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Abstract

We investigate the class BA of ordered regular semigroups in which each
element has a biggest associate x† = max {y | xyx = x}. This class properly
contains the class PO of principally ordered regular semigroups (in which
there exists x⋆ = max {y | xyx 6 x}) and is properly contained in the class
BI of ordered regular semigroups in which each element has a biggest inverse
x◦. We show that several basic properties of the unary operation x 7→ x⋆

in PO extend to corresponding properties of the unary operation x 7→ x†

in BA. We consider naturally ordered semigroups in BA and prove that
those that are orthodox contain a biggest idempotent. We determine the
structure of some such semigroups in terms of a principal left ideal and a
principal right ideal. We also characterise the completely simple members
of BA. Finally, we consider the naturally ordered semigroups in BA that
do not have a biggest idempotent.
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1. Introduction

If S is a regular semigroup then the set of associates (or pre-inverses) of x ∈ S is

A(x) = {y ∈ S | xyx = x}.

Here we investigate the situation in which S is an ordered regular semigroup and
each x ∈ S has a biggest associate which we denote by x†.

The class BA of ordered regular semigroups with biggest associates is con-
tained in the class BI of ordered regular semigroups with biggest inverses [13].
Indeed, from x = xx†x we have x†xx† ∈ V (x), and since every x′ ∈ V (x) ⊆ A(x)
is such that x′ 6 x† it follows that x′ = x′xx′ 6 x†xx†. Consequently, x◦ = x†xx†

is the biggest inverse of x and so S ∈ BI.
That BA and BI are distinct is exhibited by the following example.

Example 1. Consider the set N of natural numbers as a meet semilattice under
the definition m∧ n = min{m,n}. Here biggest associates do not exist, but each
element is its own unique, hence biggest, inverse. Thus (N,∧) ∈ BI \BA.

The class BA also contains the class PO of principally ordered regular semi-
groups [1, 4], namely those in which there exists x∗ = max {y ∈ S | xyx 6 x}.
Indeed, if S ∈ PO then for every y ∈ A(x) we have y 6 x∗. Consequently,
x = xyx 6 xx∗x whence x = xx∗x. Thus x∗ ∈ A(x) and it follows from this that
x∗ = max A(x) and so S ∈ BA with x† = x∗.

That PO and BA are distinct is exhibited by the following example.

Example 2. Let G = 〈g〉 be an infinite cyclic group with identity element e, and
let G be totally ordered by · · · < g3 < g2 < g < e < g−1 < g−2 < · · · . Add a
new identity element 1 with the only added comparability in G1 = G∪{1} being
e < 1. Then G1 is an ordered inverse monoid in which biggest associates exist,
these being given by

x† =

{

x−1 if x /∈ {e, 1};

1 otherwise.

Moreover, since g < e we have g1g = g2 < g = gg−1g with e < g−1 ‖ 1. Since 1
is maximal, it follows that g∗ does not exist, so G1 ∈ BA \ PO. In contrast, if
G is totally unordered and a new identity is added as before, then the resulting
ordered monoid belongs to PO.

Example 3. In [2] it is proved that if P is an ordered set then the ordered
semigroup End P of isotone mappings f : P → P is regular and belongs to PO

if and only if P is a dually well-ordered chain. As can easily be seen on replacing
each f∗ by f † in the proof of ⇒ in [2], the same statement holds with PO replaced
by BA.
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As we shall see, several basic properties of the unary operation x 7→ x∗

for algebras in PO [1, 4] extend to properties of the unary operation x 7→ x†

for algebras in BA. Throughout, we shall use the fact that if S ∈ BA then
x◦ = max V (x) and x† = max A(x) are such that x◦ 6 x† with x◦ 6= x† in
general. Indeed, in Example 2 we note that e◦ = e†ee† = 1e1 = e < 1 = e†.

Theorem 1. If S ∈ BA then

(1) (∀x ∈ S) x 6 x◦◦ 6 x†◦ = x†† = x◦†;

(2) (∀x ∈ S) x††† = x†;

(3) (∀x ∈ S) (x†x)†x† = x† = x†(xx†)†;

(4) (∀e ∈ E(S)) e◦ ∈ E(S) ⇐⇒ e† ∈ E(S).

Proof. (1), (2) Since x ∈ V (x◦) it is immediate that

(a) x 6 x◦◦ 6 x◦†.

Also, since x◦x††x◦ = x†xx†x††x†xx† = x†xx† = x◦ we see that

(b) x†◦ 6 x†† 6 x◦†.

Using the fact that xx◦ = xx†xx† = xx†, and likewise x◦x = x†x, we next
observe that xx†x◦†x†x = xx◦x◦†x◦x = xx◦x = x whence x†x◦†x† 6 x†. By
(b), x†x◦†x† > x†x†◦x† = x† and it follows that x†x◦†x† = x† whence x◦† 6 x††.
Then, by (b) again,

(c) x◦† = x††.

It follows by (a) and (c) that x 6 x†† for every x ∈ S. Consequently, x† 6 x†††

and therefore

x = xx†x 6 xx†††x = xx†xx†††xx†x 6 xx†x††x†††x††x†x = x

whence xx†††x = x and so x††† 6 x†. Thus x††† = x† which is (2).
To complete the proof of (1), it suffices to observe that, by (2),

x†◦ = x††x†x†† = x††x†††x†† = x††.

(3) x†x · x†x†† · x†x = x†x gives x†x†† 6 (x†x)† whence x† = x†x††x† 6

(x†x)†x†, whereas x·(x†x)†x†·x = xx†x(x†x)†x†x = xx†x = x gives (x†x)†x† 6 x†.
Consequently, (x†x)†x† = x† and similarly x†(xx†)† = x†.

(4) For every e ∈ E(S), e = eeee 6 ee††e†e 6 ee†e††e†e = ee†e = e whence
e = ee††e†e. Then e††e† 6 e† and consequently e† = e†e††e† 6 e†e†. If now
e◦ ∈ E(S), then we also have ee†e†e = ee◦e◦e = ee◦e = e whence e†e† 6 e† and
therefore e† ∈ E(S). Conversely, if e† ∈ E(S), then e = ee†e = ee†e†e = ee◦e◦e
whence e◦ = e◦ee◦ = e◦ee◦e◦ee◦ = e◦e◦ so that e◦ ∈ E(S) also.
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If S ∈ BA then since S ∈ BI with xx† = xx◦ and x†x = x◦x, various
properties hold automatically. Indeed, it follows from known properties of biggest
inverses [1, 13] that

(α) Green’s relations on S are given by

(x, y) ∈ L ⇐⇒ x†x = y†y; (x, y) ∈ R ⇐⇒ xx† = yy†.

(β) x†x [resp. xx†] is the biggest idempotent in Lx [resp. Rx].

(γ) (∀x ∈ S) (xx◦)◦ = x◦◦x◦ and (x◦x)◦ = x◦x◦◦.

2. Naturally ordered semigroups

We recall that in an ordered regular semigroup S the natural order (or Nam-
booripad order) is defined by

x 6n y ⇐⇒ (∃e, f ∈ E(S)) x = ey = yf,

and on the idempotents is given by

e 6n f ⇐⇒ e = ef = fe.

(S;6) is said to be naturally ordered if 6 extends 6n on the idempotents, in the
sense that

e 6n f =⇒ e 6 f.

For S ∈ PO, much use is made of the fact that S is naturally ordered if and
only if the operation x 7→ x∗ is antitone [1, Theorem 13.27]. As we now show, for
S ∈ BA a more general situation obtains.

Definition. If S ∈ BA then we shall say that the operation x 7→ x† is weakly

antitone if

(∀e, f ∈ E(S)) e 6 f =⇒ f †
6 e†.

Theorem 2. If S ∈ BA then the following statements are equivalent:

(1) S is naturally ordered;

(2) x 7→ x† is weakly antitone;

(3) (∀x, y ∈ S) xy(xy)† 6 xx†;

(3′) (∀e, f ∈ E(S)) ef(ef)† 6 ee†;

(4) (∀x, y ∈ S) (xy)†xy 6 y†y;

(4′) (∀e, f ∈ E(S)) (ef)†ef 6 f †f .
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Proof. (1) ⇒ (2): If e, f ∈ E(S) with e 6 f , then efe ∈ E(S). Since efe 6n e
we have by (1) that efe 6 e. Also, e = eee 6 efe gives e = efe. Now efe 6

ef †e = eef †ee 6 eff †fe = efe so that ef †e = efe = e and therefore f † 6 e†.
Thus (2) holds.

(2) ⇒ (3): Observe first that, by (γ), (xx†)◦ = (xx◦)◦ = x◦◦x◦ ∈ E(S) and
therefore, by Theorem 1(4), (xx†)† ∈ E(S) for every x ∈ S. Now xy(xy)† · xx† ·
xy(xy)† = xy(xy)† gives xx† 6 [xy(xy)†]† ∈ E(S). By Theorem 1 and the fact
that x 7→ x† is weakly antitone by the hypothesis (2), it then follows that

xy(xy)† = xx† · xy(xy)† 6 xx†[xy(xy)†]†† 6 xx†(xx†)† = xx†.

(3) ⇒ (3′): This is clear.
(3′) ⇒ (1): If e, f ∈ E(S) are such that e 6n f then, by (3′),

e = eef 6 ee†f = fe(fe)†f 6 ff †f = f,

whence S is naturally ordered.
The equivalence with (4) and (4′) is established similarly.

It follows from the above that for S ∈ PO the operation x 7→ x† is antitone
if and only if it is weakly antitone. The following example shows that this is not
so for S ∈ BA \PO.

Example 4. For G1 ∈ BA\PO in Example 2, we have that E(G1) = {e, 1} and
G1 is naturally ordered. Whereas x 7→ x† is then weakly antitone by Theorem 2,
it is not antitone since we have g < 1 with g† = g−1 ‖ 1 = 1†.

For the purpose of the next example, we recall that every regular semigroup
S is E-inversive in the sense that

(∀x ∈ S) I(x) = {a ∈ S | xa, ax ∈ E(S)} 6= ∅.

An ordered regular semigroup S is said to be E-special if x+ = max I(x) exists
for every x ∈ S. Such semigroups were investigated in [7].

Example 5. It follows from [7, Theorem 2] that every naturally ordered E-
special regular semigroup S belongs to BA with x+ = x† for every x ∈ S. A
concrete example of this is seen in Example 2 above.

The following results generalise to BA further particular properties that hold
for semigroups in PO.

Theorem 3. If S ∈ BA is naturally ordered then

(∀x, y ∈ S) (xy)◦ = (x◦xy)◦x◦ = y◦(xyy◦)◦.
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Proof. Since, by (α), (x, x†x) ∈ L it follows that (xy, x†xy) ∈ L and conse-
quently

(xy)◦ = (xy)†xy(xy)†

= (x†xy)†x†xy(xy)†

= (x†xy)◦x†xy(xy)†

6 (x◦xy)◦x†xx† by Theorem 2

= (x◦xy)◦x◦.

However, since (x◦xy)◦x◦ ∈ V (xy) we have that (x◦xy)◦x◦ 6 (xy)◦ and equality
follows. The second expansion is established similarly.

Theorem 4. If S ∈ BA is naturally ordered then

(1) e ∈ E(S) is a maximal idempotent if and only if e = e†;

(2) (∀x ∈ S) (xx†)† and (x†x)† are maximal idempotents;

(3) if e ∈ E(S) is such that e† ∈ E(S) then e† is a maximal idempotent.

Proof. (1) For every e ∈ E(S) we have e 6 e† and e 6 e††. Then e 6 ee† and
e 6 e†e††. If e is a maximal idempotent we then have that e = ee† = e†e†† whence
e = ee† = e†e††e† = e†.

Conversely, if e = e† and f ∈ E(S) is such that e 6 f then, by Theorem 2(2),
f 6 f † 6 e† = e whence f = e and so e is a maximal idempotent.

(2) Given x ∈ S, let e = (xx◦)◦ = x◦◦x◦. Then e◦ = e ∈ E(S) and therefore,
by Theorem 1(4), e† ∈ E(S). Now e† = e◦† = e†† and so e◦† is a maximal
idempotent by (1). But e◦† = (xx◦)◦◦† = (xx†)†. Hence (xx†)† is a maximal
idempotent, and similarly so is (x†x)†.

(3) Since e and e† are idempotent, we have e 6 e† 6 e†† and, by Theorem 2(2),
e†† 6 e†. Consequently, e† = e†† whence, by (1), e† is a maximal idempotent.

For the purpose of investigating the structure of naturally ordered semigroups
S ∈ BA, we note that every x ∈ S is such that xx◦x◦◦ = xx◦x◦+ = xx†x††.
Consider therefore the subsets

L = {xx◦x◦◦ | x ∈ S}, R = {x◦◦x◦x | x ∈ S}.

Theorem 5. If S ∈ BA is naturally ordered then L is a left ideal of S and R is

a right ideal of S with L ∩R = S◦.

Proof. For all x, y ∈ S it follows by Theorem 2 that xy(xy)† 6 xx† and
(xx†)† 6 [xy(xy)†]†. It then follows by Theorem 4(2) that (xx†)† = [xy(xy)†]†.
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Consequently,
(xy)◦◦(xy)◦xy= [xy(xy)◦]◦xy

= [xy(xy)†]†xy(xy)†xy

= (xx†)†xy

= (xx◦)†xx◦xy

= (xx◦)◦xx◦xy

= x◦◦x◦xy by (γ).

If now x ∈ R then this gives xy ∈ R whence R is a right ideal of S. Similarly, L is
a left ideal of S. Finally, if x ∈ L∩R then x = x◦◦x◦x = x◦◦x◦xx◦x◦◦ = x◦◦ ∈ S◦

and so L ∩R ⊆ S◦, the converse inclusion being clear.

3. The presence of a biggest idempotent

If S ∈ BI then Green’s relations R and L are said to be weakly regular if

(∀e, f ∈ E(S)) e 6 f =⇒ ee◦ 6 ff◦, e◦e 6 f◦f.

As shown in [1, Theorem 13.23], this is equivalent to the condition that the
assignment x 7→ x◦ is weakly isotone in the sense that

(∀e, f ∈ E(S)) e 6 f =⇒ e◦ 6 f◦.

Theorem 6. If S ∈ BA is naturally ordered then the following statements are

equivalent:

(1) the assignment x 7→ x◦ is weakly isotone on S;

(2) (∀e ∈ E(S)) e† ∈ E(S);

(3) S has a biggest idempotent.

Proof. (1) ⇒ (2): If (1) holds then, by the Corollary to [1, Theorem 13.23],
e◦ ∈ E(S) for every e ∈ E(S), whence (2) follows by Theorem 1(4).

(2) ⇒ (3): If (2) holds then, by Theorem 4(3), every e† is a maximal idem-
potent. For e, f ∈ E(S) consider the sandwich set S(e†, f †) = f †V (e†f †)e† and
its element g = f †(e†f †)◦e†. Then ge†g = g2 = g gives e† 6 g†. It follows from
the maximality that e† = g†. Similarly, f † = g† and therefore e† = f †.

If now e, f are maximal idempotents in S then, by the above and Theorem
4, e = e† = f † = f . So S has a unique maximal idempotent which we denote by
ξ. Since for every idempotent e we then have e 6 e† = ξ† = ξ, we see that ξ is
the biggest idempotent in S.

(3) ⇒ (1): Suppose now that S has a biggest idempotent ξ. By [3, Theorem
1.3(3)] every idempotent e is such that ee◦ = eξ and e◦e = ξe. So if e 6 f then
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ee◦ = eξ 6 fξ = ff◦ and similarly e◦e 6 f◦f . Thus Green’s relations R and L
are weakly regular and (1) follows.

Corollary 1. If S ∈ BA is naturally ordered and has a biggest idempotent ξ
then

(1) (∀e ∈ E(S)) e† = ξ, e = eξe, e◦ = ξeξ;

(2) (∀x ∈ S) ξx† = x† = x†ξ whence also ξx◦ = x◦ = x◦ξ;

(3) (∀x ∈ S) x◦◦ = ξxξ;

(4) L = Sξ and R = ξS.

Proof. (1) This is immediate from Theorem 6.
(2) Since, by (1), xξx†x = xx†xξx†x = xx†x = x we have that ξx† 6 x†. On

the other hand, x† = x†x††x† 6 ξx† and so ξx† = x†. Similarly, x†ξ = x†.
(3) Since x◦◦x◦x = (xx◦)◦xx◦x = (xx†)†xx†x = ξx and likewise xx◦x◦◦ = xξ,

it follows that x◦◦ = x◦◦x◦xx◦x◦◦ = ξxξ.
(4) By (2), ξx◦ = x◦ whence x ∈ L if and only if x = xx◦x◦◦ = x(x◦x)◦ =

xξx◦xξ = xξ. Thus L = Sξ and similarly R = ξS.

Corollary 2. If S ∈ BA has a biggest idempotent ξ then the following statements

are equivalent:

(1) S is naturally ordered;

(2) (∀e ∈ E(S)) e† = ξ.

Proof. (1) ⇒ (2): This is clear from Corollary 1.
(2) ⇒ (1): Suppose that (2) holds and let e, f ∈ E(S) be such that e 6n f .

Then e = fef 6 fe†f = fξf = ff †f = f and consequently S is naturally
ordered.

A prominent situation where a biggest idempotent exists is the following.

Theorem 7. If S ∈ BA is naturally ordered and orthodox then S has a biggest

idempotent ξ. Moreover, ξ is a middle unit and S◦ = ξSξ is an inverse transversal

of S.

Proof. If S is orthodox then inverses of idempotents in S are also idempotent;
see for example [9, IX, Proposition 2.1]. Thus e◦ ∈ E(S) for every e ∈ E(S) and
therefore, by Theorem 1(4), e† ∈ E(S). It then follows by Theorem 6 that S has
a biggest idempotent ξ. That ξ is a middle unit [xξy = xy] is now a consequence
of [1, Theorem 13.18]; see also [11]. Finally, that S◦ is an inverse transversal
follows by [1, Theorem 13.16].

Theorem 7 does not extend to semigroups in BI \ BA. Whereas this is
immediately clear on considering the semilattice of Example 1, a more general
illustrative example is the following.
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Example 6. Let k > 1 be a fixed integer. For every n ∈ Z let nk be the
biggest multiple of k that is less then or equal to n. On the cartesian ordered set
S = Z×−N× Z consider the multiplication that is defined by the prescription

(x,−p,m)(y,−q, n) = (min{x, y}, −q, m+ nk).

Then S is an ordered semigroup in which the idempotents are of the form
(x,−p,m) where mk = 0, i.e., where 0 6 m 6 k − 1. Then S does not have
a biggest idempotent.

Now (y,−q, n) is an associate of (x,−p,m) if and only if

(x,−p,m) = (min{x, y}, −p, m+ nk +mk)

which is the case if and only if x 6 y and nk = −mk. So (x,−p,m) does not have
a biggest associate and therefore S /∈ BA. However, it follows from the above
that (y,−q, n) is an inverse of (x,−p,m) if and only if y = x and nk = −mk.
Consequently, (x,−p,m) has a biggest inverse, namely (x, 0,−mk+k−1). Hence
S ∈ BI \BA.

Finally, simple calculations show that S is both orthodox and naturally or-
dered.

The general structure of naturally ordered regular semigroups with a biggest
idempotent is known and is described in [3]. In the present context, namely
S ∈ BA naturally ordered and orthodox, a much simpler situation obtains which
we now describe.

Theorem 8. Let S ∈ BA be naturally ordered and orthodox with biggest idem-

potent ξ. Then, with L = Sξ and R = ξS, the subset of L×R defined by

L×◦ R =
{

(x, a) ∈ L×R | x◦ = a◦
}

is a regular subsemigroup of the cartesian ordered cartesian product semigroup

L×R. Moreover, if the order on the inverse subsemigroup S◦ coincides with the

natural order on S◦ then there is an ordered semigroup isomorphism S ≃ L×◦ R.

Proof. It is clear that L×◦ R is an ordered regular subsemigroup of L×R. Con-
sider the mapping ϑ : S → L×◦ R given by ϑ(x) = (xξ, ξx). Since ξ is a middle
unit by Theorem 7, we see that, for all x, y ∈ S,

ϑ(x)ϑ(y) = (xξ, ξx)(yξ, ξy) = (xξyξ, ξxξy) = (xyξ, ξxy) = ϑ(xy).

Thus ϑ is a morphism. If now (x, a) ∈ L×◦ R then

ϑ(xx◦a) = (xx◦aξ, ξxx◦a) = (xx◦a◦◦, x◦◦x◦a) = (x, a)
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and so ϑ is surjective.

Clearly, if x 6 y then ϑ(x) 6 ϑ(y). Conversely, if ϑ(x) 6 ϑ(y) then x◦◦ =
ξxξ 6 ξyξ = y◦◦. Since by hypothesis the order 6 coincides with the natural
order 6n on the inverse subsemigroup S◦ it follows from x◦◦ 6n y◦◦ that x◦ =
(x◦◦)−1 6n (y◦◦)−1 = y◦ and then x◦ 6 y◦. Hence x = xξx◦ξx 6 yξy◦ξy = y.

In summary, ϑ is thus an isomorphism of ordered semigroups.

A particular case of the above is illustrated by the following internal structure
theorem.

Theorem 9. Let S ∈ BA be naturally ordered and orthodox. If e, f ∈ E(S) are
such that e 6 f then the †-subsemigroup generated by {e, f} is an ordered band

with at most 32 + 22 + 1 = 14 elements and has Hasse diagram the distributive

lattice
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r r r

r r r

r r r

r

r
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���
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�

@
@

@@ @
@

@@ @
@

@@@
@
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@

e

fe ef

ξe fef eξ

ξef f feξ

ξf e◦ fξ

f◦

ξ=e†=f†

in which elements joined by lines of positive gradient are R-related, those joined

by lines of negative gradient are L-related, and vertical lines also indicate 6n.

Proof. By Corollary 1 to Theorem 6, the †-subsemigroup generated by e, f with
e 6 f coincides with the semiband T = 〈e, f, ξ〉 which consists of words x =
k1 · · · kn where each ki ∈ {e, f, ξ}. Clearly, T has top element ξ and bottom
element e.

Since for every x ∈ T we have

e = eee 6 exe 6 eξe = ee†e = e

we see that eTe = {e}, whence it follows that all words that begin and end with
the letter e reduce to e itself.

Likewise, eξ = eeξ 6 exξ 6 eξξ = eξ gives eTξ = {eξ}, and similarly
ξTe = {ξe}.

Since ξ is a middle unit by Theorem 7, it follows from the above that

exf = exff †f = exfξ f = eξf = ef

whence eTf = {ef}, and similarly fTe = {fe}.
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Consider now a word of the form f [· · · ]f ∈ fTf . If [· · · ] contains the letter e
then by the above the word reduces to fef . Otherwise, [· · · ] contains at most the
idempotents f and ξ = f †, whence the word reduces to f . Hence fTf = {fef, f}.

Similar arguments show that

fTξ = {feξ, fξ}, ξTf = {ξef, ξf}, ξT ξ = {ξeξ, ξfξ, ξ}.

Thus we see that there are at most 14 distinct words in T , all of which are,
by the above observations, idempotent. Consequently, T is a band. When T has
precisely 14 elements it then has as Hasse diagram the lattice illustrated, with
the L- and R-classes as described.

In connection with Theorem 8, we note that, in the above, S◦ = {e◦, f◦, ξ}
on which the order coincides with the natural order.

The above result can of course be extended to any finite chain en < · · · <
e2 < e1 of idempotents, the effect being to extend the above diagram by adding,
for each i, a layer of size i2, these layers being the D-classes of the ei. The
resulting ‘wedding cake’ diagram then depicts an ordered band which has at
most

∑n+1
i=1 i2 = 1

6 (n+ 1)(n + 2)(2n + 3) elements.

Example 7. Let R be an ordered right zero semigroup with a biggest element
α and let L be a ∧-semilattice with a biggest element β. Consider the cartesian
ordered cartesian product semigroup S = R×L×G1 where G1 is the semigroup
of Example 2. Then it is readily seen that S ∈ BA with

(r, l, x)† =
(

α, β, x†
)

, (r, l, x)◦ =
(

α, l, x◦
)

.

The idempotents of S are the elements (r, l, e) and (r, l, 1). Then S is naturally or-
dered and orthodox with biggest idempotent ξ = (α, β, 1). If now p = (r, l, e) and
q = (s,m, 1) are idempotents such that r < s and l < m then simple calculations
show that 〈p, q, ξ〉 is a band and is precisely as described in Theorem 9.

We have seen in Theorem 7 above that if S ∈ BA is naturally ordered and
orthodox then S necessarily contains a biggest idempotent. We now consider
the existence of a biggest idempotent in the case where S ∈ BA is naturally
ordered and non-orthodox. A simple example of this is the semigroup N5 of [3,
Theorem 3.2].

For this purpose, we recall that if S is an ordered regular semigroup and
E = 〈E(S)〉 denotes the subsemigroup generated by the idempotents of S then
an idempotent α is said to be medial if eαe = e for every e ∈ E. As is shown in
[6, Theorem 2], if S is naturally ordered and has a biggest idempotent ξ then ξ is
medial. Consequently, eξ, ξe ∈ E(S) and it follows that every e ∈ E is a product
of two idempotents.

In this case we have the following companion to Theorem 9.
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Theorem 10. Let S ∈ BA be naturally ordered and non-orthodox with a biggest

idempotent ξ. If x ∈ E \ E(S) then the †-subsemigroup generated by {x, ξ} has

at most 9 elements, all of which except x are idempotent, and has Hasse diagram

the distributive lattice

r

r b r

r r r

r

r
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�
��

@
@@

@
@@

@
@@

x2=x3

x=xξx
ξx2 x2ξ

ξx ξx2ξ xξ

ξxξ

ξ

in which elements joined by lines of positive gradient are R-related, those joined

by lines of negative gradient are L-related, and vertical lines also indicate 6n.

Proof. Since x, x2 ∈ E we have x = xξx and x2 = x2ξx2. Consequently

x3 = xξx · xξx · xξx = xξxxξx = x2.

Hence x2 ∈ E(S) with x = xξx > x3 = x2. Then x > x2 since x /∈ E(S). The
diagram for 〈x, ξ〉 together with the description given above is now clear.

Example 8. Let T = M(2; 2, 2;P ) be the Rees matrix semigroup where 2 is the

2-element semilattice and the sandwich matrix P =

[

0 1

1 1

]

. Then T is not ortho-

dox since we have that (1, 1, 2), (2, 1, 1) ∈ E(T ) but (1, 1, 2)(2, 1, 1) = (1, 1, 1) /∈
E(T ).

Consider the cartesian ordered cartesian product semigroup S = T×G1 where
G1 is as in Example 2. It is readily verified that S ∈ BA, is naturally ordered,
non-orthodox, and has biggest idempotent

(

(2, 1, 2), 1
)

. Moreover, S contains the
subsemigroup

(

T ×{e}
)

∪
{(

(2, 1, 2), 1
)}

which is order isomorphic to that which
is described in Theorem 10 with x =

(

(1, 1, 1), e
)

and ξ =
(

(2, 1, 2), 1
)

.

4. Compactness and completely simple semigroups

As we have seen, if S ∈ BA then S ∈ BI with x◦ = max V (x) < max A(x) = x†

in general. This leads to a consideration of the following notion.

Definition. If S ∈ BA we shall say that x ∈ S is compact if x◦ = x†, and
that S itself is compact if every element of S is compact, the latter clearly being
equivalent to the property S†= S◦.
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If S ∈ BA then every x† ∈ S is compact since x†◦ = x††. In particular, if S
is naturally ordered then it follows from e 6 e◦ 6 e† and Theorem 4 that every
maximal idempotent is compact.

Example 9. Consider the ordered semigroup Bn = Mat n×n(B) of n×nmatrices
over a given boolean algebra B = (B; +, ·, ′; 0, 1) with n > 2. Each Bn is a
residuated semigroup [10, 1], but is not naturally ordered since, for example,
there are idempotents which are above the identity matrix. Simple computations
[1, Example 13.1] show that Bn is regular if and only if n = 2. Then B2 is
principally ordered and consequently belongs to BA. As shown in [6], the relevant
unary operations in B2 are as follows:

[

a b

c d

]†

=

[

b′ + c′ + d a′ + d′ + b

a′ + d′ + c b′ + c′ + a

]

;

[

a b

c d

]◦

=

[

b′(a+ c) + c′(a+ b) + d a′(c+ d) + d′(a+ c) + b

a′(b+ d) + d′(a+ b) + c b′(c+ d) + c′(b+ d) + a

]

.

The compact elements of B2 are described as follows:

A =

[

a b

c d

]

is compact ⇐⇒ a+ b+ c+ d = 1.

To see this, observe first that the sum of all the elements of A† is 1 whereas
that of A◦ is a+ b+ c+ d. So if A is compact then a+ b+ c+ d = 1. Conversely,
suppose that a+b+c+d = 1. Then a+c > (b+d)′ = b′d′ and a+b > (c+d)′ = c′d′.
It follows that

b′(a+ c) + c′(a+ b) + d > b′d′ + c′d′ + d = b′ + c′ + d

whence [A◦]11 > [A†]11 and equality follows from A◦ 6 A†. Likewise, the remain-
ing elements of A◦ and A† coincide, whence A is compact.

We now consider the case where S is a completely simple semigroup. As
shown by Croisot [8], in this situation we have that V (x) = A(x) for every x ∈ S.
It follows therefore that if S ∈ BI then max V (x) = max A(x), so that S ∈ BA

with x◦ = x† for every x ∈ S. The completely simple members of BA are
characterised in the following companion to Theorem 2.

Theorem 11. If S ∈ BA then the following statements are equivalent:

(1) S is naturally ordered and compact;

(2) S is naturally ordered and every idempotent is compact;

(3) the assignment x 7→ x◦ is weakly antitone in the sense that

(∀e, f ∈ E(S)) e 6 f =⇒ f◦
6 e◦;
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(4) S is completely simple.

Proof. (1) ⇒ (2): This is clear.
(2) ⇒ (3): Suppose that (2) holds and let e, f ∈ E(S) be such that e 6 f .

Then, since x 7→ x† is weakly antitone by Theorem 2, we have f◦ = f † 6 e† = e◦

whence (3) holds.
(3) ⇒ (4): Suppose now that (3) holds and again that e, f ∈ E(S) are such

that e 6 f . Then ef◦e 6 ee◦e = e. But e 6 f 6 f◦ gives e = eee 6 ef◦e. Hence
e = ef◦e, and consequently e 6 efe 6 ef◦e = e whence e = efe. It follows that

e = efe 6 ef †e = eef †ee 6 eff †fe = efe = e.

Thus ef †e = e and therefore f † 6 e†. It follows by Theorem 2 that S is naturally
ordered.

Suppose now that e, f ∈ E(S) are such that e 6n f . Then, by the above,
e 6 f and so, by the hypothesis (3), we also have f◦ 6 e◦. Now ef = e gives
fe◦e ∈ E(S); and since fe◦e 6n f it follows that fe◦e 6 f . Consequently,
e = ee◦e 6 fe◦e = fe◦ee 6 fe = e. Thus fe◦e = e and similarly we can see that
also ee◦f = e. Combining these observations with the hypothesis (3), we obtain
f = ff◦f 6 fe◦f = fe◦e · ee◦f = ee = e. Thus 6n on E(S) reduces to equality
and consequently S is completely simple.

(4) ⇒ (1): This is clear.

5. The absence of a biggest idempotent

A particular completely simple semigroup S ∈ BA which does not have a biggest
idempotent is the so-called crown bootlace semigroup [1, 4]. This can be rep-
resented by the Rees matrix semigroup M(〈x〉;2,2;P ) where 〈x〉 is a totally

ordered cyclic group with 1 < x, and the sandwich matrix is P =

[

x−1 x−1

x−1 1

]

.

The order is represented by the Hasse diagram

bhgh=(1,1,1)

bhg=(1,1,2)

reh=hf=h=(1,x,1)

reg=he=e=(1,x,2)

bef=(1,x2,1)

befe=(1,x2,2)

b(2,x−1,2)=ghg

b(2,1,1)=gh

r(2,1,2)=g=ge=fg

r(2,x,1)=f=fh=gf

b(2,x,2)=fe

b(2,x2,1)=fef
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in which the idempotents form a crown. Here biggest associates (biggest inverses)
are given by

(1, xn, 1)† = (2, x−n+2, 2), (1, xn, 2)† = (1, x−n+2, 2),

(2, xn, 1)† = (2, x−n+2, 1), (2, xn, 2)† = (1, x−n+2, 1).

Our objective now is to highlight the crown bootlace semigroup amongst
those members of BA that do not have a biggest idempotent. For this purpose
we introduce the following notion.

Definition. We shall say that S ∈ BA is partially compact if the product of any
two compact idempotents of S is compact.

Example 10. IfM denotes the crown bootlace semigroup, consider the cartesian
ordered cartesian product semigroup M × G1 where G1 is as in Example 2.
Clearly, this belongs to BA and has no biggest idempotent. Here the set of
compact elements is M× (G1 \ {e}), in which the compact idempotents are the
elements (z, 1) where z ∈ E(M). Consequently, M×G1 is partially compact.

Theorem 12. Let S ∈ BA be naturally ordered and with no biggest idempotent.

If S is partially compact then any two maximal idempotents of S are D-equivalent

and the ◦-subsemigroup they generate is isomorphic to the crown bootlace semi-

group.

Proof. Let e, f be maximal idempotents in S, so that e = e◦ = e† and f =
f◦ = f †. Consider the sandwich elements g = f(ef)◦e ∈ S(e, f) and h =
e(fe)◦f ∈ S(f, e). Then, using Theorem 3, g = f◦(e◦eff◦)◦e◦ = (ef)◦, and
likewise h = (fe)◦. Since, by Theorem 5, S◦ is a subsemigroup, ef = e◦f◦ ∈ S◦

and therefore g◦ = (ef)◦◦ = ef . Likewise, h◦ = (fe)◦◦ = fe.
Now since e and f are compact it follows by the hypothesis that so also are

ef and fe. Consequently, g = (ef)◦ = (ef)† ∈ S†. Thus g is also compact.
Likewise, so is h.

Furthermore, by Theorem 2, g 6 g†g = ef(ef)† 6 ee† = e and g 6 gg† =
(ef)†ef 6 f †f = f . Likewise, h 6 e and h 6 f .

We now observe that eg ∈ E(S) with

eg = efg = (ef)◦◦(ef)◦ = [ef(ef)◦]◦ = (efg)◦ = (eg)◦

whence, by Theorems 1 and 4, (eg)† is a maximal idempotent. But eg 6 ee = e
gives e = e† 6 (eg)† whence, by the maximality of e, it follows that e = (eg)†.
Since, by the hypothesis, eg is compact we then have eg = (eg)◦ = (eg)† = e.
Similarly, it can be seen that gf = f , and dually that fh = f and he = e.

Moreover, we have that g ‖ h. Suppose, by way of obtaining a contradiction,
that g and h were comparable, say g 6 h. Then we would have f = gf 6 hf =
h 6 e whence, by the maximality, there follows the contradiction f = e.
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It follows from the above that {e, f, g, h} forms a crown of idempotents.

Observe now that e = eg 6 ef and e = he 6 fe. Similarly, f 6 ef, fe.
Moreover, ef ‖ fe. Indeed, if for example ef 6 fe then we would have fef 6

fe 6 fef whence fe = fef and fe would be idempotent, giving the contradiction
e = fe = f . Thus we see that {e, f, ef, fe} also forms a crown.

Similar observations to the above produce the fact that the subsemigroup
generated by {e, f, g, h} is a copy of the crown bootlace.

We now proceed to show that e and f are D-related. For this purpose,
consider the element (gh)n−1g = g(hg)n−1. Since efgh = h, a simple inductive
argument gives (ef)n(gh)n = h and consequently

(1) (ef)n(gh)n−1g = efhg = e.

Then we have that

(ef)n · (gh)n−1g · (ef)n = e(ef)n = (ef)n;

(gh)n−1g · (ef)n · (gh)n−1g = (gh)n−1ge = (gh)n−1g,

whence (gh)n−1g ∈ V
(

(ef)n
)

and so (gh)n−1g 6 [(ef)n]◦. Then (1) gives e 6

(ef)n[(ef)n]◦ whence the maximality of e gives e = (ef)n[(ef)n]◦.

In a likewise manner it can be seen that f = [(ef)n]◦(ef)n. Consequently,
e R (ef)n L f and therefore e D f .

Finally, it follows from the above and (1) that

[(ef)n]◦ = [(ef)n]◦e = [(ef)n]◦(ef)n(gh)n−1g = f(gh)n−1g = (gh)n−1g,

and similar calculations reveal that

[(fe)n]◦ = h(gh)n−1, [(efe)n]◦ = (hg)n, [(fef)n]◦ = (gh)n.

Combining these observations, we can see that the ◦-subsemigroup generated
by {e, f} is isomorphic to the crown bootlace semigroup.

Corollary. Let S ∈ BA (resp. S ∈ BI) be completely simple with no biggest

idempotent. Then any two maximal idempotents e, f ∈ S are D-equivalent and the
◦-subsemigroup generated by {e, f} is isomorphic to the crown bootlace semigroup.

Proof. This is immediate from the above and Theorem 11.
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