if it satisfies the identity x∧y ≈ x⊗(x → y). There
exists a natural one-to-one correspondence between divisible residuated lattices
satisfying the double negation law and MV-algebras. Hence, divisible residuated
lattices satisfying the double negation law can be identified with MV-algebras.

Remark 2.1. In Theorem 2.34 from [2] it is proved that prelinearity is equivalent
to the identity x → (y∨z) ≈ (x → y)∨ (x → z) and in Theorem 2.36 from [2] it is
proved that divisibility is equivalent to the fact that for every x, y ∈ L satisfying
x ≤ y there exists some z ∈ L satisfying x = y ⊗ z.

The following elementary but useful assertions are well-known, see e.g. [2, 3]
and [7].

Proposition 2.2. Let L = (L,∨,∧,⊗,→, 0, 1) be a commutative residuated lat-

tice. Then

(i) a ≤ b implies c → a ≤ c → b and b → c ≤ a → c,

(ii) 0⊗x ≈ 0, x → ¬y ≈ ¬(x⊗y), ¬((a → b)⊗a) ≤ (a → b) → ¬a and a ≤ ¬¬b
if and only if a⊗ ¬b = 0,

(iii) (x ∨ y)⊗ z ≈ (x⊗ z) ∨ (y ⊗ z),

(iv) ¬0 ≈ 1 and ¬1 ≈ 0,

(v) ¬ is antitone, a ≤ ¬¬a, ¬¬¬x ≈ ¬x and a⊗b = 0 if and only if a⊗¬¬b = 0,

(vi) ¬(x ∨ y) ≈ ¬x ∧ ¬y,
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(vii) x → x ≈ 1,

(viii) (a → b)⊗ a ≤ a ∧ b,

(ix) if L is prelinear then ¬(x ∧ y) ≈ ¬x ∨ ¬y.

In [1] the authors show that to every MV-algebra there can be assigned a
certain semiring (called MV-semiring) and that this assignment is in fact a one-
to-one correspondence. It is immediate that an MV-semiring is a semiring with
antitone involution (which is denoted by ∗ in [1]). We are going to show that
also to every residuated lattice satisfying the double negation law there can be
assigned a certain semiring with antitone involution and, similarly as in [1], that
this correspondence is one-to-one.

Now we will study the case when ¬ is an involution. Varieties of involu-
tive residuated lattices were studied by Tsinakis and Wille (cf. [11]) and, in the
commutative case, also in [4].

The following result can be deduced from the more general Lemmata 2.1 and
2.2 in [13]. Even cyclicity is not needed, as shown in Lemma 3.16 of [7]. It is
obvious that meet can be defined from join in a join-semilattice with an antitone
involution. Under the assumption that 0 is the bottom element of the involutive
residuated lattice, it follows that 1 is the top element, so the Wille result special-
izes to G-simple semirings. There exists a term-equivalence between two different
ways of presenting involutive residuated lattices, and this term-equivalence is spe-
cialized to commutative idempotent G-simple semirings with antitone involution.
Term-equivalence implies categorical equivalence, so the corresponding one-to-one
correspondence extends to homomorphisms.

Theorem 2.3.

(i) (cf. Theorem 15 in [5] for the commutative case, and [7] and [13] for the

general case). If L = (L,∨,∧,⊗,→, 0, 1) is a commutative residuated lattice

satisfying the double negation law then S(L) := (L,∨,⊗,¬, 0, 1) is a com-

mutative idempotent G-simple semiring with antitone involution satisfying

Condition (1).

(ii) (cf. Theorem 14 in [5]) If S = (S,+, ·,′ , 0, 1) is a commutative idempotent

G-simple semiring with antitone involution satisfying Condition (1) and one

defines x ∧ y := (x′ + y′)′ and x → y := (xy′)′ for all x, y ∈ S then

L(S) := (S,+,∧, ·,→, 0, 1) is a commutative residuated lattice satisfying the

double negation law.

(iii) The above assignments are one-to-one correspondences, i.e., S(L(S)) = S

for every commutative idempotent G-simple semiring S with antitone in-

volution satisfying Condition (1) and L(S(L)) = L for every commutative

residuated lattice L satisfying the double negation law.
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Remark 2.4. Let us mention that e.g. MV-algebras are residuated lattices sat-
isfying the double negation law (but also divisibility and prelinearity). Hence
the commutative semiring mentioned in Theorem 2.3 is more general than the
MV-semiring from [1]. On the other hand, the mutual one-to-one correspondence
works also in this more general setting.

Theorem 2.5. A commutative residuated lattice L satisfying the double negation

law is prelinear if and only if S(L) = (S,+, ·,′ , 0, 1) satisfies the identity (xy′)′ +
(yx′)′ ≈ 1 and it is divisible if and only if S(L) satisfies the identity (x′ + y′)′ ≈
x(xy′)′.

Proof. This is an immediate consequence of Theorem 2.3.

Now we are going to show that a similar correspondence exists also in a more
general setting. For this we introduce the following concept.

A residuated join-semilattice is an algebra L = (L,∨,⊗,→, 0, 1) of type
(2, 2, 2, 0, 0) such that

(i) (L,∨, 0, 1) is a bounded join-semilattice,

(ii) (L,⊗, 1) is a monoid,

(iii) x ≤ y → z if and only if x⊗ y ≤ z (x, y, z ∈ L).

Here ≤ denotes the induced order of (L,∨). The residuated join-semilattice
L is called commutative if it satisfies the identity x⊗ y ≈ y⊗x. Condition (iii) is
again called the adjointness property.

Hence, every residuated lattice is a residuated join-semilattice. In every resid-
uated join-semilattice L = (L,∨,⊗,→, 0, 1) define ¬x := x → 0 for all x ∈ L.
Similarly as for residuated lattices, the following is well-known (cf. e.g. [7]).

Lemma 2.6. Let L = (L,∨,⊗,→, 0, 1) be a commutative residuated join-semilattice

and a, b, c ∈ L. Then

(i) ¬0 = 1 and ¬1 = 0,

(ii) (a ∨ b)⊗ c = (a⊗ c) ∨ (b⊗ c),

(iii) a⊗ 0 = 0,

(iv) a ≤ ¬¬a,

(v) a ≤ b implies ¬b ≤ ¬a,

(vi) ¬¬¬a = ¬a,

(vii) a ≤ b implies c → a ≤ c → b and b → c ≤ a → c,

(viii) ¬a ∧ ¬b exists and ¬(a ∨ b) = ¬a ∧ ¬b,

(ix) a ≤ ¬¬b if and only if a⊗ ¬b = 0,
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(x) a ≤ b implies ¬(a⊗ ¬b) = 1,

(xi) a⊗ b = 0 if and only if a⊗ ¬¬b = 0.

According to (ii) and (iii) of Lemma 2.6 it is evident that for every com-
mutative residuated join-semilattice L = (L,∨,⊗,→, 0, 1) its reduct S1(L) :=
(L,∨,⊗, 0, 1) is a commutative idempotent G-simple semiring. If the commuta-
tive semiring is finite, then we have also the converse.

Theorem 2.7. (see [3, 6] and [9] and, for the commutative case, also [5]). Let

S = (S,+, ·, 0, 1) be a finite commutative idempotent G-simple semiring and ≤
denote its induced order. Define

x → y :=
∑

{z ∈ L | xz ≤ y} and x ∧ y :=
∑

{z ∈ L | z ≤ x, y}

for all x, y ∈ S. Then (S,+,∧, ·,→, 0, 1) is a commutative residuated lattice.

For the reader’s convenience and because of the importance of the result we
present the proof.

Proof. Obviously, (S,+,∧, 0, 1) is a bounded lattice and (S, ·, 1) a commutative
monoid. Now let a, b ∈ S, M := {x ∈ S | ax ≤ b} and c := a → b. Then
ac = a

∑

{x | x ∈ M} =
∑

{ax | x ∈ M} ≤ b and hence c is the greatest element
of (M,≤). If d ∈ S and d ≤ c then d+ c = c and hence ad+ ac = a(d+ c) = ac,
i.e., ad ≤ ac ≤ b which shows d ∈ M . Therefore M = {x ∈ S | x ≤ c}. This
shows that the adjointness property is satisfied.

3. The core of commutative residuated structures

Note that we will study only the commutative case because this is used in fuzzy
logics where MV-algebras etc. are studied.

For a commutative residuated join-semilattice L = (L,∨,⊗,→, 0, 1) the core

C(L) of L is defined by C(L) := {¬x | x ∈ L}. Obviously, C(L) = {x ∈ L |
¬¬x = x}.

Let us mention that the case when ¬ is not an involution is very important
and not studied so much in literature. It should be noted that if L is a bounded
commutative residuated join-semilattice where ¬ is an antitone involution then L

is in fact a lattice.

Lemma 3.1. Let L = (L,∨,∧,⊗,→, 0, 1) be a commutative residuated lattice.

Then (C(L),∧,→, 0, 1) is a subalgebra of the reduct (L,∧,→, 0, 1) of L.

Proof. According to Proposition 2.2(vi), ¬x∧¬y ≈ ¬(x∨y), according to Propo-
sition 2.2(ii), ¬x → ¬y ≈ ¬(¬x⊗y) and according to Proposition 2.2(iv), 0 ≈ ¬¬0
and 1 ≈ ¬¬1. Thus C(L) is closed with respect to ∧, →, 0 and 1.
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We are going to show that if the commutative residuated lattice L in question
is prelinear or both prelinear and divisible then we can say a bit more about the
core C(L) of L.

Theorem 3.2. Let L = (L,∨,∧,⊗,→, 0, 1) be a commutative residuated lattice.

(i) If L is prelinear then (C(L),∨,∧,→, 0, 1) is a subalgebra of the reduct

(L,∨,∧,→, 0, 1) of L and, moreover, the lattice (C(L),∨,∧) is distributive.

(ii) If L is both prelinear and divisible then (C(L),∨,∧,⊗,→, 0, 1) is the largest

subalgebra of L that is an MV-algebra.

Proof. (i) Because of Lemma 3.1 we must show that C(L) is closed with respect
to ∨. But this follows from Proposition 2.2(ix). The second assertion follows from
Theorem 2.37 in [2].

(ii) This assertion is Theorem 2.74 in [2].

The following example shows a prelinear, but not divisible commutative resid-
uated lattice whose core is a prelinear and divisible commutative residuated lattice
satisfying the double negation law. Hence, divisibility is not a necessary condition
for C(L) to be a subuniverse of L. We do not know an example of a commutative
residuated lattice L where C(L) is not a subalgebra of L.

Example 3.3. Consider the following commutative residuated lattice L = (L,∨,
∧,⊗,→, 0, 1): L = {0, a, b, c, 1}, 0 < a < b < c < 1,

⊗ 0 a b c 1

0 0 0 0 0 0
a 0 0 0 a a

b 0 0 0 b b

c 0 a b c c

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1
a b 1 1 1 1
b b b 1 1 1
c 0 a b 1 1
1 0 a b c 1

Since (L,≤) is a chain, L is prelinear. Since b ∧ a = a 6= 0 = b⊗ b = b⊗ (b → a),
the commutative residuated lattice L is not divisible and because of ¬¬a = ¬b =
b 6= a it does not satisfy the double negation law. Now C(L) = {0, b, 1} and
(C(L),∨,∧,⊗,→, 0, 1) is a prelinear and divisible commutative residuated lattice
satisfying the double negation law. However, L does not satisfy the identity
x → y ≈ ¬(x⊗¬y) since c → a = a 6= b = ¬b = ¬(c⊗ b) = ¬(c⊗¬a). Moreover,
x ≤ y implies x⊗ ¬y = 0 but not conversely since b⊗ ¬a = b⊗ b = 0 but b 6≤ a.

In fact, for C(L) to be closed under ⊗ in a prelinear commutative residuated
lattice L it is enough to ask that the elements of C(L) satisfy divisibility. This
follows from the proof of Theorem 3.2. In other words, we ask L to satisfy the
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following identity which is a weak form of divisibilty (we therefore call it “weak
divisibility”):

¬x ∧ ¬y ≈ ¬x⊗ (¬x → ¬y).

This identity is satisfied by the commutative residuated lattice L in Example 3.3
although L does not satisfy divisibility. Hence weak divisibility is strictly weaker
than divisibility. It is evident that if L satisfies the double negation law then weak
divisibility is equivalent to divisibility.

If in the definition of weak divisibility we replace ¬x by x′, x∧ y by (x′ + y′)′

and x → y by (xy′)′ then we can rewrite weak divisibility in the form

(2)
(

x′′ + y′′
)

′

≈ x′
(

x′y′′
)

′

.

If a commutative residuated lattice or join-semilattice L does not satisfy
the double negation law then ¬ is not an involution and the induced algebra
S := (L,∨,⊗,¬, 0, 1) is a commutative semiring but not a commutative semiring
with an antitone involution. For these investigations, we introduce the following
concept:

Definition 3.4. An augmented semiring is an algebra S = (S,+, ·,′ , 0, 1) of type
(2, 2, 1, 0, 0) such that (S,+, ·, 0, 1) is a commutative idempotent G-simple semir-
ing with induced order ≤ and, moreover, ′ is antitone, x ≤ x′′ for all x ∈ S and
we have the following equivalences for arbitrary x, y ∈ S:

(i) x ≤ y′′ if and only if xy′ = 0,

(ii) xy = 0 if and only if xy′′ = 0.

Remark 3.5. It is almost obvious that every augmented semiring S = (S,+, ·,′ ,
0, 1) satisfies the identities x′′′ ≈ x′, 0′ ≈ 1 and 1′ ≈ 0.

Now we have the following lemma:

Lemma 3.6. Let L = (L,∨,⊗,→, 0, 1) be a commutative residuated join-semilattice.

Then (L,∨,⊗,¬, 0, 1) is an augmented semiring.

Proof. This follows from Lemma 2.6 (ii), (iii), (iv), (v), (ix) and (xi).

Conversely, if S = (S,+, ·,′ , 0, 1) is an augmented semiring and we define
x → y := (xy′)′ for all x, y ∈ S then (S,+, ·,→, 0, 1) need not be a commutative
residuated join-semilattice. However, we can prove the following:

Theorem 3.7. Let S = (S,+, ·,′ , 0, 1) be an augmented semiring and define

x → y := (xy′)′ for all x, y ∈ S. Then (S,+, 0, 1) is a bounded semilattice

and (S,+, ·,→, 0, 1) satisfies the following conditions for all x, y, z ∈ S:

(i) If xy ≤ z then x ≤ y → z,
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(ii) if x ≤ y → z then xy ≤ z′′.

Proof. Let a, b, c ∈ S.

(i) Any of the following statements implies the next one:

ab ≤ c; ab ≤ c′′, (ab)c′ = 0, a(bc′) = 0, a(bc′)′′ = 0, a ≤ (bc′)′′′, a ≤ b → c.

(ii) Any of the following statements implies the next one:

a ≤ b → c, a ≤ (bc′)′′′, a(bc′)′′ = 0, a(bc′) = 0, (ab)c′ = 0, ab ≤ c′′.

For any augmented semiring S = (S,+, ·,′ , 0, 1) define C(S) := {x′ | x ∈
S} = {x ∈ S | x′′ = x}.

Corollary 3.8. Let S = (S,+, ·,′ , 0, 1) be an augmented semiring and define

x ∧ y := (x′ + y′)′ and x → y := (xy′)′ for all x, y ∈ S. If C(S) is closed with

respect to + and · then (C(S),+,∧, ·,→, 0, 1) is a commutative residuated lattice

satisfying the double negation law.

In the next proposition we provide sufficient conditions under which C(S) is
closed with respect to + and ·. Let us mention that C(S) is obviously closed with
respect to ′ and according to Remark 3.5 also with respect to 0 and 1. Hence, if
C(S) is closed with respect to + and · then it is an augmented subsemiring of S
which is, moreover, a semiring with an antitone involution.

Proposition 3.9. Let S = (S,+, ·,′ , 0, 1) be an augmented semiring and define

x ∧ y := (x′ + y′)′ and x → y := (xy′)′ for all x, y ∈ S. Then the following hold:

(i) If (C(S),≤) is a chain then C(S) is closed with respect to +,

(ii) if C(S) is closed with respect to + and S satisfies identity (2) then C(S) is

closed with respect to ·.

Proof. Let a, b ∈ S.

(i) We have a′ + b′ = max(a′, b′) ∈ C(S).

(ii) Since a′ = a′′′ we have a′a′′ = 0 according to (i) of Definition 3.4. Now we
conclude

a′b′ = 0 + a′b′ = a′a′′ + a′b′ = a′(a′′ + b′) = a′(a′′ + b′′′)′′ = a′(a′(a′b′′′)′)′

= a′(a′(a′b′)′′′)′ = (a′′ + (a′b′)′′′)′ ∈ C(S).

Remark 3.10. The conditions mentioned in (i) and (ii) of Proposition 3.9 are
satisfied within the augmented semilattice induced by the commutative residuated
lattice of Example 3.3.
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Of course, it is not possible in general to reconstruct a commutative residu-
ated lattice from its corresponding augmented semiring but we can show a very
acceptable case which is of some importance.

Corollary 3.11. Let S = (S,+, ·,′ , 0, 1) be an augmented semiring with induced

order ≤. Assume S to satisfy identity (2) and (C(S),≤) to be a chain. Define

x∧y := (x′+y′)′ and x → y := (xy′)′ for all x, y ∈ S. Then (C(S),+,∧, ·,→, 0, 1)
is a divisible and prelinear commutative residuated lattice satisfying the double

negation law and hence it is an MV-algebra.

Proof. According to Corollary 3.8 and Proposition 3.9, C(S) := (C(S),+,∧, ·,→
, 0, 1) is a commutative residuated lattice satisfying the double negation law. Since
(C(S),≤) is a chain, C(S) is prelinear. Since S satisfies identity (2), C(S) is also
divisible. According to Theorem 2.42 in [2], C(S) is an MV-algebra.
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