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Abstract

We investigate the class BA of ordered regular semigroups in which each
element has a biggest associate 2 = max {y | zyz = z}. This class properly
contains the class PO of principally ordered regular semigroups (in which
there exists #* = max {y | zyx < z}) and is properly contained in the class
BI of ordered regular semigroups in which each element has a biggest inverse
x°. We show that several basic properties of the unary operation = — z*
in PO extend to corresponding properties of the unary operation = + f
in BA. We consider naturally ordered semigroups in BA and prove that
those that are orthodox contain a biggest idempotent. We determine the
structure of some such semigroups in terms of a principal left ideal and a
principal right ideal. We also characterise the completely simple members
of BA. Finally, we consider the naturally ordered semigroups in BA that
do not have a biggest idempotent.
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1. INTRODUCTION

If S is a regular semigroup then the set of associates (or pre-inverses) of x € S is
Alx) ={y € S | xyx = z}.

Here we investigate the situation in which S is an ordered regular semigroup and
each = € S has a biggest associate which we denote by z1.

The class BA of ordered regular semigroups with biggest associates is con-
tained in the class BI of ordered regular semigroups with biggest inverses [13].
Indeed, from x = zzfz we have zfzz! € V(2), and since every 2’ € V(z) C A(x)
is such that 2/ < zf it follows that 2/ = 2’z2’ < zfzz!. Consequently, 2° = zfzz’
is the biggest inverse of  and so S € BI.

That BA and BI are distinct is exhibited by the following example.

Example 1. Consider the set N of natural numbers as a meet semilattice under
the definition m An = min{m,n}. Here biggest associates do not exist, but each
element is its own unique, hence biggest, inverse. Thus (N, A) € BI'\ BA.

The class BA also contains the class PO of principally ordered regular semi-
groups [1, 4], namely those in which there exists z* = max{y € S | zyz < z}.
Indeed, if S € PO then for every y € A(x) we have y < z*. Consequently,
x = zyx < zo*z whence = zax*z. Thus * € A(x) and it follows from this that
r* = max A(z) and so S € BA with 2 = 2*.

That PO and BA are distinct is exhibited by the following example.

Example 2. Let G = (g) be an infinite cyclic group with identity element e, and
let G be totally ordered by --- < > < g? <g<e<gl<g?<---. Adda
new identity element 1 with the only added comparability in G = GU {1} being
e < 1. Then G is an ordered inverse monoid in which biggest associates exist,

these being given by
—1 . .
xT:{w if x ¢ {e, 1};
1

otherwise.

Moreover, since g < e we have glg = g> < g = g9~ 'g with e < g~! || 1. Since 1
is maximal, it follows that g* does not exist, so G € BA \ PO. In contrast, if
G is totally unordered and a new identity is added as before, then the resulting
ordered monoid belongs to PO.

Example 3. In [2] it is proved that if P is an ordered set then the ordered
semigroup End P of isotone mappings f : P — P is regular and belongs to PO
if and only if P is a dually well-ordered chain. As can easily be seen on replacing
each f* by fT in the proof of = in [2], the same statement holds with PO replaced
by BA.
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As we shall see, several basic properties of the unary operation x — x*
for algebras in PO [1, 4] extend to properties of the unary operation z ~ af
for algebras in BA. Throughout, we shall use the fact that if S € BA then

2° = max V(z) and 27 = max A(x) are such that z° < zf with 2° # 2T in

general. Indeed, in Example 2 we note that e® = efeel = lel =e < 1 =el.
Theorem 1. If S € BA then

(1) (Ve € 8) z <z <afo =2l =2°f;

(2) (Vze8) oftt =af;

(3) (Ve e8) (afz)al =af =2l (zah)f;

(4) (Ve € E(S)) e° € E(S) «— el € E(9).

Proof. (1),(2) Since z € V(x°) it is immediate that

(a) r <% < a2l

Also, since z°z1T2° = afaxafatalzat = afzat = 2° we see that

(b) zto <l < 2ot

Using the fact that zz° = zafza’ = zaf, and likewise 2°z = z'z, we next
observe that zafz°Tale = za®2°T2°2r = za®sz = = whence zfz°T2t < 2. By
(b), xfz°tzt > 2fztoat = 2t and it follows that zf2°TzT = 2T whence 2°T < 2.
Then, by (b) again,

(c) z°t = 21T,

It follows by (a) and (c) that 2 < «'T for every 2 € S. Consequently, z < 2Tt
and therefore

r=axx'x < retfle = zalfeaeats < rotetTaafiyty = o

whence 22Tz = z and so 2T < 27, Thus 2" = 2T which is (2).
To complete the proof of (1), it suffices to observe that, by (2),

pio = Pttt = it i, Th — it

(3) 2tz - 2Tz’ - 2Tz = 2tz gives 2Tz < (272)! whence 27 = 2f2T2l <
(ztz)Tzt, whereas z-(2Tx) 2-2 = zalz(2T2) 2zt = zate = x gives (afz) T2l < 2f.
Consequently, (zf2)Tz! = 27 and similarly zf(z2")T = 2T,

(4) For every e € FE(S), e = eeee < eellele < eefellele = eele = e whence
e = eelfefe. Then effe! < el and consequently ef = efeffel < efel. If now
e® € E(9), then we also have eefele = ee®e®e = ee®e = e whence efel < el and
therefore ef € E(S). Conversely, if ef € F(S), then e = eefe = eefele = ee®e®e
whence e® = e®ee® = e®ee®e®ee® = e°e® so that e® € E(S) also. ]
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If S € BA then since S € BI with zzf = z2° and 2Tz = z°z, various
properties hold automatically. Indeed, it follows from known properties of biggest
inverses [1, 13] that

(o) Green’s relations on S are given by
(r,9) € L <= 2Tz =yly; (z,y) e R <= a2l =yyl.

(B) 'z [resp. zxT] is the biggest idempotent in L, [resp. R,].
(v) (Vx € S) (xz°)° =2x°°2° and (z°z)° = z°z°°.

2. NATURALLY ORDERED SEMIGROUPS

We recall that in an ordered regular semigroup S the natural order (or Nam-
booripad order) is defined by

r<py < (Je,f € E(S)) z=ey=vyf,

and on the idempotents is given by
ey f < e=ef = fe.

(5; <) is said to be naturally ordered if < extends <,, on the idempotents, in the
sense that

e<, [ = e< f.

For S € PO, much use is made of the fact that S is naturally ordered if and
only if the operation z — x* is antitone [1, Theorem 13.27]. As we now show, for
S € BA a more general situation obtains.

Definition. If S € BA then we shall say that the operation x — z' is weakly
antitone if

(Ve,f e E(S) e<f = fI<¢
Theorem 2. If S € BA then the following statements are equivalent:

(1) S is naturally ordered,

(2

x — xl is weakly antitone;

)
(3) (Vz,y€S) wy(wy)! < zaf;
(3") (Ye, f € E(S)) ef(ef)t < eel;
(4) (Vo,yeS) (ay)ley <yly;
(4) (Ve,f € E(S)) (ef)fef < [fTF.
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Proof. (1) = (2): If e, f € E(S) with e < f, then efe € E(S). Since efe <, €
we have by (1) that efe < e. Also, e = eee < efe gives e = efe. Now efe <
effe = eeffee < effife = efe so that effe = efe = e and therefore fT < ef.
Thus (2) holds.

(2) = (3): Observe first that, by (v), (zz1)° = (z2°)° = 2°°2° € E(S) and
therefore, by Theorem 1(4), (zz")T € E(S) for every x € S. Now xy(zy)' - zat -
zy(ry)t = zy(zy)’ gives o’ < [zy(ry)T]t € E(S). By Theorem 1 and the fact
that  — z' is weakly antitone by the hypothesis (2), it then follows that

vy(ay) = 22’ - 2y(ay)’ <aalley(ey)')T <ol (z2h)' = 22l

(3) = (3'): This is clear.
(3") = (1): If e, f € E(S) are such that e <, f then, by (3'),
e=cef <eelf= fe(fe)Tf <Ff=f,

whence S is naturally ordered.
The equivalence with (4) and (4') is established similarly. ]

It follows from the above that for S € PO the operation z — z! is antitone
if and only if it is weakly antitone. The following example shows that this is not

so for S € BA \ PO.

Example 4. For G! € BA\PO in Example 2, we have that E(G') = {e, 1} and
G' is naturally ordered. Whereas  +— z! is then weakly antitone by Theorem 2,
it is not antitone since we have g < 1 with gt = ¢=! | 1 = 1.

For the purpose of the next example, we recall that every regular semigroup
S is E-inversive in the sense that

(VzeS) I(zx)={a€S|zaax e E(S)} #0.

An ordered regular semigroup S is said to be E-special if 2t = max I(z) exists
for every x € S. Such semigroups were investigated in [7].

Example 5. It follows from [7, Theorem 2| that every naturally ordered E-
special regular semigroup S belongs to BA with 2t = zf for every z € S. A
concrete example of this is seen in Example 2 above.

The following results generalise to BA further particular properties that hold
for semigroups in PO.

Theorem 3. If S € BA is naturally ordered then

(Vz,yeS)  (zy)° = (2°2y)°2° = y° (zyy°)°.
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Proof. Since, by (), (z,z'x) € L it follows that (zy,z'zy) € £ and conse-
quently

ay) ay(zy)t

(zy)°

alzy)latzy(zy)f

=

=

= (zlzy) atay(oy)!

< (z°xy)°wlzat by Theorem 2
( Ox )O O

X
xr X

Y
However, since (z°zy)°z° € V(zy) we have that (z°zy)°z° < (zy)° and equality
follows. The second expansion is established similarly. [ |

Theorem 4. If S € BA is naturally ordered then

(1) e € E(S) is a mazimal idempotent if and only if e = e
(2) (Vx€S) (za")T and (x72)" are mazimal idempotents;
(3) if e € E(S) is such that €' € E(S) then el is a maximal idempotent.

Proof. (1) For every e € E(S) we have e < ef and e < eff. Then e < eef and
e < efell. If e is a maximal idempotent we then have that e = ee! = efef whence
e = eel = efelfel = ef.

Conversely, if e = el and f € E(S) is such that e < f then, by Theorem 2(2),
f < ff <ef =e whence f = e and so e is a maximal idempotent.

(2) Given x € S, let e = (z2°)° = 2°°2°. Then €° = e € E(S) and therefore,
by Theorem 1(4), ef € E(S). Now ef = e = eff and so e°f is a maximal
idempotent by (1). But e°f = (22°)°°T = (z2)T. Hence (zz')' is a maximal
idempotent, and similarly so is (zfz)T.

(3) Since e and e are idempotent, we have e < ef < efT and, by Theorem 2(2),
eft < ef. Consequently, ef = eff whence, by (1), eT is a maximal idempotent. M

For the purpose of investigating the structure of naturally ordered semigroups
S € BA, we note that every x € S is such that zz°z°° = za°z°t = zalzl.
Consider therefore the subsets

L={z2°2°° |2 €S}, R={z2°z|zeS}

Theorem 5. If S € BA is naturally ordered then L is a left ideal of S and R is
a right ideal of S with LN R = S°.

Proof. For all z,y € S it follows by Theorem 2 that zy(zy)’ < zz' and
(zx")T < [zy(zy)T]T. It then follows by Theorem 4(2) that (z2")T = [zy(zy)T]T.



ORDERED REGULAR SEMIGROUPS WITH BIGGEST ASSOCIATES 11

Consequently,
(zy)*°(zy)°zy = [zy(zy)°] 2y

If now = € R then this gives zy € R whence R is a right ideal of S. Similarly, L is
a left ideal of S. Finally, if x € LN R then © = 2°°2°z = 2°°2°z2°2°° = 2°° € §°
and so L N R C §°, the converse inclusion being clear. [ |

3. THE PRESENCE OF A BIGGEST IDEMPOTENT
If S € BI then Green’s relations R and £ are said to be weakly regular if
(Ve,f € E(S)) e<f = e < [ff° e’e< [ff.

As shown in [1, Theorem 13.23], this is equivalent to the condition that the
assignment x — x° is weakly isotone in the sense that

(Ve, f € E(5)) e<f = e° < f°.

Theorem 6. If S € BA is naturally ordered then the following statements are
equivalent:

(1) the assignment x — x° is weakly isotone on S,
(2) (Ve € E(S)) el € E(S);
(3) S has a biggest idempotent.

Proof. (1) = (2): If (1) holds then, by the Corollary to [1, Theorem 13.23],
e® € E(9) for every e € E(S), whence (2) follows by Theorem 1(4).

(2) = (3): If (2) holds then, by Theorem 4(3), every e is a maximal idem-
potent. For e, f € E(S) consider the sandwich set S(ef, 1) = fIV(ef fT)el and
its element g = fT(ef f1)°ef. Then gefg = g?> = g gives el < g'. It follows from
the maximality that ef = g. Similarly, fT = ¢ and therefore ef = fT.

If now e, f are maximal idempotents in S then, by the above and Theorem
4,e=el = f = f. So S has a unique maximal idempotent which we denote by
¢. Since for every idempotent e we then have e < ef = ¢ = ¢, we see that € is
the biggest idempotent in S.

(3) = (1): Suppose now that S has a biggest idempotent . By [3, Theorem
1.3(3)] every idempotent e is such that ee® = e£ and e’e = e. So if e < f then
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ee® = e£ < f€ = ff° and similarly e®e < f°f. Thus Green’s relations R and £
are weakly regular and (1) follows. ]

Corollary 1. If S € BA is naturally ordered and has a biggest idempotent &
then

(1) (Ve € E(S)) el =¢, e=cete, e = Ee;

(2) (Ve 8) &xt=af =at¢ whence also €2° = 2° = 2°¢;
(3) (Ve e8) a°° =&

(4) L=5¢ and R=£S.

Proof. (1) This is immediate from Theorem 6.

(2) Since, by (1), zéz'r = zatzéxrTs = xaTx = 2 we have that 27 < 27, On
the other hand, ' = zfztT2t < 2t and so €zt = 2f. Similarly, 27¢ = .

(3) Since 2°°z°z = (z2°)°zx°z = (za!) zale = 2 and likewise z2°2°° = x€,
it follows that z°° = x°°z°zx°z°° = £x€.

(4) By (2), €&x° = x° whence z € L if and only if x = zz°2°° = z(2°z)° =
x€x°x€ = x€. Thus L = S¢ and similarly R = £S. [

Corollary 2. If S € BA has a biggest idempotent £ then the following statements
are equivalent:

(1) S is naturally ordered;
(2) (Ve€ E(9)) ef =¢.

Proof. (1) = (2): This is clear from Corollary 1.

(2) = (1): Suppose that (2) holds and let e, f € E(S) be such that e <,, f.
Then e = fef < felf = féf = ff'f = f and consequently S is naturally
ordered. |

A prominent situation where a biggest idempotent exists is the following.

Theorem 7. If S € BA is naturally ordered and orthodox then S has a biggest
idempotent £&. Moreover, £ is a middle unit and S° = £S€ is an inverse transversal

of S.

Proof. If S is orthodox then inverses of idempotents in S are also idempotent;
see for example [9, IX, Proposition 2.1]. Thus e® € E(S) for every e € E(S) and
therefore, by Theorem 1(4), ef € E(S). It then follows by Theorem 6 that S has
a biggest idempotent . That £ is a middle unit [x€y = zy] is now a consequence
of [1, Theorem 13.18]; see also [11]. Finally, that S° is an inverse transversal
follows by [1, Theorem 13.16]. |

Theorem 7 does not extend to semigroups in BI \ BA. Whereas this is
immediately clear on considering the semilattice of Example 1, a more general
illustrative example is the following.
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Example 6. Let £ > 1 be a fixed integer. For every n € Z let np be the
biggest multiple of k£ that is less then or equal to n. On the cartesian ordered set
S =7 x —N x Z consider the multiplication that is defined by the prescription

($, -bp, m)(y’ —q, ’I’L) = (min{$7 y}? —q, m+ nk)

Then S is an ordered semigroup in which the idempotents are of the form
(x,—p,m) where my = 0, i.e., where 0 < m < k — 1. Then S does not have
a biggest idempotent.

Now (y, —gq,n) is an associate of (z, —p,m) if and only if

(x’ _pam) = (min{x,y}a —p,m + ng + mk)

which is the case if and only if z < y and ny = —my. So (z, —p, m) does not have
a biggest associate and therefore S ¢ BA. However, it follows from the above
that (y,—q,n) is an inverse of (z,—p,m) if and only if y = x and ny = —my.
Consequently, (x, —p, m) has a biggest inverse, namely (x,0, —m +k—1). Hence
S € BI\ BA.

Finally, simple calculations show that S is both orthodox and naturally or-
dered.

The general structure of naturally ordered regular semigroups with a biggest
idempotent is known and is described in [3]. In the present context, namely
S € BA naturally ordered and orthodox, a much simpler situation obtains which
we now describe.

Theorem 8. Let S € BA be naturally ordered and orthodox with biggest idem-
potent &. Then, with L = S& and R = &S, the subset of L X R defined by

L%R={(z,a) e LxR|z° =a"}

is a reqular subsemigroup of the cartesian ordered cartesian product semigroup
L x R. Moreover, if the order on the inverse subsemigroup S° coincides with the
natural order on S° then there is an ordered semigroup isomorphism S ~ LX R.

Proof. It is clear that LX R is an ordered regular subsemigroup of L x R. Con-
sider the mapping ¥ : S — LX R given by ¥(z) = (x, £x). Since ¢ is a middle
unit by Theorem 7, we see that, for all z,y € 5,

D(x)0(y) = (€, &x)(y€, &y) = (2€y€, Eady) = (wy, Exy) = I(ay).
Thus ¢ is a morphism. If now (z,a) € LX R then

Y(zza) = (zx°af, Exaxla) = (xx°a’®, x°°2°%a) = (x,a)
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and so ¥ is surjective.

Clearly, if x < y then J(x) < 9(y). Conversely, if ¥(z) < J¥(y) then 2°° =
Exé < Ey& = y°°. Since by hypothesis the order < coincides with the natural
order <, on the inverse subsemigroup S° it follows from x°° <, y°° that z° =
(°°)71 <, (¥°°) ! = 9° and then 2° < y°. Hence x = z€zx°éx < y&y°ly = v.

In summary, ¥ is thus an isomorphism of ordered semigroups. [ |

A particular case of the above is illustrated by the following internal structure
theorem.

Theorem 9. Let S € BA be naturally ordered and orthodox. If e, f € E(S) are
such that e < f then the T-subsemigroup generated by {e, f} is an ordered band
with at most 32 + 22 + 1 = 14 elements and has Hasse diagram the distributive
lattice

in which elements joined by lines of positive gradient are R-related, those joined
by lines of negative gradient are L-related, and vertical lines also indicate <.

Proof. By Corollary 1 to Theorem 6, the f-subsemigroup generated by e, f with
e < f coincides with the semiband T' = (e, f,£) which consists of words z =
ky - -k, where each k; € {e, f,£}. Clearly, T has top element £ and bottom
element e.

Since for every x € T we have

e:eeegexegege:eeTe:e

we see that eTe = {e}, whence it follows that all words that begin and end with
the letter e reduce to e itself.

Likewise, e = eef < exf < e&€ = ef gives eT¢ = {ef}, and similarly
§Te = {Se}.

Since £ is a middle unit by Theorem 7, it follows from the above that

exf =exfflf =exfEf=elf =ef

whence eT'f = {ef}, and similarly fTe = {fe}.
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Consider now a word of the form f[---]f € fTf. If [- - -] contains the letter e
then by the above the word reduces to fef. Otherwise, [-- -] contains at most the
idempotents f and £ = fT, whence the word reduces to f. Hence fTf = {fef, f}.

Similar arguments show that

JTE ={fe€, f&}, STf ={&ef, &f},  €TE ={Se€, €€, &}

Thus we see that there are at most 14 distinct words in 7', all of which are,
by the above observations, idempotent. Consequently, T" is a band. When T has
precisely 14 elements it then has as Hasse diagram the lattice illustrated, with
the £- and R-classes as described. [ |

In connection with Theorem 8, we note that, in the above, S° = {e°, f°, ¢}
on which the order coincides with the natural order.

The above result can of course be extended to any finite chain e, < --- <
ey < e1 of idempotents, the effect being to extend the above diagram by adding,
for each i, a layer of size i, these layers being the D-classes of the e;. The
resulting ‘wedding cake’ diagram then depicts an ordered band which has at
most Y72 = t(n+1)(n+2)(2n + 3) elements.

Example 7. Let R be an ordered right zero semigroup with a biggest element
« and let L be a A-semilattice with a biggest element 5. Consider the cartesian
ordered cartesian product semigroup S = R x L x G where G' is the semigroup
of Example 2. Then it is readily seen that S € BA with

(T,l,{L’)T = (a,ﬂ,xT), (r,l,2)° = (a,l,xo).

The idempotents of S are the elements (7,1, e) and (r,1,1). Then S is naturally or-
dered and orthodox with biggest idempotent & = (a, 3,1). If now p = (1,1, e) and
q = (s,m, 1) are idempotents such that » < s and [ < m then simple calculations
show that (p, q,&) is a band and is precisely as described in Theorem 9.

We have seen in Theorem 7 above that if S € BA is naturally ordered and
orthodox then S necessarily contains a biggest idempotent. We now consider
the existence of a biggest idempotent in the case where S € BA is naturally
ordered and non-orthodox. A simple example of this is the semigroup N5 of [3,
Theorem 3.2].

For this purpose, we recall that if S is an ordered regular semigroup and
E = (E(S)) denotes the subsemigroup generated by the idempotents of S then
an idempotent « is said to be medial if €ae = € for every € € E. As is shown in
[6, Theorem 2|, if S is naturally ordered and has a biggest idempotent & then & is
medial. Consequently, €, &e € E(S) and it follows that every € € E is a product
of two idempotents.

In this case we have the following companion to Theorem 9.
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Theorem 10. Let S € BA be naturally ordered and non-orthodox with a biggest
idempotent €. If x € E\ E(S) then the t-subsemigroup generated by {x,£} has
at most 9 elements, all of which except x are idempotent, and has Hasse diagram
the distributive lattice

in which elements joined by lines of positive gradient are R-related, those joined
by lines of negative gradient are L-related, and vertical lines also indicate <y,.

Proof. Since x, 22 € E we have x = z€x and 22 = 2222, Consequently

23 = afx - xéx - véx = xfxalx = 22
Hence 22 € E(S) with © = x¢éx > 2® = 2%, Then x > 22 since ¢ E(S). The
diagram for (z,&) together with the description given above is now clear. [ |

Example 8. Let T'= M(2;2,2; P) be the Rees matrix semigroup where 2 is the
1
1 J . Then T is not ortho-
dox since we have that (1,1,2),(2,1,1) € E(T) but (1,1,2)(2,1,1) = (1,1,1) ¢
E(T).
Consider the cartesian ordered cartesian product semigroup S = T xG' where
G' is as in Example 2. It is readily verified that S € BA, is naturally ordered,
non-orthodox, and has biggest idempotent ((2, 1,2), 1). Moreover, S contains the
subsemigroup (T X {e}) U {((2, 1,2), 1) } which is order isomorphic to that which
is described in Theorem 10 with z = ((1, 1,1), e) and £ = ((2, 1,2), 1).

2-element semilattice and the sandwich matrix P = [

4. COMPACTNESS AND COMPLETELY SIMPLE SEMIGROUPS

As we have seen, if S € BA then S € BI with 2° = max V(r) < max A(z) = '
in general. This leads to a consideration of the following notion.

Definition. If S € BA we shall say that z € S is compact if 2° = zf, and
that S itself is compact if every element of S is compact, the latter clearly being
equivalent to the property ST= 5°.
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If S € BA then every z' € S is compact since z° = zft. In particular, if S
is naturally ordered then it follows from e < €° < e/ and Theorem 4 that every
maximal idempotent is compact.

Example 9. Consider the ordered semigroup B;,, = Mat ,,x(B) of n xn matrices
over a given boolean algebra B = (B;+, -, ’;0,1) with n > 2. Each B, is a
residuated semigroup [10, 1], but is not naturally ordered since, for example,
there are idempotents which are above the identity matrix. Simple computations
[1, Example 13.1] show that B, is regular if and only if n = 2. Then By is
principally ordered and consequently belongs to BA. As shown in [6], the relevant
unary operations in By are as follows:

a ]’ WHd+d d+d 41
cdl  |ld+d+c V+d+al’

abl® [V(a+c)+d(a+b)+d d(c+d) +d(atc)+b
cd  |db+d)+d(a+b)+c blc+d)+d(b+d)+al’

The compact elements of By are described as follows:
a bl .
A= [ d} is compact <= a+b+c+d=1.
c

To see this, observe first that the sum of all the elements of A is 1 whereas
that of A°isa+b+c+d. Soif A is compact then a + b+ ¢+ d = 1. Conversely,
suppose that a+b+c+d = 1. Then a+c > (b+d)' = b'd and a+b > (c+d) = dd'.
It follows that

Via+c)+d(a+b)+d>Vd +dd+d=V+ +d

whence [A°]1; > [AT]11 and equality follows from A° < AT. Likewise, the remain-
ing elements of A° and AT coincide, whence A is compact.

We now consider the case where S is a completely simple semigroup. As
shown by Croisot [8], in this situation we have that V(z) = A(z) for every z € S.
It follows therefore that if S € BI then max V(z) = max A(z), so that S € BA
with z° = zt for every x € S. The completely simple members of BA are
characterised in the following companion to Theorem 2.

Theorem 11. If S € BA then the following statements are equivalent:

(1) S is naturally ordered and compact,
(2) S is naturally ordered and every idempotent is compact,

(3) the assignment x — x° is weakly antitone in the sense that

(Ve,f € E(S)) e<[f = [f°<e%
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(4) S is completely simple.

Proof. (1) = (2): This is clear.

(2) = (3): Suppose that (2) holds and let e, f € E(S) be such that e < f.
Then, since = — z! is weakly antitone by Theorem 2, we have f° = fT < ef =¢°
whence (3) holds.

(3) = (4): Suppose now that (3) holds and again that e, f € E(S) are such
that e < f. Then ef° < ee’e =e. But e < f < f° gives e = eee < ef°e. Hence
e = ef°e, and consequently e < efe < ef°e = e whence e = efe. It follows that

e=cfe<efle=ceffee <effife=cfe=ce.

Thus effe = e and therefore f < ef. It follows by Theorem 2 that S is naturally
ordered.

Suppose now that e, f € E(S) are such that e <,, f. Then, by the above,
e < f and so, by the hypothesis (3), we also have f° < e°. Now ef = e gives
fe‘e € E(S); and since fe’e <, f it follows that fe®e < f. Consequently,
e =ecee’e < fe’e = fe®ee < fe =e. Thus fe’e = e and similarly we can see that
also ee® f = e. Combining these observations with the hypothesis (3), we obtain
f=rfof< feef=fee-ee’f =ee=e. Thus <, on E(S) reduces to equality
and consequently S is completely simple.

(4) = (1): This is clear. ]

5. THE ABSENCE OF A BIGGEST IDEMPOTENT

A particular completely simple semigroup S € BA which does not have a biggest
idempotent is the so-called crown bootlace semigroup [1, 4]. This can be rep-
resented by the Rees matrix semigroup M((z);2,2; P) where (z) is a totally
-1 -1
ordered cyclic group with 1 < z, and the sandwich matrix is P = [x_l wl }
x
The order is represented by the Hasse diagram

efe=(1,2%,2) (2,22 1)=fef

ef=(1,22,1) (2,z,2)=fe
eg=he=e=(1,2,2)4 (2,z,1)=f=fh=gf
eh=hf=h=(1,z,1)s (2,1,2)=g=ge=1fg

hg=(1,1,2) (2,1,1)=gh

hgh=(1,1,1) (2,z71,2)=ghg
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in which the idempotents form a crown. Here biggest associates (biggest inverses)
are given by

Our objective now is to highlight the crown bootlace semigroup amongst
those members of BA that do not have a biggest idempotent. For this purpose
we introduce the following notion.

Definition. We shall say that .S € BA is partially compact if the product of any
two compact idempotents of S is compact.

Example 10. If M denotes the crown bootlace semigroup, consider the cartesian
ordered cartesian product semigroup M x G' where G! is as in Example 2.
Clearly, this belongs to BA and has no biggest idempotent. Here the set of
compact elements is M x (G \ {e}), in which the compact idempotents are the
elements (z,1) where z € E(M). Consequently, M x G is partially compact.

Theorem 12. Let S € BA be naturally ordered and with no biggest idempotent.
If S is partially compact then any two maximal idempotents of S are D-equivalent
and the °-subsemigroup they generate is isomorphic to the crown bootlace semi-

group.

Proof. Let e, f be maximal idempotents in S, so that e = ¢° = ef and f =
f° = fI. Consider the sandwich elements g = f(ef)°e € S(e,f) and h =
e(fe)°f € S(f,e). Then, using Theorem 3, g = f°(e®eff°)°e® = (ef)°, and
likewise h = (fe)°. Since, by Theorem 5, S° is a subsemigroup, ef = e°f° € S°
and therefore g° = (ef)°° = ef. Likewise, h® = (fe)°° = fe.

Now since e and f are compact it follows by the hypothesis that so also are
ef and fe. Consequently, g = (ef)° = (ef)! € ST. Thus g is also compact.
Likewise, so is h.

Furthermore, by Theorem 2, g < g'g = ef(ef)! < eel = e and g < gg' =
(ef)fef < fif = f. Likewise, h < e and h < f.

We now observe that eg € E(S) with

eg = efg = (ef)*°(ef)” = lef(ef)°]° = (efg)° = (eg)*

whence, by Theorems 1 and 4, (eg)' is a maximal idempotent. But eg < ee = e
gives e = el < (eg)" whence, by the maximality of e, it follows that e = (eg)T.
Since, by the hypothesis, eg is compact we then have eg = (eg)° = (eg)! = e.
Similarly, it can be seen that ¢gf = f, and dually that fh = f and he = e.

Moreover, we have that g || h. Suppose, by way of obtaining a contradiction,
that g and h were comparable, say g < h. Then we would have f = gf < hf =
h < e whence, by the maximality, there follows the contradiction f = e.
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It follows from the above that {e, f, g, h} forms a crown of idempotents.

Observe now that e = eg < ef and e = he < fe. Similarly, f < ef, fe.
Moreover, ef || fe. Indeed, if for example ef < fe then we would have fef <
fe < fef whence fe = fef and fe would be idempotent, giving the contradiction
e = fe = f. Thus we see that {e, f,ef, fe} also forms a crown.

Similar observations to the above produce the fact that the subsemigroup
generated by {e, f,g,h} is a copy of the crown bootlace.

We now proceed to show that e and f are D-related. For this purpose,
consider the element (gh)"~'g = g(hg)"~!. Since efgh = h, a simple inductive
argument gives (ef)"(gh)™ = h and consequently

(1) (ef)"(gh)" g = efhg =e.
Then we have that
(ef)™ - (gh)"1g - (ef)" = e(ef)" = (ef)™;
(gh)"tg - (ef)"- (gh)"1g = (gh)"'ge = (gh)" g,

whence (gh)"'g € V((ef)") and so (gh)"'g < [(ef)™]°. Then (1) gives e <
(ef)"[(ef)"]° whence the maximality of e gives e = (ef)"[(ef)"]°.
In a likewise manner it can be seen that f = [(ef)"]°(ef)". Consequently,

e R (ef)"™ L f and therefore e D f.
Finally, it follows from the above and (1) that

[(ef)"]° = [(ef)"])%e = [(ef)"]°(ef)" (gh)" g = f(gh)" " g = (gh)" g,

and similar calculations reveal that

[(fe)")° = h(gh)"™", [(efe)"]° = (hg)", [(fef)")° = (gh)".

Combining these observations, we can see that the °-subsemigroup generated
by {e, f} is isomorphic to the crown bootlace semigroup. [ |

Corollary. Let S € BA (resp. S € BI) be completely simple with no biggest
idempotent. Then any two maximal idempotents e, f € S are D-equivalent and the
°-subsemigroup generated by {e, f} is isomorphic to the crown bootlace semigroup.

Proof. This is immediate from the above and Theorem 11. [ |
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