Discussiones Mathematicae General Algebra and Applications 39 (2019) 5–21 doi:10.7151/dmgaa.1299

# ORDERED REGULAR SEMIGROUPS WITH BIGGEST ASSOCIATES

T.S. Blyth

Mathematical Institute
University of St Andrews, Scotland
e-mail: tsb@st-andrews.ac.uk

AND

## M.H. Almeida Santos

Centro de Matemática e Aplicações (CMA) Departamento de Matemática, FCT Universidade Nova de Lisboa, Portugal

e-mail: mhas@fct.unl.pt

### Abstract

We investigate the class  $\mathbf{BA}$  of ordered regular semigroups in which each element has a biggest associate  $x^\dagger = \max\{y \mid xyx = x\}$ . This class properly contains the class  $\mathbf{PO}$  of principally ordered regular semigroups (in which there exists  $x^\star = \max\{y \mid xyx \leqslant x\}$ ) and is properly contained in the class  $\mathbf{BI}$  of ordered regular semigroups in which each element has a biggest inverse  $x^\circ$ . We show that several basic properties of the unary operation  $x \mapsto x^\star$  in  $\mathbf{PO}$  extend to corresponding properties of the unary operation  $x \mapsto x^\dagger$  in  $\mathbf{BA}$ . We consider naturally ordered semigroups in  $\mathbf{BA}$  and prove that those that are orthodox contain a biggest idempotent. We determine the structure of some such semigroups in terms of a principal left ideal and a principal right ideal. We also characterise the completely simple members of  $\mathbf{BA}$ . Finally, we consider the naturally ordered semigroups in  $\mathbf{BA}$  that do not have a biggest idempotent.

**Keywords:** regular semigroup, biggest associate, principally ordered, naturally ordered.

**2010** Mathematics Subject Classification: 20M20, 20M17.

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).

#### 1. Introduction

If S is a regular semigroup then the set of associates (or pre-inverses) of  $x \in S$  is

$$A(x) = \{ y \in S \mid xyx = x \}.$$

Here we investigate the situation in which S is an ordered regular semigroup and each  $x \in S$  has a biggest associate which we denote by  $x^{\dagger}$ .

The class **BA** of ordered regular semigroups with biggest associates is contained in the class **BI** of ordered regular semigroups with biggest inverses [13]. Indeed, from  $x = xx^{\dagger}x$  we have  $x^{\dagger}xx^{\dagger} \in V(x)$ , and since every  $x' \in V(x) \subseteq A(x)$  is such that  $x' \leqslant x^{\dagger}$  it follows that  $x' = x'xx' \leqslant x^{\dagger}xx^{\dagger}$ . Consequently,  $x^{\circ} = x^{\dagger}xx^{\dagger}$  is the biggest inverse of x and so  $S \in \mathbf{BI}$ .

That **BA** and **BI** are distinct is exhibited by the following example.

**Example 1.** Consider the set  $\mathbb{N}$  of natural numbers as a meet semilattice under the definition  $m \wedge n = \min\{m, n\}$ . Here biggest associates do not exist, but each element is its own unique, hence biggest, inverse. Thus  $(\mathbb{N}, \wedge) \in \mathbf{BI} \setminus \mathbf{BA}$ .

The class **BA** also contains the class **PO** of principally ordered regular semigroups [1, 4], namely those in which there exists  $x^* = \max\{y \in S \mid xyx \leqslant x\}$ . Indeed, if  $S \in \mathbf{PO}$  then for every  $y \in A(x)$  we have  $y \leqslant x^*$ . Consequently,  $x = xyx \leqslant xx^*x$  whence  $x = xx^*x$ . Thus  $x^* \in A(x)$  and it follows from this that  $x^* = \max A(x)$  and so  $S \in \mathbf{BA}$  with  $x^{\dagger} = x^*$ .

That **PO** and **BA** are distinct is exhibited by the following example.

**Example 2.** Let  $G = \langle g \rangle$  be an infinite cyclic group with identity element e, and let G be totally ordered by  $\cdots < g^3 < g^2 < g < e < g^{-1} < g^{-2} < \cdots$ . Add a new identity element 1 with the only added comparability in  $G^1 = G \cup \{1\}$  being e < 1. Then  $G^1$  is an ordered inverse monoid in which biggest associates exist, these being given by

$$x^{\dagger} = \begin{cases} x^{-1} & \text{if } x \notin \{e, 1\}; \\ 1 & \text{otherwise.} \end{cases}$$

Moreover, since g < e we have  $g1g = g^2 < g = gg^{-1}g$  with  $e < g^{-1} \parallel 1$ . Since 1 is maximal, it follows that  $g^*$  does not exist, so  $G^1 \in \mathbf{BA} \setminus \mathbf{PO}$ . In contrast, if G is totally unordered and a new identity is added as before, then the resulting ordered monoid belongs to  $\mathbf{PO}$ .

**Example 3.** In [2] it is proved that if P is an ordered set then the ordered semigroup End P of isotone mappings  $f: P \to P$  is regular and belongs to **PO** if and only if P is a dually well-ordered chain. As can easily be seen on replacing each  $f^*$  by  $f^{\dagger}$  in the proof of  $\Rightarrow$  in [2], the same statement holds with **PO** replaced by **BA**.

As we shall see, several basic properties of the unary operation  $x \mapsto x^*$  for algebras in **PO** [1, 4] extend to properties of the unary operation  $x \mapsto x^{\dagger}$  for algebras in **BA**. Throughout, we shall use the fact that if  $S \in \mathbf{BA}$  then  $x^{\circ} = \max V(x)$  and  $x^{\dagger} = \max A(x)$  are such that  $x^{\circ} \leqslant x^{\dagger}$  with  $x^{\circ} \neq x^{\dagger}$  in general. Indeed, in Example 2 we note that  $e^{\circ} = e^{\dagger} e e^{\dagger} = 1e1 = e < 1 = e^{\dagger}$ .

# Theorem 1. If $S \in \mathbf{BA}$ then

- (1)  $(\forall x \in S)$   $x \leqslant x^{\circ \circ} \leqslant x^{\dagger \circ} = x^{\dagger \dagger} = x^{\circ \dagger};$
- (2)  $(\forall x \in S)$   $x^{\dagger\dagger\dagger} = x^{\dagger};$
- (3)  $(\forall x \in S)$   $(x^{\dagger}x)^{\dagger}x^{\dagger} = x^{\dagger} = x^{\dagger}(xx^{\dagger})^{\dagger};$
- (4)  $(\forall e \in E(S))$   $e^{\circ} \in E(S) \iff e^{\dagger} \in E(S)$ .

**Proof.** (1), (2) Since  $x \in V(x^{\circ})$  it is immediate that

(a) 
$$x \leqslant x^{\circ \circ} \leqslant x^{\circ \dagger}$$
.

Also, since  $x^{\circ}x^{\dagger\dagger}x^{\circ} = x^{\dagger}xx^{\dagger}x^{\dagger\dagger}x^{\dagger}xx^{\dagger} = x^{\dagger}xx^{\dagger} = x^{\circ}$  we see that

(b) 
$$x^{\dagger \circ} \leqslant x^{\dagger \dagger} \leqslant x^{\circ \dagger}.$$

Using the fact that  $xx^{\circ} = xx^{\dagger}xx^{\dagger} = xx^{\dagger}$ , and likewise  $x^{\circ}x = x^{\dagger}x$ , we next observe that  $xx^{\dagger}x^{\circ\dagger}x^{\dagger}x = xx^{\circ}x^{\circ\dagger}x^{\circ}x = xx^{\circ}x = x$  whence  $x^{\dagger}x^{\circ\dagger}x^{\dagger} \leqslant x^{\dagger}$ . By (b),  $x^{\dagger}x^{\circ\dagger}x^{\dagger} \geqslant x^{\dagger}x^{\dagger\circ}x^{\dagger} = x^{\dagger}$  and it follows that  $x^{\dagger}x^{\circ\dagger}x^{\dagger} = x^{\dagger}$  whence  $x^{\circ\dagger} \leqslant x^{\dagger\dagger}$ . Then, by (b) again,

(c) 
$$x^{\circ \dagger} = x^{\dagger \dagger}.$$

It follows by (a) and (c) that  $x \leq x^{\dagger\dagger}$  for every  $x \in S$ . Consequently,  $x^{\dagger} \leq x^{\dagger\dagger\dagger}$  and therefore

$$x = xx^{\dagger}x \le xx^{\dagger\dagger\dagger}x = xx^{\dagger}xx^{\dagger\dagger\dagger}xx^{\dagger}x \le xx^{\dagger}x^{\dagger\dagger}x^{\dagger\dagger\dagger}x^{\dagger\dagger}x^{\dagger}x = x$$

whence  $xx^{\dagger\dagger\dagger}x = x$  and so  $x^{\dagger\dagger\dagger} \leqslant x^{\dagger}$ . Thus  $x^{\dagger\dagger\dagger} = x^{\dagger}$  which is (2).

To complete the proof of (1), it suffices to observe that, by (2),

$$x^{\dagger \circ} = x^{\dagger \dagger} x^{\dagger} x^{\dagger \dagger} = x^{\dagger \dagger} x^{\dagger \dagger \dagger} x^{\dagger \dagger} = x^{\dagger \dagger}.$$

- (3)  $x^{\dagger}x \cdot x^{\dagger}x^{\dagger\dagger} \cdot x^{\dagger}x = x^{\dagger}x$  gives  $x^{\dagger}x^{\dagger\dagger} \leqslant (x^{\dagger}x)^{\dagger}$  whence  $x^{\dagger} = x^{\dagger}x^{\dagger\dagger}x^{\dagger} \leqslant (x^{\dagger}x)^{\dagger}x^{\dagger}$ , whereas  $x \cdot (x^{\dagger}x)^{\dagger}x^{\dagger} \cdot x = xx^{\dagger}x(x^{\dagger}x)^{\dagger}x^{\dagger} = xx^{\dagger}x = x$  gives  $(x^{\dagger}x)^{\dagger}x^{\dagger} \leqslant x^{\dagger}$ . Consequently,  $(x^{\dagger}x)^{\dagger}x^{\dagger} = x^{\dagger}$  and similarly  $x^{\dagger}(xx^{\dagger})^{\dagger} = x^{\dagger}$ .
- (4) For every  $e \in E(S)$ ,  $e = eeee \leqslant ee^{\dagger\dagger}e^{\dagger}e \leqslant ee^{\dagger}e^{\dagger\dagger}e^{\dagger}e = ee^{\dagger}e = e$  whence  $e = ee^{\dagger\dagger}e^{\dagger}e$ . Then  $e^{\dagger\dagger}e^{\dagger} \leqslant e^{\dagger}$  and consequently  $e^{\dagger} = e^{\dagger}e^{\dagger\dagger}e^{\dagger} \leqslant e^{\dagger}e^{\dagger}$ . If now  $e^{\circ} \in E(S)$ , then we also have  $ee^{\dagger}e^{\dagger}e = ee^{\circ}e^{\circ}e = ee^{\circ}e = e$  whence  $e^{\dagger}e^{\dagger} \leqslant e^{\dagger}$  and therefore  $e^{\dagger} \in E(S)$ . Conversely, if  $e^{\dagger} \in E(S)$ , then  $e = ee^{\dagger}e = ee^{\dagger}e^{\dagger}e = ee^{\circ}e^{\circ}e$  whence  $e^{\circ} = e^{\circ}ee^{\circ}e^{\circ}ee^{\circ}e = e^{\circ}e^{\circ}e^{\circ}e = e^{\circ}e^{\circ}e^{\circ}e = e^{\circ}ee^{\circ}e = e^{\circ}ee^{\circ}$

If  $S \in \mathbf{BA}$  then since  $S \in \mathbf{BI}$  with  $xx^{\dagger} = xx^{\circ}$  and  $x^{\dagger}x = x^{\circ}x$ , various properties hold automatically. Indeed, it follows from known properties of biggest inverses [1, 13] that

 $(\alpha)$  Green's relations on S are given by

$$(x,y) \in \mathcal{L} \iff x^{\dagger}x = y^{\dagger}y; \quad (x,y) \in \mathcal{R} \iff xx^{\dagger} = yy^{\dagger}.$$

- ( $\beta$ )  $x^{\dagger}x$  [resp.  $xx^{\dagger}$ ] is the biggest idempotent in  $L_x$  [resp.  $R_x$ ].
- $(\gamma) \ (\forall x \in S) \ (xx^{\circ})^{\circ} = x^{\circ \circ} x^{\circ} \text{ and } (x^{\circ} x)^{\circ} = x^{\circ} x^{\circ \circ}.$

## 2. Naturally ordered semigroups

We recall that in an ordered regular semigroup S the natural order (or Nambooripad order) is defined by

$$x \leq_n y \iff (\exists e, f \in E(S)) \quad x = ey = yf,$$

and on the idempotents is given by

$$e \leqslant_n f \iff e = ef = fe.$$

 $(S; \leqslant)$  is said to be naturally ordered if  $\leqslant$  extends  $\leqslant_n$  on the idempotents, in the sense that

$$e \leqslant_n f \implies e \leqslant f$$
.

For  $S \in \mathbf{PO}$ , much use is made of the fact that S is naturally ordered if and only if the operation  $x \mapsto x^*$  is antitone [1, Theorem 13.27]. As we now show, for  $S \in \mathbf{BA}$  a more general situation obtains.

**Definition.** If  $S \in \mathbf{BA}$  then we shall say that the operation  $x \mapsto x^{\dagger}$  is weakly antitone if

$$(\forall e, f \in E(S)) \qquad e \leqslant f \implies f^{\dagger} \leqslant e^{\dagger}.$$

**Theorem 2.** If  $S \in \mathbf{BA}$  then the following statements are equivalent:

- (1) S is naturally ordered;
- (2)  $x \mapsto x^{\dagger}$  is weakly antitone;
- (3)  $(\forall x, y \in S)$   $xy(xy)^{\dagger} \leqslant xx^{\dagger}$ ;
- (3')  $(\forall e, f \in E(S))$   $ef(ef)^{\dagger} \leqslant ee^{\dagger};$
- (4)  $(\forall x, y \in S)$   $(xy)^{\dagger}xy \leqslant y^{\dagger}y;$
- $(4') \ (\forall e, f \in E(S)) \ (ef)^{\dagger} ef \leqslant f^{\dagger} f.$

**Proof.** (1)  $\Rightarrow$  (2): If  $e, f \in E(S)$  with  $e \leqslant f$ , then  $efe \in E(S)$ . Since  $efe \leqslant_n e$  we have by (1) that  $efe \leqslant e$ . Also,  $e = eee \leqslant efe$  gives e = efe. Now  $efe \leqslant ef^{\dagger}e = eef^{\dagger}ee \leqslant eff^{\dagger}fe = efe$  so that  $ef^{\dagger}e = efe = e$  and therefore  $f^{\dagger} \leqslant e^{\dagger}$ . Thus (2) holds.

 $(2) \Rightarrow (3)$ : Observe first that, by  $(\gamma)$ ,  $(xx^{\dagger})^{\circ} = (xx^{\circ})^{\circ} = x^{\circ\circ}x^{\circ} \in E(S)$  and therefore, by Theorem 1(4),  $(xx^{\dagger})^{\dagger} \in E(S)$  for every  $x \in S$ . Now  $xy(xy)^{\dagger} \cdot xx^{\dagger} \cdot xy(xy)^{\dagger} = xy(xy)^{\dagger}$  gives  $xx^{\dagger} \leq [xy(xy)^{\dagger}]^{\dagger} \in E(S)$ . By Theorem 1 and the fact that  $x \mapsto x^{\dagger}$  is weakly antitone by the hypothesis (2), it then follows that

$$xy(xy)^{\dagger} = xx^{\dagger} \cdot xy(xy)^{\dagger} \leqslant xx^{\dagger} [xy(xy)^{\dagger}]^{\dagger \dagger} \leqslant xx^{\dagger} (xx^{\dagger})^{\dagger} = xx^{\dagger}.$$

- $(3) \Rightarrow (3')$ : This is clear.
- $(3') \Rightarrow (1)$ : If  $e, f \in E(S)$  are such that  $e \leq_n f$  then, by (3'),

$$e = eef \leqslant ee^{\dagger} f = fe(fe)^{\dagger} f \leqslant ff^{\dagger} f = f,$$

whence S is naturally ordered.

The equivalence with (4) and (4') is established similarly.

It follows from the above that for  $S \in \mathbf{PO}$  the operation  $x \mapsto x^{\dagger}$  is antitone if and only if it is weakly antitone. The following example shows that this is not so for  $S \in \mathbf{BA} \setminus \mathbf{PO}$ .

**Example 4.** For  $G^1 \in \mathbf{BA} \setminus \mathbf{PO}$  in Example 2, we have that  $E(G^1) = \{e, 1\}$  and  $G^1$  is naturally ordered. Whereas  $x \mapsto x^{\dagger}$  is then weakly antitone by Theorem 2, it is not antitone since we have q < 1 with  $q^{\dagger} = q^{-1} \parallel 1 = 1^{\dagger}$ .

For the purpose of the next example, we recall that every regular semigroup S is E-inversive in the sense that

$$(\forall x \in S) \quad I(x) = \{a \in S \mid xa, ax \in E(S)\} \neq \emptyset.$$

An ordered regular semigroup S is said to be E-special if  $x^+ = \max I(x)$  exists for every  $x \in S$ . Such semigroups were investigated in [7].

**Example 5.** It follows from [7, Theorem 2] that every naturally ordered E-special regular semigroup S belongs to **BA** with  $x^+ = x^{\dagger}$  for every  $x \in S$ . A concrete example of this is seen in Example 2 above.

The following results generalise to  ${\bf BA}$  further particular properties that hold for semigroups in  ${\bf PO}$ .

**Theorem 3.** If  $S \in \mathbf{BA}$  is naturally ordered then

$$(\forall x, y \in S)$$
  $(xy)^{\circ} = (x^{\circ}xy)^{\circ}x^{\circ} = y^{\circ}(xyy^{\circ})^{\circ}.$ 

**Proof.** Since, by  $(\alpha)$ ,  $(x, x^{\dagger}x) \in \mathcal{L}$  it follows that  $(xy, x^{\dagger}xy) \in \mathcal{L}$  and consequently

$$(xy)^{\circ} = (xy)^{\dagger}xy(xy)^{\dagger}$$

$$= (x^{\dagger}xy)^{\dagger}x^{\dagger}xy(xy)^{\dagger}$$

$$= (x^{\dagger}xy)^{\circ}x^{\dagger}xy(xy)^{\dagger}$$

$$\leq (x^{\circ}xy)^{\circ}x^{\dagger}xx^{\dagger} \quad \text{by Theorem 2}$$

$$= (x^{\circ}xy)^{\circ}x^{\circ}.$$

However, since  $(x^{\circ}xy)^{\circ}x^{\circ} \in V(xy)$  we have that  $(x^{\circ}xy)^{\circ}x^{\circ} \leqslant (xy)^{\circ}$  and equality follows. The second expansion is established similarly.

**Theorem 4.** If  $S \in \mathbf{BA}$  is naturally ordered then

- (1)  $e \in E(S)$  is a maximal idempotent if and only if  $e = e^{\dagger}$ ;
- (2)  $(\forall x \in S)$   $(xx^{\dagger})^{\dagger}$  and  $(x^{\dagger}x)^{\dagger}$  are maximal idempotents;
- (3) if  $e \in E(S)$  is such that  $e^{\dagger} \in E(S)$  then  $e^{\dagger}$  is a maximal idempotent.

**Proof.** (1) For every  $e \in E(S)$  we have  $e \leqslant e^{\dagger}$  and  $e \leqslant e^{\dagger\dagger}$ . Then  $e \leqslant ee^{\dagger}$  and  $e \leqslant e^{\dagger}e^{\dagger\dagger}$ . If e is a maximal idempotent we then have that  $e = ee^{\dagger} = e^{\dagger}e^{\dagger\dagger}$  whence  $e = ee^{\dagger} = e^{\dagger}e^{\dagger\dagger}e^{\dagger} = e^{\dagger}$ .

Conversely, if  $e = e^{\dagger}$  and  $f \in E(S)$  is such that  $e \leqslant f$  then, by Theorem 2(2),  $f \leqslant f^{\dagger} \leqslant e^{\dagger} = e$  whence f = e and so e is a maximal idempotent.

- (2) Given  $x \in S$ , let  $e = (xx^{\circ})^{\circ} = x^{\circ \circ}x^{\circ}$ . Then  $e^{\circ} = e \in E(S)$  and therefore, by Theorem 1(4),  $e^{\dagger} \in E(S)$ . Now  $e^{\dagger} = e^{\circ \dagger} = e^{\dagger \dagger}$  and so  $e^{\circ \dagger}$  is a maximal idempotent by (1). But  $e^{\circ \dagger} = (xx^{\circ})^{\circ \circ \dagger} = (xx^{\dagger})^{\dagger}$ . Hence  $(xx^{\dagger})^{\dagger}$  is a maximal idempotent, and similarly so is  $(x^{\dagger}x)^{\dagger}$ .
- (3) Since e and  $e^{\dagger}$  are idempotent, we have  $e \leqslant e^{\dagger} \leqslant e^{\dagger \dagger}$  and, by Theorem 2(2),  $e^{\dagger \dagger} \leqslant e^{\dagger}$ . Consequently,  $e^{\dagger} = e^{\dagger \dagger}$  whence, by (1),  $e^{\dagger}$  is a maximal idempotent.

For the purpose of investigating the structure of naturally ordered semigroups  $S \in \mathbf{BA}$ , we note that every  $x \in S$  is such that  $xx^{\circ}x^{\circ \circ} = xx^{\circ}x^{\circ +} = xx^{\dagger}x^{\dagger \dagger}$ . Consider therefore the subsets

$$L = \{xx^{\circ}x^{\circ\circ} \mid x \in S\}, \quad R = \{x^{\circ\circ}x^{\circ}x \mid x \in S\}.$$

**Theorem 5.** If  $S \in \mathbf{BA}$  is naturally ordered then L is a left ideal of S and R is a right ideal of S with  $L \cap R = S^{\circ}$ .

**Proof.** For all  $x, y \in S$  it follows by Theorem 2 that  $xy(xy)^{\dagger} \leqslant xx^{\dagger}$  and  $(xx^{\dagger})^{\dagger} \leqslant [xy(xy)^{\dagger}]^{\dagger}$ . It then follows by Theorem 4(2) that  $(xx^{\dagger})^{\dagger} = [xy(xy)^{\dagger}]^{\dagger}$ .

Consequently,

$$(xy)^{\circ\circ}(xy)^{\circ}xy = [xy(xy)^{\circ}]^{\circ}xy$$

$$= [xy(xy)^{\dagger}]^{\dagger}xy(xy)^{\dagger}xy$$

$$= (xx^{\dagger})^{\dagger}xy$$

$$= (xx^{\circ})^{\dagger}xx^{\circ}xy$$

$$= (xx^{\circ})^{\circ}xx^{\circ}xy$$

$$= x^{\circ\circ}x^{\circ}xy \text{ by } (\gamma).$$

If now  $x \in R$  then this gives  $xy \in R$  whence R is a right ideal of S. Similarly, L is a left ideal of S. Finally, if  $x \in L \cap R$  then  $x = x^{\circ \circ} x^{\circ} x = x^{\circ \circ} x^{\circ} x x^{\circ} x^{\circ} = x^{\circ \circ} \in S^{\circ}$  and so  $L \cap R \subseteq S^{\circ}$ , the converse inclusion being clear.

### 3. The presence of a biggest idempotent

If  $S \in \mathbf{BI}$  then Green's relations  $\mathcal{R}$  and  $\mathcal{L}$  are said to be weakly regular if

$$(\forall e, f \in E(S)) \quad e \leqslant f \implies ee^{\circ} \leqslant ff^{\circ}, \ e^{\circ}e \leqslant f^{\circ}f.$$

As shown in [1, Theorem 13.23], this is equivalent to the condition that the assignment  $x \mapsto x^{\circ}$  is weakly isotone in the sense that

$$(\forall e, f \in E(S))$$
  $e \leqslant f \implies e^{\circ} \leqslant f^{\circ}.$ 

**Theorem 6.** If  $S \in \mathbf{BA}$  is naturally ordered then the following statements are equivalent:

- (1) the assignment  $x \mapsto x^{\circ}$  is weakly isotone on S;
- (2)  $(\forall e \in E(S))$   $e^{\dagger} \in E(S)$ ;
- (3) S has a biggest idempotent.

**Proof.** (1)  $\Rightarrow$  (2): If (1) holds then, by the Corollary to [1, Theorem 13.23],  $e^{\circ} \in E(S)$  for every  $e \in E(S)$ , whence (2) follows by Theorem 1(4).

 $(2) \Rightarrow (3)$ : If (2) holds then, by Theorem 4(3), every  $e^{\dagger}$  is a maximal idempotent. For  $e, f \in E(S)$  consider the sandwich set  $S(e^{\dagger}, f^{\dagger}) = f^{\dagger}V(e^{\dagger}f^{\dagger})e^{\dagger}$  and its element  $g = f^{\dagger}(e^{\dagger}f^{\dagger})^{\circ}e^{\dagger}$ . Then  $ge^{\dagger}g = g^2 = g$  gives  $e^{\dagger} \leqslant g^{\dagger}$ . It follows from the maximality that  $e^{\dagger} = g^{\dagger}$ . Similarly,  $f^{\dagger} = g^{\dagger}$  and therefore  $e^{\dagger} = f^{\dagger}$ .

If now e, f are maximal idempotents in S then, by the above and Theorem  $4, e = e^{\dagger} = f^{\dagger} = f$ . So S has a unique maximal idempotent which we denote by  $\xi$ . Since for every idempotent e we then have  $e \leqslant e^{\dagger} = \xi^{\dagger} = \xi$ , we see that  $\xi$  is the biggest idempotent in S.

 $(3) \Rightarrow (1)$ : Suppose now that S has a biggest idempotent  $\xi$ . By [3, Theorem 1.3(3)] every idempotent e is such that  $ee^{\circ} = e\xi$  and  $e^{\circ}e = \xi e$ . So if  $e \leqslant f$  then

 $ee^{\circ} = e\xi \leqslant f\xi = ff^{\circ}$  and similarly  $e^{\circ}e \leqslant f^{\circ}f$ . Thus Green's relations  $\mathcal{R}$  and  $\mathcal{L}$  are weakly regular and (1) follows.

Corollary 1. If  $S \in \mathbf{BA}$  is naturally ordered and has a biggest idempotent  $\xi$  then

- (1)  $(\forall e \in E(S))$   $e^{\dagger} = \xi, e = e\xi e, e^{\circ} = \xi e\xi;$
- (2)  $(\forall x \in S)$   $\xi x^{\dagger} = x^{\dagger} = x^{\dagger} \xi$  whence also  $\xi x^{\circ} = x^{\circ} = x^{\circ} \xi$ ;
- (3)  $(\forall x \in S)$   $x^{\circ \circ} = \xi x \xi;$
- (4)  $L = S\xi$  and  $R = \xi S$ .

**Proof.** (1) This is immediate from Theorem 6.

- (2) Since, by (1),  $x\xi x^{\dagger}x = xx^{\dagger}x\xi x^{\dagger}x = xx^{\dagger}x = x$  we have that  $\xi x^{\dagger} \leqslant x^{\dagger}$ . On the other hand,  $x^{\dagger} = x^{\dagger}x^{\dagger\dagger}x^{\dagger} \leqslant \xi x^{\dagger}$  and so  $\xi x^{\dagger} = x^{\dagger}$ . Similarly,  $x^{\dagger}\xi = x^{\dagger}$ .
- (3) Since  $x^{\circ\circ}x^{\circ}x = (xx^{\circ})^{\circ}xx^{\circ}x = (xx^{\dagger})^{\dagger}xx^{\dagger}x = \xi x$  and likewise  $xx^{\circ}x^{\circ\circ} = x\xi$ , it follows that  $x^{\circ\circ} = x^{\circ\circ}x^{\circ}xx^{\circ}x^{\circ\circ} = \xi x\xi$ .
- (4) By (2),  $\xi x^{\circ} = x^{\circ}$  whence  $x \in L$  if and only if  $x = xx^{\circ}x^{\circ\circ} = x(x^{\circ}x)^{\circ} = x\xi x^{\circ}x\xi = x\xi$ . Thus  $L = S\xi$  and similarly  $R = \xi S$ .

Corollary 2. If  $S \in \mathbf{BA}$  has a biggest idempotent  $\xi$  then the following statements are equivalent:

- (1) S is naturally ordered;
- (2)  $(\forall e \in E(S))$   $e^{\dagger} = \xi$ .

**Proof.**  $(1) \Rightarrow (2)$ : This is clear from Corollary 1.

(2)  $\Rightarrow$  (1): Suppose that (2) holds and let  $e, f \in E(S)$  be such that  $e \leq_n f$ . Then  $e = fef \leq fe^{\dagger}f = f\xi f = ff^{\dagger}f = f$  and consequently S is naturally ordered.

A prominent situation where a biggest idempotent exists is the following.

**Theorem 7.** If  $S \in \mathbf{BA}$  is naturally ordered and orthodox then S has a biggest idempotent  $\xi$ . Moreover,  $\xi$  is a middle unit and  $S^{\circ} = \xi S \xi$  is an inverse transversal of S.

**Proof.** If S is orthodox then inverses of idempotents in S are also idempotent; see for example [9, IX, Proposition 2.1]. Thus  $e^{\circ} \in E(S)$  for every  $e \in E(S)$  and therefore, by Theorem 1(4),  $e^{\dagger} \in E(S)$ . It then follows by Theorem 6 that S has a biggest idempotent  $\xi$ . That  $\xi$  is a middle unit  $[x\xi y = xy]$  is now a consequence of [1, Theorem 13.18]; see also [11]. Finally, that  $S^{\circ}$  is an inverse transversal follows by [1, Theorem 13.16].

Theorem 7 does not extend to semigroups in  $\mathbf{BI} \setminus \mathbf{BA}$ . Whereas this is immediately clear on considering the semilattice of Example 1, a more general illustrative example is the following.

**Example 6.** Let k > 1 be a fixed integer. For every  $n \in \mathbb{Z}$  let  $n_k$  be the biggest multiple of k that is less then or equal to n. On the cartesian ordered set  $S = \mathbb{Z} \times -\mathbb{N} \times \mathbb{Z}$  consider the multiplication that is defined by the prescription

$$(x,-p,m)(y,-q,n) = (\min\{x,y\}, -q, m+n_k).$$

Then S is an ordered semigroup in which the idempotents are of the form (x, -p, m) where  $m_k = 0$ , i.e., where  $0 \le m \le k - 1$ . Then S does not have a biggest idempotent.

Now (y, -q, n) is an associate of (x, -p, m) if and only if

$$(x, -p, m) = (\min\{x, y\}, -p, m + n_k + m_k)$$

which is the case if and only if  $x \leq y$  and  $n_k = -m_k$ . So (x, -p, m) does not have a biggest associate and therefore  $S \notin \mathbf{BA}$ . However, it follows from the above that (y, -q, n) is an inverse of (x, -p, m) if and only if y = x and  $n_k = -m_k$ . Consequently, (x, -p, m) has a biggest inverse, namely  $(x, 0, -m_k + k - 1)$ . Hence  $S \in \mathbf{BI} \setminus \mathbf{BA}$ .

Finally, simple calculations show that S is both orthodox and naturally ordered.

The general structure of naturally ordered regular semigroups with a biggest idempotent is known and is described in [3]. In the present context, namely  $S \in \mathbf{BA}$  naturally ordered and orthodox, a much simpler situation obtains which we now describe.

**Theorem 8.** Let  $S \in \mathbf{BA}$  be naturally ordered and orthodox with biggest idempotent  $\xi$ . Then, with  $L = S\xi$  and  $R = \xi S$ , the subset of  $L \times R$  defined by

$$L \mathring{\times} R = \big\{ (x, a) \in L \times R \mid x^{\circ} = a^{\circ} \big\}$$

is a regular subsemigroup of the cartesian ordered cartesian product semigroup  $L \times R$ . Moreover, if the order on the inverse subsemigroup  $S^{\circ}$  coincides with the natural order on  $S^{\circ}$  then there is an ordered semigroup isomorphism  $S \simeq L \otimes R$ .

**Proof.** It is clear that  $L \otimes R$  is an ordered regular subsemigroup of  $L \times R$ . Consider the mapping  $\vartheta : S \to L \otimes R$  given by  $\vartheta(x) = (x\xi, \xi x)$ . Since  $\xi$  is a middle unit by Theorem 7, we see that, for all  $x, y \in S$ ,

$$\vartheta(x)\vartheta(y) = (x\xi,\xi x)(y\xi,\xi y) = (x\xi y\xi,\xi x\xi y) = (xy\xi,\xi xy) = \vartheta(xy).$$

Thus  $\vartheta$  is a morphism. If now  $(x, a) \in L R$  then

$$\vartheta(xx^{\circ}a) = (xx^{\circ}a\xi, \xi xx^{\circ}a) = (xx^{\circ}a^{\circ\circ}, x^{\circ\circ}x^{\circ}a) = (x, a)$$

and so  $\vartheta$  is surjective.

Clearly, if  $x \leqslant y$  then  $\vartheta(x) \leqslant \vartheta(y)$ . Conversely, if  $\vartheta(x) \leqslant \vartheta(y)$  then  $x^{\circ \circ} = \xi x \xi \leqslant \xi y \xi = y^{\circ \circ}$ . Since by hypothesis the order  $\leqslant$  coincides with the natural order  $\leqslant_n$  on the inverse subsemigroup  $S^{\circ}$  it follows from  $x^{\circ \circ} \leqslant_n y^{\circ \circ}$  that  $x^{\circ} = (x^{\circ \circ})^{-1} \leqslant_n (y^{\circ \circ})^{-1} = y^{\circ}$  and then  $x^{\circ} \leqslant y^{\circ}$ . Hence  $x = x \xi x^{\circ} \xi x \leqslant y \xi y^{\circ} \xi y = y$ .

In summary,  $\vartheta$  is thus an isomorphism of ordered semigroups.

A particular case of the above is illustrated by the following internal structure theorem.

**Theorem 9.** Let  $S \in \mathbf{BA}$  be naturally ordered and orthodox. If  $e, f \in E(S)$  are such that  $e \leq f$  then the  $\dagger$ -subsemigroup generated by  $\{e, f\}$  is an ordered band with at most  $3^2 + 2^2 + 1 = 14$  elements and has Hasse diagram the distributive lattice



in which elements joined by lines of positive gradient are  $\mathcal{R}$ -related, those joined by lines of negative gradient are  $\mathcal{L}$ -related, and vertical lines also indicate  $\leq_n$ .

**Proof.** By Corollary 1 to Theorem 6, the †-subsemigroup generated by e, f with  $e \leq f$  coincides with the semiband  $T = \langle e, f, \xi \rangle$  which consists of words  $x = k_1 \cdots k_n$  where each  $k_i \in \{e, f, \xi\}$ . Clearly, T has top element  $\xi$  and bottom element e.

Since for every  $x \in T$  we have

$$e = eee \leqslant exe \leqslant e\xi e = ee^{\dagger}e = e$$

we see that  $eTe = \{e\}$ , whence it follows that all words that begin and end with the letter e reduce to e itself.

Likewise,  $e\xi = ee\xi \leqslant ex\xi \leqslant e\xi\xi = e\xi$  gives  $eT\xi = \{e\xi\}$ , and similarly  $\xi Te = \{\xi e\}$ .

Since  $\xi$  is a middle unit by Theorem 7, it follows from the above that

$$exf = exff^{\dagger}f = \underline{exf\xi} f = \underline{e\xi}f = ef$$

whence  $eTf = \{ef\}$ , and similarly  $fTe = \{fe\}$ .

Consider now a word of the form  $f[\cdots]f \in fTf$ . If  $[\cdots]$  contains the letter e then by the above the word reduces to fef. Otherwise,  $[\cdots]$  contains at most the idempotents f and  $\xi = f^{\dagger}$ , whence the word reduces to f. Hence  $fTf = \{fef, f\}$ . Similar arguments show that

$$fT\xi = \{fe\xi, f\xi\}, \quad \xi Tf = \{\xi ef, \xi f\}, \quad \xi T\xi = \{\xi e\xi, \xi f\xi, \xi\}.$$

Thus we see that there are at most 14 distinct words in T, all of which are, by the above observations, idempotent. Consequently, T is a band. When T has precisely 14 elements it then has as Hasse diagram the lattice illustrated, with the  $\mathcal{L}$ - and  $\mathcal{R}$ -classes as described.

In connection with Theorem 8, we note that, in the above,  $S^{\circ} = \{e^{\circ}, f^{\circ}, \xi\}$  on which the order coincides with the natural order.

The above result can of course be extended to any finite chain  $e_n < \cdots < e_2 < e_1$  of idempotents, the effect being to extend the above diagram by adding, for each i, a layer of size  $i^2$ , these layers being the  $\mathcal{D}$ -classes of the  $e_i$ . The resulting 'wedding cake' diagram then depicts an ordered band which has at most  $\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$  elements.

**Example 7.** Let R be an ordered right zero semigroup with a biggest element  $\alpha$  and let L be a  $\wedge$ -semilattice with a biggest element  $\beta$ . Consider the cartesian ordered cartesian product semigroup  $S = R \times L \times G^1$  where  $G^1$  is the semigroup of Example 2. Then it is readily seen that  $S \in \mathbf{BA}$  with

$$(r, l, x)^{\dagger} = (\alpha, \beta, x^{\dagger}), \quad (r, l, x)^{\circ} = (\alpha, l, x^{\circ}).$$

The idempotents of S are the elements (r, l, e) and (r, l, 1). Then S is naturally ordered and orthodox with biggest idempotent  $\xi = (\alpha, \beta, 1)$ . If now p = (r, l, e) and q = (s, m, 1) are idempotents such that r < s and l < m then simple calculations show that  $\langle p, q, \xi \rangle$  is a band and is precisely as described in Theorem 9.

We have seen in Theorem 7 above that if  $S \in \mathbf{BA}$  is naturally ordered and orthodox then S necessarily contains a biggest idempotent. We now consider the existence of a biggest idempotent in the case where  $S \in \mathbf{BA}$  is naturally ordered and non-orthodox. A simple example of this is the semigroup  $N_5$  of [3, Theorem 3.2].

For this purpose, we recall that if S is an ordered regular semigroup and  $\overline{E} = \langle E(S) \rangle$  denotes the subsemigroup generated by the idempotents of S then an idempotent  $\alpha$  is said to be medial if  $\overline{e}\alpha\overline{e} = \overline{e}$  for every  $\overline{e} \in \overline{E}$ . As is shown in [6, Theorem 2], if S is naturally ordered and has a biggest idempotent  $\xi$  then  $\xi$  is medial. Consequently,  $\overline{e}\xi, \xi\overline{e} \in E(S)$  and it follows that every  $\overline{e} \in \overline{E}$  is a product of two idempotents.

In this case we have the following companion to Theorem 9.

**Theorem 10.** Let  $S \in \mathbf{BA}$  be naturally ordered and non-orthodox with a biggest idempotent  $\xi$ . If  $x \in \overline{E} \setminus E(S)$  then the  $\dagger$ -subsemigroup generated by  $\{x, \xi\}$  has at most 9 elements, all of which except x are idempotent, and has Hasse diagram the distributive lattice



in which elements joined by lines of positive gradient are  $\mathcal{R}$ -related, those joined by lines of negative gradient are  $\mathcal{L}$ -related, and vertical lines also indicate  $\leq_n$ .

**Proof.** Since  $x, x^2 \in \overline{E}$  we have  $x = x\xi x$  and  $x^2 = x^2\xi x^2$ . Consequently

$$x^3 = x\xi \underline{x \cdot x\xi x \cdot x} \xi x = x\xi x x \xi x = x^2.$$

Hence  $x^2 \in E(S)$  with  $x = x\xi x \ge x^3 = x^2$ . Then  $x > x^2$  since  $x \notin E(S)$ . The diagram for  $\langle x, \xi \rangle$  together with the description given above is now clear.

**Example 8.** Let  $T = \mathcal{M}(\mathbf{2}; 2, 2; P)$  be the Rees matrix semigroup where  $\mathbf{2}$  is the 2-element semilattice and the sandwich matrix  $P = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ . Then T is not orthodox since we have that  $(1, 1, 2), (2, 1, 1) \in E(T)$  but  $(1, 1, 2)(2, 1, 1) = (1, 1, 1) \notin E(T)$ .

Consider the cartesian ordered cartesian product semigroup  $S = T \times G^1$  where  $G^1$  is as in Example 2. It is readily verified that  $S \in \mathbf{BA}$ , is naturally ordered, non-orthodox, and has biggest idempotent ((2,1,2),1). Moreover, S contains the subsemigroup  $(T \times \{e\}) \cup \{((2,1,2),1)\}$  which is order isomorphic to that which is described in Theorem 10 with x = ((1,1,1),e) and  $\xi = ((2,1,2),1)$ .

## 4. Compactness and completely simple semigroups

As we have seen, if  $S \in \mathbf{BA}$  then  $S \in \mathbf{BI}$  with  $x^{\circ} = \max V(x) < \max A(x) = x^{\dagger}$  in general. This leads to a consideration of the following notion.

**Definition.** If  $S \in \mathbf{BA}$  we shall say that  $x \in S$  is *compact* if  $x^{\circ} = x^{\dagger}$ , and that S itself is compact if every element of S is compact, the latter clearly being equivalent to the property  $S^{\dagger} = S^{\circ}$ .

If  $S \in \mathbf{BA}$  then every  $x^{\dagger} \in S$  is compact since  $x^{\dagger \circ} = x^{\dagger \dagger}$ . In particular, if S is naturally ordered then it follows from  $e \leqslant e^{\circ} \leqslant e^{\dagger}$  and Theorem 4 that every maximal idempotent is compact.

**Example 9.** Consider the ordered semigroup  $B_n = \operatorname{Mat}_{n \times n}(\mathbf{B})$  of  $n \times n$  matrices over a given boolean algebra  $\mathbf{B} = (B; +, \cdot, '; 0, 1)$  with  $n \ge 2$ . Each  $B_n$  is a residuated semigroup [10, 1], but is not naturally ordered since, for example, there are idempotents which are above the identity matrix. Simple computations [1, Example 13.1] show that  $B_n$  is regular if and only if n = 2. Then  $B_2$  is principally ordered and consequently belongs to  $\mathbf{BA}$ . As shown in [6], the relevant unary operations in  $B_2$  are as follows:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{\dagger} = \begin{bmatrix} b' + c' + d & a' + d' + b \\ a' + d' + c & b' + c' + a \end{bmatrix};$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{\circ} = \begin{bmatrix} b'(a+c) + c'(a+b) + d & a'(c+d) + d'(a+c) + b \\ a'(b+d) + d'(a+b) + c & b'(c+d) + c'(b+d) + a \end{bmatrix}.$$

The compact elements of  $B_2$  are described as follows:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ is compact } \iff a+b+c+d=1.$$

To see this, observe first that the sum of all the elements of  $A^{\dagger}$  is 1 whereas that of  $A^{\circ}$  is a+b+c+d. So if A is compact then a+b+c+d=1. Conversely, suppose that a+b+c+d=1. Then  $a+c \geq (b+d)'=b'd'$  and  $a+b \geq (c+d)'=c'd'$ . It follows that

$$b'(a+c) + c'(a+b) + d \ge b'd' + c'd' + d = b' + c' + d$$

whence  $[A^{\circ}]_{11} \geqslant [A^{\dagger}]_{11}$  and equality follows from  $A^{\circ} \leqslant A^{\dagger}$ . Likewise, the remaining elements of  $A^{\circ}$  and  $A^{\dagger}$  coincide, whence A is compact.

We now consider the case where S is a completely simple semigroup. As shown by Croisot [8], in this situation we have that V(x) = A(x) for every  $x \in S$ . It follows therefore that if  $S \in \mathbf{BI}$  then max  $V(x) = \max A(x)$ , so that  $S \in \mathbf{BA}$  with  $x^{\circ} = x^{\dagger}$  for every  $x \in S$ . The completely simple members of  $\mathbf{BA}$  are characterised in the following companion to Theorem 2.

**Theorem 11.** If  $S \in \mathbf{BA}$  then the following statements are equivalent:

- (1) S is naturally ordered and compact;
- (2) S is naturally ordered and every idempotent is compact;
- (3) the assignment  $x \mapsto x^{\circ}$  is weakly antitone in the sense that

$$(\forall e, f \in E(S))$$
  $e \leqslant f \implies f^{\circ} \leqslant e^{\circ};$ 

(4) S is completely simple.

**Proof.**  $(1) \Rightarrow (2)$ : This is clear.

- (2)  $\Rightarrow$  (3): Suppose that (2) holds and let  $e, f \in E(S)$  be such that  $e \leqslant f$ . Then, since  $x \mapsto x^{\dagger}$  is weakly antitone by Theorem 2, we have  $f^{\circ} = f^{\dagger} \leqslant e^{\dagger} = e^{\circ}$  whence (3) holds.
- $(3) \Rightarrow (4)$ : Suppose now that (3) holds and again that  $e, f \in E(S)$  are such that  $e \leq f$ . Then  $ef^{\circ}e \leq ee^{\circ}e = e$ . But  $e \leq f \leq f^{\circ}$  gives  $e = eee \leq ef^{\circ}e$ . Hence  $e = ef^{\circ}e$ , and consequently  $e \leq efe \leq ef^{\circ}e = e$  whence e = efe. It follows that

$$e = efe \leqslant ef^{\dagger}e = eef^{\dagger}ee \leqslant eff^{\dagger}fe = efe = e.$$

Thus  $ef^{\dagger}e = e$  and therefore  $f^{\dagger} \leq e^{\dagger}$ . It follows by Theorem 2 that S is naturally ordered.

Suppose now that  $e, f \in E(S)$  are such that  $e \leq_n f$ . Then, by the above,  $e \leq f$  and so, by the hypothesis (3), we also have  $f^{\circ} \leq e^{\circ}$ . Now ef = e gives  $fe^{\circ}e \in E(S)$ ; and since  $fe^{\circ}e \leq_n f$  it follows that  $fe^{\circ}e \leq f$ . Consequently,  $e = ee^{\circ}e \leq fe^{\circ}e = fe^{\circ}ee \leq fe = e$ . Thus  $fe^{\circ}e = e$  and similarly we can see that also  $ee^{\circ}f = e$ . Combining these observations with the hypothesis (3), we obtain  $f = ff^{\circ}f \leq fe^{\circ}f = fe^{\circ}e \cdot ee^{\circ}f = ee = e$ . Thus  $\leq_n$  on E(S) reduces to equality and consequently S is completely simple.

$$(4) \Rightarrow (1)$$
: This is clear.

#### 5. The absence of a biggest idempotent

A particular completely simple semigroup  $S \in \mathbf{BA}$  which does not have a biggest idempotent is the so-called *crown bootlace semigroup* [1, 4]. This can be represented by the Rees matrix semigroup  $\mathcal{M}(\langle x \rangle; \mathbf{2}, \mathbf{2}; P)$  where  $\langle x \rangle$  is a totally ordered cyclic group with 1 < x, and the sandwich matrix is  $P = \begin{bmatrix} x^{-1} & x^{-1} \\ x^{-1} & 1 \end{bmatrix}$ . The order is represented by the Hasse diagram



in which the idempotents form a crown. Here biggest associates (biggest inverses) are given by

$$(1, x^n, 1)^{\dagger} = (2, x^{-n+2}, 2), \qquad (1, x^n, 2)^{\dagger} = (1, x^{-n+2}, 2),$$
 
$$(2, x^n, 1)^{\dagger} = (2, x^{-n+2}, 1), \qquad (2, x^n, 2)^{\dagger} = (1, x^{-n+2}, 1).$$

Our objective now is to highlight the crown bootlace semigroup amongst those members of **BA** that do not have a biggest idempotent. For this purpose we introduce the following notion.

**Definition.** We shall say that  $S \in \mathbf{BA}$  is partially compact if the product of any two compact idempotents of S is compact.

**Example 10.** If  $\mathcal{M}$  denotes the crown bootlace semigroup, consider the cartesian ordered cartesian product semigroup  $\mathcal{M} \times G^1$  where  $G^1$  is as in Example 2. Clearly, this belongs to **BA** and has no biggest idempotent. Here the set of compact elements is  $\mathcal{M} \times (G^1 \setminus \{e\})$ , in which the compact idempotents are the elements (z, 1) where  $z \in E(\mathcal{M})$ . Consequently,  $\mathcal{M} \times G^1$  is partially compact.

**Theorem 12.** Let  $S \in \mathbf{BA}$  be naturally ordered and with no biggest idempotent. If S is partially compact then any two maximal idempotents of S are  $\mathcal{D}$ -equivalent and the  $\circ$ -subsemigroup they generate is isomorphic to the crown bootlace semigroup.

**Proof.** Let e, f be maximal idempotents in S, so that  $e = e^{\circ} = e^{\dagger}$  and  $f = f^{\circ} = f^{\dagger}$ . Consider the sandwich elements  $g = f(ef)^{\circ}e \in S(e, f)$  and  $h = e(fe)^{\circ}f \in S(f, e)$ . Then, using Theorem 3,  $g = f^{\circ}(e^{\circ}eff^{\circ})^{\circ}e^{\circ} = (ef)^{\circ}$ , and likewise  $h = (fe)^{\circ}$ . Since, by Theorem 5,  $S^{\circ}$  is a subsemigroup,  $ef = e^{\circ}f^{\circ} \in S^{\circ}$  and therefore  $g^{\circ} = (ef)^{\circ\circ} = ef$ . Likewise,  $h^{\circ} = (fe)^{\circ\circ} = fe$ .

Now since e and f are compact it follows by the hypothesis that so also are ef and fe. Consequently,  $g=(ef)^{\circ}=(ef)^{\dagger}\in S^{\dagger}$ . Thus g is also compact. Likewise, so is h.

Furthermore, by Theorem 2,  $g \leqslant g^{\dagger}g = ef(ef)^{\dagger} \leqslant ee^{\dagger} = e$  and  $g \leqslant gg^{\dagger} = (ef)^{\dagger}ef \leqslant f^{\dagger}f = f$ . Likewise,  $h \leqslant e$  and  $h \leqslant f$ .

We now observe that  $eg \in E(S)$  with

$$eg = efg = (ef)^{\circ \circ}(ef)^{\circ} = [ef(ef)^{\circ}]^{\circ} = (efg)^{\circ} = (eg)^{\circ}$$

whence, by Theorems 1 and 4,  $(eg)^{\dagger}$  is a maximal idempotent. But  $eg \leqslant ee = e$  gives  $e = e^{\dagger} \leqslant (eg)^{\dagger}$  whence, by the maximality of e, it follows that  $e = (eg)^{\dagger}$ . Since, by the hypothesis, eg is compact we then have  $eg = (eg)^{\circ} = (eg)^{\dagger} = e$ . Similarly, it can be seen that gf = f, and dually that fh = f and he = e.

Moreover, we have that  $g \parallel h$ . Suppose, by way of obtaining a contradiction, that g and h were comparable, say  $g \leq h$ . Then we would have  $f = gf \leq hf = h \leq e$  whence, by the maximality, there follows the contradiction f = e.

It follows from the above that  $\{e, f, g, h\}$  forms a crown of idempotents.

Observe now that  $e = eg \leqslant ef$  and  $e = he \leqslant fe$ . Similarly,  $f \leqslant ef$ , fe. Moreover,  $ef \parallel fe$ . Indeed, if for example  $ef \leqslant fe$  then we would have  $fef \leqslant fe \leqslant fef$  whence fe = fef and fe would be idempotent, giving the contradiction e = fe = f. Thus we see that  $\{e, f, ef, fe\}$  also forms a crown.

Similar observations to the above produce the fact that the subsemigroup generated by  $\{e, f, g, h\}$  is a copy of the crown bootlace.

We now proceed to show that e and f are  $\mathcal{D}$ -related. For this purpose, consider the element  $(gh)^{n-1}g = g(hg)^{n-1}$ . Since efgh = h, a simple inductive argument gives  $(ef)^n(gh)^n = h$  and consequently

$$(ef)^n (gh)^{n-1}g = efhg = e.$$

Then we have that

$$(ef)^n \cdot (gh)^{n-1}g \cdot (ef)^n = e(ef)^n = (ef)^n;$$

$$(gh)^{n-1}g \cdot (ef)^n \cdot (gh)^{n-1}g = (gh)^{n-1}ge = (gh)^{n-1}g,$$

whence  $(gh)^{n-1}g \in V((ef)^n)$  and so  $(gh)^{n-1}g \leq [(ef)^n]^{\circ}$ . Then (1) gives  $e \leq (ef)^n[(ef)^n]^{\circ}$  whence the maximality of e gives  $e = (ef)^n[(ef)^n]^{\circ}$ .

In a likewise manner it can be seen that  $f = [(ef)^n]^{\circ} (ef)^n$ . Consequently,  $e \mathcal{R} (ef)^n \mathcal{L} f$  and therefore  $e \mathcal{D} f$ .

Finally, it follows from the above and (1) that

$$[(ef)^n]^{\circ} = [(ef)^n]^{\circ} e = [(ef)^n]^{\circ} (ef)^n (gh)^{n-1} g = f(gh)^{n-1} g = (gh)^{n-1} g,$$

and similar calculations reveal that

$$[(fe)^n]^\circ = h(gh)^{n-1}, \quad [(efe)^n]^\circ = (hg)^n, \quad [(fef)^n]^\circ = (gh)^n.$$

Combining these observations, we can see that the  $^{\circ}$ -subsemigroup generated by  $\{e, f\}$  is isomorphic to the crown bootlace semigroup.

**Corollary.** Let  $S \in \mathbf{BA}$  (resp.  $S \in \mathbf{BI}$ ) be completely simple with no biggest idempotent. Then any two maximal idempotents  $e, f \in S$  are  $\mathcal{D}$ -equivalent and the  $\circ$ -subsemigroup generated by  $\{e, f\}$  is isomorphic to the crown bootlace semigroup.

**Proof.** This is immediate from the above and Theorem 11.

#### References

[1] T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer, 2005). doi:10.1007/b139095

- [2] T.S. Blyth, On the endomorphism semigroup of an ordered set, Glasgow Math. J. 37 (1995) 173–178.
   doi:10.1017/S0017089500031074
- T.S. Blyth and R. McFadden, Naturally ordered regular semigroups with a greatest idempotent, Proc. Roy. Soc. Edinburgh 91A (1981) 107–122. doi:10.1017/S0308210500012671
- [4] T.S. Blyth and G.A. Pinto, Principally ordered regular semigroups, Glasgow Math.
   J. 32 (1990) 349–364.
   doi:10.1017/S0017089500009435
- [5] T.S. Blyth and M.H. Almeida Santos, On weakly multiplicative inverse transversals, Proc. Edinburgh Math. Soc. 37 (1993) 91–99. doi:10.1017/s001309150001871x
- T.S. Blyth and M.H. Almeida Santos, On naturally ordered regular semigroups with biggest idempotents, Communications in Algebra 21 (1993) 1761–1771. doi:10.1080/00927879308824651
- [7] T.S. Blyth and M.H. Almeida Santos, E-special ordered regular semigroups, Communications in Algebra 43 (2015) 3294–3313. doi:10.1080/00927872.2014.918987
- [8] R. Croisot, Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. Sci. École Norm. Sup. 70 (1953) 361–379.
   doi:10.24033/asens.1015
- [9] P.A. Grillet, Semigroups (Marcel Dekker, New York, 1995). doi:10.1201/9780203739938
- [10] R.D. Luce, A note on boolean matrix theory, Proc. Amer. Math. Soc.  $\bf 3$  (1952) 382–388. doi:10.2307/2031888
- [11] D.B. McAlister, Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Australian Math. Soc. 31 (1981) 325–336. doi:10.1017/S1446788700019467
- [12] K.S.S. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23 (1980) 249–260. doi:10.1017/S0013091500003801
- [13] T. Saito, Naturally ordered regular semigroups with greatest inverses, Proc. Edinburgh Math. Soc. 32 (1989) 33–39. doi:10.1017/S001309150000688x

Received 23 May 2018 Revised 1 December 2018 Accepted 3 December 2018